-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathevaluate.py
633 lines (556 loc) · 26.1 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from tqdm import tqdm
from copy import deepcopy
from timeit import default_timer as timer
from typing import Any, Dict, List, Union, Literal, Tuple
from pathlib import Path
from collections import OrderedDict, defaultdict
import os
import json
import glob
import sympy
import torch
import wandb
import pickle
import numpy as np
import pandas as pd
import odeformer
from parsers import get_parser
from odeformer.slurm import init_signal_handler, init_distributed_mode
from odeformer.utils import initialize_exp
from odeformer.model import build_modules
from odeformer.envs import build_env
from odeformer.envs.generators import NodeList
from odeformer.trainer import Trainer
from odeformer.model.sklearn_wrapper import SymbolicTransformerRegressor
from odeformer.model.model_wrapper import ModelWrapper
from odeformer.metrics import compute_metrics
# np.seterr(all="raise")
def setup_odeformer(trainer) -> SymbolicTransformerRegressor:
embedder = (
trainer.modules["embedder"].module
if trainer.params.multi_gpu
else trainer.modules["embedder"]
)
encoder = (
trainer.modules["encoder"].module
if trainer.params.multi_gpu
else trainer.modules["encoder"]
)
decoder = (
trainer.modules["decoder"].module
if trainer.params.multi_gpu
else trainer.modules["decoder"]
)
embedder.eval()
encoder.eval()
decoder.eval()
model_kwargs = {
'beam_length_penalty': trainer.params.beam_length_penalty,
'beam_size': trainer.params.beam_size,
'max_generated_output_len': trainer.params.max_generated_output_len,
'beam_early_stopping': trainer.params.beam_early_stopping,
'beam_temperature': trainer.params.beam_temperature,
'beam_type': trainer.params.beam_type,
}
mw = ModelWrapper(
env=trainer.env,
embedder=embedder,
encoder=encoder,
decoder=decoder,
**model_kwargs
)
return SymbolicTransformerRegressor(
model=mw,
from_pretrained=trainer.params.from_pretrained,
max_input_points=trainer.params.max_points,
rescale=trainer.params.rescale,
params=trainer.params,
model_kwargs=model_kwargs,
)
def read_file(filename, label="target", sep=None):
if filename.endswith("gz"):
compression = "gzip"
else:
compression = None
if sep:
input_data = pd.read_csv(filename, sep=sep, compression=compression)
else:
input_data = pd.read_csv(
filename, sep=sep, compression=compression, engine="python"
)
feature_names = [x for x in input_data.columns.values if x != label]
feature_names = np.array(feature_names)
X = input_data.drop(label, axis=1).values.astype(float)
y = input_data[label].values
assert X.shape[1] == feature_names.shape[0]
return X, y, feature_names
class Evaluator(object):
def __init__(self, trainer, model):
"""
Initialize evaluator.
"""
self.trainer = trainer
self.model = model
self.params = trainer.params
self.env = trainer.env
self.env.rng = np.random.RandomState(self.params.test_env_seed)
self.save_path = (
self.params.eval_dump_path
if self.params.eval_dump_path
else self.params.dump_path
if self.params.dump_path
else self.params.reload_checkpoint
)
if not os.path.exists(self.save_path): os.makedirs(self.save_path)
if hasattr(self.params, "eval_size"):
self.eval_size = self.params.eval_size
else:
self.eval_size = -1
self.ablation_to_keep = list(
map(lambda x: "info_" + x, self.params.ablation_to_keep.split(","))
)
def prepare_test_trajectory(
self,
samples: Dict[str, Dict[str, Any]],
evaluation_task: Literal["interpolation", "forecasting", "y0_generalization"],
) -> Dict[str, Dict[str, Any]]:
if "train" not in samples.keys():
samples["train"] = {"times":samples["times"], "trajectories":samples["trajectory"]}
del samples["times"], samples["trajectory"]
assert "test" not in samples.keys(), samples.keys()
samples["test"] = {"times":[], "trajectories":[]}
if evaluation_task == "interpolation":
samples["test"] = deepcopy(samples["train"])
return samples
elif evaluation_task == "forecasting":
for time, trajectory, tree in zip(samples["train"]["times"], samples["train"]["trajectories"], samples["tree"]):
y0 = trajectory[-1]
t0 = time[-1]
teval = np.linspace(t0, t0+5, 512, endpoint=True)
test_trajectory = self.model.integrate_prediction(teval, y0=y0, prediction=tree)
samples["test"]["trajectories"].append(test_trajectory)
samples["test"]["times"].append(teval)
return samples
elif evaluation_task == "y0_generalization":
for time, trajectory, tree, dimension in zip(samples["train"]["times"], samples["train"]["trajectories"], samples["tree"], samples["infos"]["dimension"]):
y0 = self.env.rng.randn(dimension)
test_trajectory = self.model.integrate_prediction(time, y0=y0, prediction=tree)
samples["test"]["trajectories"].append(test_trajectory)
samples["test"]["times"].append(time)
return samples
else:
raise ValueError(f"Unknown evaluation_task: {evaluation_task}")
def _evaluate(
self,
times: List[Dict],
trajectories: List[Dict],
trees: List[Union[None, NodeList]],
all_candidates: Union[List, Dict],
all_durations: Union[List, Dict],
validation_metrics: str
) -> Tuple[Dict, Dict]:
best_results = {metric: [] for metric in validation_metrics.split(',')}
best_results["duration_fit"], best_results["pareto_front"], best_candidates = [], [], []
zipped = [times, trajectories, trees, (all_candidates.values() if isinstance(all_candidates, Dict) else all_candidates)]
if all_durations is not None:
zipped.append(all_durations)
for items in zip(*zipped):
if len(items) == 5:
time, trajectory, tree, candidates, duration_fit = items
else:
time, trajectory, tree, candidates = items
if not candidates or trajectory is None:
for k in best_results:
best_results[k].append(np.nan)
best_candidates.append(None)
continue
best_results["pareto_front"].append(candidates)
time, idx = sorted(time), np.argsort(time)
trajectory = trajectory[idx]
if isinstance(candidates, List):
best_candidate = candidates[0]
else:
best_candidate = candidates
if isinstance(best_candidate, str) and (not hasattr(self.params, "convert_prediction_to_tree") or self.params.convert_prediction_to_tree):
try: best_candidate = self.str_to_tree(best_candidate)
except: pass
pred_trajectory = self.model.integrate_prediction(time, y0=trajectory[0], prediction=best_candidate)
if not hasattr(self.params, "convert_prediction_to_tree") or self.params.convert_prediction_to_tree:
try: best_candidate = self.env.simplifier.simplify_tree(best_candidate, expand=True)
except: pass
best_result = compute_metrics(
pred_trajectory,
trajectory,
predicted_tree=best_candidate,
tree=tree,
metrics=validation_metrics
)
if len(items) == 5:
best_result["duration_fit"] = [duration_fit]
for k, v in best_result.items():
best_results[k].append(v[0])
best_candidates.append(best_candidate)
return best_results, best_candidates
def evaluate_on_iterator(self, iterator, name="in_domain"):
self.trainer.logger.info("evaluate_on_iterator")
scores = OrderedDict({"epoch": self.trainer.epoch})
batch_results = defaultdict(list)
_total = min(self.eval_size, len(iterator)) if self.eval_size > 0 else len(iterator)
for samples_i, samples in enumerate(tqdm(iterator, total=_total)):
if samples_i == self.eval_size:
break
if not "test" in samples.keys():
samples = self.prepare_test_trajectory(samples, evaluation_task=self.params.evaluation_task)
times, trajectories, infos = samples["train"]["times"], samples["train"]["trajectories"], samples["infos"]
for k, v in infos.items():
if isinstance(v, np.ndarray) or isinstance(v, torch.Tensor):
infos[k] = v.tolist()
elif isinstance(v, List):
infos[k] = v
else:
raise TypeError(
f"v should be of type List of np.ndarray but has type: {type(v)}"
)
if "tree" in samples.keys():
trees = [self.env.simplifier.simplify_tree(tree, expand=True) for tree in samples["tree"]]
batch_results["trees"].extend(
[None if tree is None else tree.infix() for tree in trees]
)
else:
trees = [None]*len(times)
original_times, original_trajectories = deepcopy(times), deepcopy(trajectories)
# corrupt training data
for i, (time, trajectory) in enumerate(zip(times, trajectories)):
if self.params.eval_noise_gamma:
noise, gamma = self.env._create_noise(
train=False,
trajectory=trajectory,
gamma=self.params.eval_noise_gamma,
seed=self.params.test_env_seed,
)
trajectory += noise
if self.params.eval_subsample_ratio:
time, trajectory, subsample_ratio = self.env._subsample_trajectory(
time,
trajectory,
subsample_ratio=self.params.eval_subsample_ratio,
seed=self.params.test_env_seed,
)
times[i] = time
trajectories[i] = trajectory
# fit
start_time_fit = timer()
all_candidates = self.model.fit(times, trajectories, verbose=False, sort_candidates=True)
all_duration_fit = [timer() - start_time_fit] * len(times)
#all_candidates, all_duration_fit = dict(), dict()
#for _trajectory_i, (_times, _trajectory) in enumerate(zip(times, trajectories)):
# start_time_fit = timer()
# all_candidates[_trajectory_i] = self.model.fit(_times, _trajectory)[0]
# all_duration_fit[_trajectory_i] = [timer() - start_time_fit]
# evaluate on train data
best_results, best_candidates = self._evaluate(
original_times, original_trajectories, trees, all_candidates, all_duration_fit, self.params.validation_metrics
)
# evaluate on test data
test_results, _ = self._evaluate(
times=samples["test"]["times"],
trajectories=samples["test"]["trajectories"],
trees=trees,
all_candidates=best_candidates,
all_durations=None,
validation_metrics=self.params.validation_metrics
)
# collect results
batch_results["predicted_trees"].extend([tree.infix() if hasattr(tree, 'infix') else tree for tree in best_candidates])
for k, v in infos.items():
batch_results["info_" + k].extend(v)
for k, v in best_results.items():
batch_results[k].extend(v)
for k, v in test_results.items():
if k == "duration_fit": continue
batch_results['test_'+k].extend(v)
batch_results = pd.DataFrame.from_dict(batch_results)
save_file = os.path.join(self.save_path, f"eval_{name}.csv")
batch_results.to_csv(save_file, index=False)
self.trainer.logger.info("Saved {} equations to {}".format(len(batch_results), save_file))
try:
df = pd.read_csv(save_file, na_filter=True)
except:
self.trainer.logger.info("WARNING: no results")
return
info_columns = [x for x in list(df.columns) if x.startswith("info_")]
df = df.drop(columns=filter(lambda x: x not in self.ablation_to_keep, info_columns))
df = df.drop(columns=["predicted_trees", "pareto_front"])
if "trees" in df: df = df.drop(columns=["trees"])
if "info_name" in df.columns: df = df.drop(columns=["info_name"])
for metric in self.params.validation_metrics.split(','):
for prefix in ["", "test_"]:
scores[prefix+metric] = df[prefix+metric].mean()
scores[prefix+metric+'_median'] = df[prefix+metric].median()
scores["duration_fit"] = df["duration_fit"].mean()
# for ablation in self.ablation_to_keep:
# for val, df_ablation in df.groupby(ablation):
# avg_scores_ablation = df_ablation.mean()
# for k, v in avg_scores_ablation.items():
# if k not in info_columns:
# scores[k + "_{}_{}".format(ablation, val)] = v
if self.params.use_wandb:
wandb.log({name+"_"+metric: score for metric, score in scores.items() if "median" not in metric})
return scores
def evaluate_in_domain(
self,
task,
):
self.model.rescale = False
self.trainer.logger.info(
"====== STARTING EVALUATION IN DOMAIN (multi-gpu: {}) =======".format(
self.params.multi_gpu
)
)
iterator = self.env.create_test_iterator(
task,
data_path=self.trainer.data_path,
batch_size=self.params.batch_size_eval,
params=self.params,
size=self.params.eval_size,
test_env_seed=self.params.test_env_seed,
)
scores = self.evaluate_on_iterator(iterator, name = "in_domain")
return scores
def evaluate_on_pmlb(
self,
path_dataset=None,
):
if path_dataset is not None and os.path.exists(path_dataset):
iterator = pd.read_pickle(path_dataset)
else:
def format_strogatz_equation(eq):
return " | ".join(
[
str(
sympy.parse_expr(
comp.replace("u(1)", "x_0").replace("u(2)", "x_1").replace("^", "**")
)
)
for comp in eq.split("|")
]
)
strogatz_equations = {
"strogatz_bacres1": '20-u(1) - (u(1)*u(2)/(1+0.5*u(1)^2)) | 10 - (u(1)*u(2)/(1+0.5*u(1)^2))',
"strogatz_barmag1": '0.5*sin(u(1)-u(2))-sin(u(1)) | 0.5*sin(u(2)-u(1)) - sin(u(2))',
"strogatz_glider1": '-0.05*u(1)^2-sin(u(2)) | u(1) - cos(u(2))/u(1)',
"strogatz_lv1": '3*u(1)-2*u(1)*u(2)-u(1)^2 | 2*u(2)-u(1)*u(2)-u(2)^2',
"strogatz_predprey1": 'u(1)*(4-u(1)-u(2)/(1+u(1))) | u(2)*(u(1)/(1+u(1))-0.075*u(2))',
"strogatz_shearflow1": '(cos(u(2))/sin(u(2)))*cos(u(1)) | (cos(u(2))^2+0.1*sin(u(2))^2)*sin(u(1))', # replaced cot(x) with cos(x) / sin(x)
"strogatz_vdp1": '10*(u(2)-(1/3*(u(1)^3-u(1)))) | -1/10*u(1)',
}
self.model.rescale = self.params.rescale
self.trainer.logger.info(
"====== STARTING EVALUATION PMLB (multi-gpu: {}) =======".format(self.params.multi_gpu)
)
iterator = []
from pmlb import fetch_data, dataset_names
strogatz_names = [name for name in dataset_names if "strogatz" in name and "2" not in name]
times = np.linspace(0, 10, 100)
for name in strogatz_names:
data = fetch_data(name)
x = data['x'].values.reshape(-1,1)
y = data['y'].values.reshape(-1,1)
infos = {
'dimension': [2],
'n_unary_ops': [0],
'n_input_points': [100],
'name': [name],
}
for j in range(4):
samples = {"train": defaultdict(list)}
start = j * len(times)
stop = (j+1) * len(times)
trajectory = np.concatenate((x[start:stop], y[start:stop]),axis=1)
# times_, trajectory_ = self.env.generator._subsample_trajectory(times, trajectory, subsample_ratio=self.params.subsample_ratio)
samples["train"]['times'].append(deepcopy(times))
samples["train"]['trajectories'].append(trajectory)
samples['tree'] = [self.str_to_tree(format_strogatz_equation(strogatz_equations[name]))]
samples['infos'] = infos
# for k,v in samples['infos'].items():
# samples['infos'][k] = np.array([v]*4)
iterator.append(samples)
if path_dataset:
with open(path_dataset, "wb") as fout:
self.trainer.logger.info(f"Saving dataset under:\n{path_dataset}")
pickle.dump(obj=iterator, file=fout)
scores = self.evaluate_on_iterator(iterator, name="pmlb")
return scores
def evaluate_on_oscillators(
self,
):
self.model.rescale = self.params.rescale
self.trainer.logger.info(
"====== STARTING EVALUATION OSCILLATORS (multi-gpu: {}) =======".format(
self.params.multi_gpu
)
)
iterator = []
datasets = {}
for file in glob.glob("invar_datasets/*"):
with open(file) as f:
lines = (line for line in f if not line.startswith('%') and not line.startswith('x'))
data = np.loadtxt(lines)
data = data[data[:,0]==0]
datasets[file.split('/')[-1]] = data
for name, data in datasets.items():
samples = {"train": defaultdict(list)}
samples['infos'] = {'dimension':2, 'n_unary_ops':0, 'n_input_points':100, 'name':name}
for k,v in samples['infos'].items():
samples['infos'][k] = np.array([v])
times = data[:,1]
x = data[:,2].reshape(-1,1)
y = data[:,3].reshape(-1,1)
# shuffle times and trajectories
#idx = np.linspace(0, len(x)-1, self.dstr.max_input_points).astype(int)
if hasattr(self.model, "max_input_points"):
idx = np.random.permutation(len(times))
times, x, y = times[idx], x[idx], y[idx]
samples["train"]['times'].append(times)
samples["train"]['trajectories'].append(np.concatenate((x,y),axis=1))
samples["tree"] = [None]
iterator.append(samples)
scores = self.evaluate_on_iterator(iterator,
name="oscillators")
return scores
def str_to_tree(self, expr: str):
exprs = [sympy.parse_expr(e) for e in expr.split("|")]
nodes = [self.env.simplifier.sympy_expr_to_tree(e) for e in exprs]
return NodeList(nodes)
def read_equations_from_txt_file(self, path: str, save: bool, seed: Union[None, int]):
# read text file where each line is assumed to be an equation
# TODO: currently all y0 are set to 1
_filename = Path(path).name
if seed is not None:
np.random.seed(seed)
iterator = []
with open(path) as f:
for line_i, line in enumerate(f):
samples = {"train": defaultdict(list)}
line = line.rstrip("\n")
tree = self.str_to_tree(line)
eqs = line.split("|")
dim = len(eqs)
var_names = [f"x_{k}" for k in range(dim)]
y0 = np.ones(len(var_names))
times = np.linspace(0, 5, 256)
trajectory = self.model.integrate_prediction(
times, y0=y0, prediction=line
)
if np.nan in trajectory:
self.trainer.logger.info(
f"NaN detected in solution trajectory of {line}. Excluding this equation."
)
continue
samples['infos'] = {
'dimension': [2],
'n_unary_ops': [np.nan],
'n_input_points': [len(times)],
'name': [f"{_filename}_{line_i:03d}_{line}"],
}
samples["train"]['times'].append(times)
samples["train"]["trajectories"].append(trajectory)
samples['tree'].append(tree)
iterator.append((samples, None))
with open(path+".pkl", "wb") as fpickle:
pickle.dump(iterator, fpickle)
return iterator
def read_equations_from_json_file(self, path: str, save: bool):
iterator = []
with open(path, "r") as fjson:
store: List[Dict[str, Any]] = json.load(fjson)
for sample_i, _sample in enumerate(store):
for solution_i in range(len(_sample["solutions"])):
try:
samples = {"train": defaultdict(list)}
times = np.array(_sample["solutions"][solution_i][0]["t"])
trajectory = np.array(_sample["solutions"][solution_i][0]["y"]).T
samples['infos'] = {
'dimension': [trajectory.shape[1]],
'n_unary_ops': [np.nan],
'n_input_points': [len(times)],
'name': [f"{_sample['eq_description']}_{solution_i:2d}"],
'dataset': ["strogatz_extended"],
}
samples["train"]['times'].append(times)
samples["train"]['trajectories'].append(trajectory)
samples['tree'] = [self.str_to_tree(" | ".join(_sample["substituted"][solution_i]))]
iterator.append(samples)
except Exception as e:
print(sample_i, solution_i)
print(e)
return iterator
def evaluate_on_file(self, path: str, save: bool, seed: Union[None, int]):
_filename = Path(path).name
if path.endswith(".pkl"):
# read pickle file which is assumed to have correct format
with open(path, "rb") as fpickle:
iterator = pickle.load(fpickle)
elif path.endswith(".json"):
iterator = self.read_equations_from_json_file(path=path, save=save)
else:
iterator = self.read_equations_from_txt_file(path=path, save=save, seed=seed)
if save:
save_file = os.path.join(self.save_path, f"eval_{_filename}.csv")
else:
save_file = None
return self.evaluate_on_iterator(iterator, save_file)
def main(params):
# initialize the multi-GPU / multi-node training
# initialize experiment / SLURM signal handler for time limit / pre-emption
init_distributed_mode(params)
logger = initialize_exp(params, write_dump_path=False)
if params.is_slurm_job:
init_signal_handler()
# CPU / CUDA
if not params.cpu:
assert torch.cuda.is_available()
params.eval_only = True
odeformer.utils.CUDA = not params.cpu
# build environment / modules / trainer / evaluator
if params.batch_size_eval is None:
params.batch_size_eval = int(1.5 * params.batch_size)
env = build_env(params)
modules = build_modules(env, params)
trainer = Trainer(modules, env, params)
model = setup_odeformer(trainer)
evaluator = Evaluator(trainer, model)
if params.eval_in_domain:
scores = evaluator.evaluate_in_domain("functions")
logger.info("__log__:%s" % json.dumps(scores))
if params.eval_on_pmlb:
scores = evaluator.evaluate_on_pmlb()
logger.info("__pmlb__:%s" % json.dumps(scores))
# scores = evaluator.evaluate_on_oscillators()
# logger.info("__oscillators__:%s" % json.dumps(scores))
if params.eval_on_file is not None:
evaluator.evaluate_on_file(path=params.eval_on_file, seed=params.test_env_seed)
if __name__ == "__main__":
parser = get_parser()
params = parser.parse_args()
if params.reload_checkpoint:
pk = pickle.load(open(params.reload_checkpoint + "/params.pkl", "rb"))
pickled_args = pk.__dict__
for p in params.__dict__:
if p in pickled_args and p not in ["eval_dump_path", "dump_path", "reload_checkpoint", "rescale", "validation_metrics", "eval_in_domain", "eval_on_pmlb", "batch_size_eval", "beam_size", "beam_selection_metric", "subsample_prob", "eval_noise_gamma", "eval_subsample_ratio", "use_wandb", "eval_size", "reload_data"]:
params.__dict__[p] = pickled_args[p]
if params.eval_dump_path is None:
params.eval_dump_path = Path(params.dump_path) / "new_evals"
if not os.path.isdir(params.eval_dump_path):
os.makedirs(params.eval_dump_path)
params.is_slurm_job = False
params.local_rank = -1
params.master_port = -1
params.eval_on_file = None
torch.save(params, os.path.join(params.dump_path, "params.pkl"))
main(params)