-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRSC_DC.v
779 lines (691 loc) · 26.3 KB
/
RSC_DC.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
(** In this file we create our model
of traces.
In RSC_DC_4_compcert.v you can
find the same results proved for
the Compcert model of traces
*)
Require Import Classical.
Require Import Classical_Pred_Type.
Require Import Setoid.
(*********************************************************)
(* Some useful Lemma to handle classical facts *)
Lemma dne : forall P : Prop, P <-> ~ ~ P.
Proof.
intros P. split.
- intros p np. apply (np p).
- apply (NNPP P).
Qed.
Lemma imp_eqiv : forall P Q : Prop,
(P -> Q) <-> ~P \/ Q.
Proof.
intros P Q. split.
- apply imply_to_or.
- intros H p. destruct H.
+ exfalso. apply (H p). + apply H.
Qed.
Lemma not_imp : forall P Q : Prop,
~(P -> Q) <-> P /\ ~ Q.
Proof.
intros P Q. split.
- apply imply_to_and.
- intros [p nq] i. apply (nq (i p)).
Qed.
Lemma contra : forall P Q : Prop,
(P -> Q) <-> (~Q -> ~P).
Proof.
intros P Q. split.
- intros H nq p. apply (nq (H p)).
- intros H p. rewrite -> (dne Q).
intros nq. apply (H nq p).
Qed.
Lemma de_morgan1 : forall P Q : Prop,
~ (P /\ Q) <-> ~P \/ ~Q.
Proof.
intros P Q. split.
- apply not_and_or.
- intros [] [p q]. apply (H p). apply (H q).
Qed.
Lemma de_morgan2 : forall P Q : Prop,
~ (P \/ Q) <-> ~P /\ ~Q.
Proof.
intros P Q. split.
- apply not_or_and.
- intros [np nq] []. apply np. assumption. apply (nq H).
Qed.
Lemma not_forall_ex_not : forall (U : Type) (P : U -> Prop),
~ (forall n : U, P n) <-> exists n : U, ~ P n.
Proof.
intros U P. split.
- apply (not_all_ex_not U P).
- apply (ex_not_not_all U P).
Qed.
Lemma not_ex_forall_not : forall (U :Type) (P : U -> Prop),
(~ exists n : U, P n) <-> forall n : U, ~ P n.
Proof.
intros U P. split.
- apply not_ex_all_not.
- intros H [n p]. apply (H n p).
Qed.
Lemma and_implies_or : forall P Q : Prop, P /\ Q -> P \/ Q.
Proof.
intros P Q [p q]. apply (or_introl p).
Qed.
(*********************************************************)
Local Parameter prg prg' ctx ctx' event : Set.
CoInductive trace : Set :=
| tnil : trace
| tundef : prg -> trace
| tcons : event -> trace -> trace.
(* we can distinguish finite and infinite traces *)
Inductive fin : trace -> Prop :=
| fnil : fin tnil
| fundef : forall P, fin (tundef P)
| fcons : forall e t, fin t -> fin (tcons e t).
Definition inf : trace -> Prop :=
fun t : trace => ~ fin t.
Lemma fin_or_inf : forall t : trace, fin t \/ inf t.
Proof. intros t; apply classic. Qed.
(* finite prefix relation over traces *)
Inductive prefix : trace -> trace -> Prop :=
| pnil : forall t, prefix tnil t
| pundef : forall P, prefix (tundef P) (tundef P)
| pcons : forall e t1 t2, prefix t1 t2 -> prefix (tcons e t1) (tcons e t2).
Lemma pref_impl_fin : forall t t', prefix t t' -> fin t.
Proof. intros t t' Hprefix. induction Hprefix; now constructor. Qed.
Lemma inf_no_pref : forall t : trace,
inf t -> (forall t' : trace, ~ prefix t t').
Proof. intros t Hinf t' Hprefix. apply Hinf. eapply pref_impl_fin. eassumption. Qed.
(* reflexivity for finite traces *)
Lemma prefix_refl : forall t : trace, fin t -> prefix t t.
Proof. intros t Hfin. induction Hfin; now constructor. Qed.
(* antisymmetry *)
Lemma prefix_antisymm : forall t t' : trace,
prefix t t' -> prefix t' t -> t = t'.
Proof.
intros t t' Hp1 Hp2. induction Hp1.
- now inversion Hp2.
- reflexivity.
- f_equal. apply IHHp1. now inversion Hp2.
Qed.
(* transitivity *)
Lemma prefix_trans_aux : forall t1 t2 t3 : trace,
fin t2 -> prefix t1 t2 -> prefix t2 t3 -> prefix t1 t3.
Proof.
intros t1 t2 t3 Hfin2. generalize dependent t3. generalize dependent t1.
induction Hfin2; intros t1 t3 Hp1 Hp2.
- inversion Hp1. subst. now constructor.
- inversion Hp2; now subst.
- inversion Hp1. constructor. inversion Hp2. subst.
constructor. now apply IHHfin2.
Qed.
(* the hp fin t2 is not really needed *)
Lemma prefix_trans : forall t1 t2 t3 : trace,
prefix t1 t2 -> prefix t2 t3 -> prefix t1 t3.
Proof.
intros t1 t2 t3 Hp12 Hp23. eapply (prefix_trans_aux _ t2).
eapply pref_impl_fin. eassumption. assumption. assumption.
Qed.
(* prefixes of the same trace are comparable *)
Lemma prefix_comp : forall t m1 m2 : trace,
prefix m1 t -> prefix m2 t -> (prefix m1 m2 \/ prefix m2 m1).
Proof.
intros t m1 m2 Hp1 Hp2. pose proof (pref_impl_fin _ _ Hp1) as Hfin1.
generalize dependent Hp2. generalize dependent Hp1.
generalize dependent m2. generalize dependent t.
induction Hfin1 as [| |e m1'].
- left. now constructor.
- intros t m2 Hp1 Hp2. inversion Hp1; subst. inversion Hp2; subst.
+ right. now constructor.
+ left. now constructor.
- intros t m2 Hp1 Hp2. inversion Hp1; subst. inversion Hp2; subst.
+ right. constructor.
+ specialize (IHHfin1 _ _ H2 H1). destruct IHHfin1.
* left. now constructor.
* right. now constructor.
Qed.
(* Finite traces with no undefined behavior *)
Inductive fin_no_undef : trace -> Prop :=
| fnunil : fin_no_undef tnil
| fnucons : forall e t, fin_no_undef t -> fin_no_undef (tcons e t).
(* Finite traces with no undefined behavior are indeed finite *)
Lemma fin_no_undef_fin : forall {t}, fin_no_undef t -> fin t.
Proof. intros t H. induction H; now constructor. Qed.
(* Undef *)
CoFixpoint Undef (P:prg) (t:trace) : trace :=
match t with
| tnil => tundef P
| tundef Q => tundef P
| tcons x xs => tcons x (Undef P xs)
end.
Lemma Undef_nil : forall P,
Undef P tnil = tundef P.
Proof.
intro P. replace (Undef P tnil) with (match (Undef P tnil) with
| tnil => tnil
| tundef Q => tundef Q
| tcons e t => tcons e t end).
- reflexivity.
- destruct (Undef P tnil); reflexivity.
Qed.
Lemma Undef_undef : forall P Q,
Undef P (tundef Q) = tundef P.
Proof.
intros P Q. replace (Undef P (tundef Q)) with (match (Undef P (tundef Q)) with
| tnil => tnil
| tundef Q => tundef Q
| tcons e t => tcons e t end).
- reflexivity.
- destruct (Undef P (tundef Q)); reflexivity.
Qed.
Lemma Undef_cons : forall P e t,
Undef P (tcons e t) = tcons e (Undef P t).
Proof.
intros P e t. replace (Undef P (tcons e t)) with (match (Undef P (tcons e t)) with
| tnil => tnil
| tundef Q => tundef Q
| tcons e t => tcons e t end).
- reflexivity.
- destruct (Undef P (tcons e t)); reflexivity.
Qed.
(*
prefixes of m;undef can only be:
+ equal to m;undef
+ prefixes of m
*)
Lemma u_lemma0 : forall (P : prg) (m m' : trace),
prefix m' (Undef P m) -> (m' = Undef P m) \/ prefix m' m.
Proof.
intros P m m' Hprefix. remember (Undef P m) as mU.
generalize dependent P. generalize dependent m.
induction Hprefix.
- intros m P HeqmU. right. now constructor.
- intros m Q HeqmU. left. reflexivity.
- intros m P HeqmU.
destruct m as [| | e' m'].
+ rewrite Undef_nil in HeqmU. now inversion HeqmU.
+ rewrite Undef_undef in HeqmU. now inversion HeqmU.
+ rewrite Undef_cons in HeqmU. inversion HeqmU; subst.
destruct (IHHprefix m' P eq_refl) as [IH | IH].
* left. now f_equal.
* right. now constructor.
Qed.
(* finite trace folowed by undef are still finite... *)
Lemma u_fin : forall (P : prg) (m : trace), fin m -> fin (Undef P m).
Proof.
intros P m H.
- induction H.
+ rewrite Undef_nil. now do 2 constructor.
+ rewrite Undef_undef. now constructor.
+ rewrite Undef_cons. now constructor.
Qed.
(* and longer *)
Lemma u_fin_no_undef_prefix : forall (P : prg) (m : trace),
fin_no_undef m -> prefix m (Undef P m).
Proof.
intros P m H.
- induction H.
+ rewrite Undef_nil. now do 2 constructor.
+ rewrite Undef_cons. now constructor.
Qed.
Lemma Undef_not_nil : forall P t, ~(tnil = Undef P t).
Proof.
intros P t Hc.
destruct t. + rewrite Undef_nil in Hc. now inversion Hc.
+ rewrite Undef_undef in Hc. now inversion Hc.
+ rewrite Undef_cons in Hc. now inversion Hc.
Qed.
Lemma Undef_tundef : forall P Q t,
fin_no_undef t -> tundef P = Undef Q t -> t = tnil /\ P = Q.
Proof.
intros P Q t Hfin H.
destruct Hfin. + rewrite Undef_nil in H. now inversion H.
+ rewrite Undef_cons in H. now inversion H.
Qed.
Lemma Undef_tcons : forall e t P t',
tcons e t = Undef P t' -> exists t'', t' = tcons e t'' /\ t = Undef P t''.
Proof.
intros e t P t' H.
destruct t'. + rewrite Undef_nil in H. now inversion H.
+ rewrite Undef_undef in H. now inversion H.
+ rewrite Undef_cons in H. inversion H. subst. now eauto.
Qed.
(*
traces ending with an undefined
behavior have no continuations
*)
Lemma u_end' : forall (P : prg) (m t: trace),
prefix (Undef P m) t -> (Undef P m) = t.
Proof.
intros P m t H. remember (Undef P m) as m'.
generalize dependent m.
induction H; intros m Heqm'.
- now (apply Undef_not_nil in Heqm').
- reflexivity.
- f_equal.
apply Undef_tcons in Heqm'.
destruct Heqm' as [t'' [H1 H2]]. subst. eapply IHprefix. reflexivity.
Qed.
(* CH: Previous version just an awkward way to phrase the same thing *)
Lemma u_end : forall (P : prg) (t t': trace),
(exists m : trace, (Undef P m) = t) -> prefix t t' -> t = t'.
Proof. intros P t t' [m H] H0. subst t. now apply u_end'. Qed.
(*
not used
*)
Lemma no_nested_u : forall (P Q : prg) (m1 m2: trace),
fin_no_undef m1 -> fin_no_undef m2 ->
prefix (Undef P m1) (Undef Q m2) -> m1 = m2 /\ P = Q.
Proof.
intros P Q m1 m2 Hf1 Hf2 Hp.
remember (Undef P m1) as m1'. remember (Undef Q m2) as m2'.
generalize dependent m2. generalize dependent m1.
generalize dependent Q. generalize dependent P.
induction Hp.
- intros P Q m1 Hf1 Heqm1' m2 Hf2 Heqm2'. subst.
now apply Undef_not_nil in Heqm1'.
- intros P0 Q m1 Hf1 Heqm1' m2 Hf2 Heqm2'.
apply (Undef_tundef _ _ _ Hf1) in Heqm1'. destruct Heqm1' as [H1 H1'].
apply (Undef_tundef _ _ _ Hf2) in Heqm2'. destruct Heqm2' as [H2 H2'].
now subst.
- intros P Q m1 Hf1 Heqm1' m2 Hf2 Heqm2'. subst.
apply Undef_tcons in Heqm1'. destruct Heqm1' as [m1' [H1 H1']].
apply Undef_tcons in Heqm2'. destruct Heqm2' as [m2' [H2 H2']]. subst.
assert (m1' = m2' /\ P = Q).
eapply IHHp. now inversion Hf1. reflexivity.
now inversion Hf2. reflexivity.
split. now f_equal. easy.
Qed.
Definition u_prefix (P : prg) (t1 t2: trace) : Prop :=
exists m:trace, fin_no_undef m /\ prefix m t2 /\ (Undef P m = t1).
Lemma u_imp_fin : forall (P : prg) (t m: trace),
u_prefix P t m -> fin t.
Proof. intros P t m u. rewrite dne. intros it.
destruct u as [mt [fmt [pmtt H]]]. assert(ft : fin t).
{ rewrite <- H. apply (u_fin P mt (fin_no_undef_fin fmt)). }
apply (it ft).
Qed.
Lemma Undef_fin_no_undef : forall P t, fin_no_undef (Undef P t) -> False.
Proof.
intros P t H. remember (Undef P t) as t'.
generalize dependent t. generalize dependent P.
induction H.
- intros P t Heqt'. now apply Undef_not_nil in Heqt'.
- intros P t0 Heqt'. apply Undef_tcons in Heqt'. destruct Heqt' as [t'' [H1 H2]]. subst.
now specialize (IHfin_no_undef _ _ eq_refl).
Qed.
Lemma u_trans : forall (P : prg) (m1 m2 t : trace),
u_prefix P m1 m2 -> u_prefix P m2 t -> u_prefix P m1 t.
Proof.
unfold u_prefix.
intros P m1 m2 t [mt1 [f1 [p2 u1]]] [mt2 [f2 [pt u2]]].
assert (K : mt1 = Undef P mt2 \/ prefix mt1 mt2).
{ apply (u_lemma0 P mt2 mt1). rewrite u2. assumption. }
destruct K.
+ subst. now apply Undef_fin_no_undef in f1.
+ exists mt1. split. assumption. split. apply (prefix_trans mt1 mt2 t H pt).
assumption.
Qed.
(* properties *)
Definition prop := trace -> Prop.
Local Parameter plug : prg -> ctx -> prg.
Local Parameter plug': prg' -> ctx' -> prg'.
Local Parameter sem : prg -> prop.
Local Parameter sem': prg' -> prop.
Local Parameter compile : prg -> prg'.
(* program P *satisfies* property π *)
Definition sat (P:prg) (π:prop) : Prop :=
forall b, sem P b -> π b.
Definition sat' (P':prg') (π:prop) : Prop :=
forall b, sem' P' b -> π b.
(* program P *robustly satisfies* property π *)
Definition rsat (P:prg) (π:prop) : Prop :=
forall C, sat (plug P C) π.
Definition rsat' (P':prg') (π:prop) : Prop :=
forall C, sat' (plug' P' C) π.
(* robust preservation *)
Definition RP (P : prg) (pi : prop) : Prop :=
rsat P pi -> rsat' (compile P) pi.
Lemma neg_rsat : forall (P : prg) (pi : prop),
~ rsat P pi <->
(exists (C : ctx) (t: trace),
sem (plug P C) t /\ ~ pi t).
Proof.
unfold rsat. unfold sat. split.
- intros r. rewrite not_forall_ex_not in r.
destruct r as [C r]. rewrite not_forall_ex_not in r.
destruct r as [t r]. exists C,t. rewrite not_imp in r.
assumption.
- intros [C [t r]]. rewrite not_forall_ex_not.
exists C. rewrite not_forall_ex_not. exists t.
rewrite not_imp. assumption.
Qed.
Lemma neg_rsat' : forall (P : prg) (pi : prop),
~ rsat' (compile P) pi <->
(exists (C' : ctx') (t: trace),
sem' (plug' (compile P) C') t /\ ~ pi t).
Proof.
unfold rsat'. unfold sat'. split.
- intros r. rewrite not_forall_ex_not in r.
destruct r as [C r]. rewrite not_forall_ex_not in r.
destruct r as [t r]. exists C,t. rewrite not_imp in r.
assumption.
- intros [C [t r]]. rewrite not_forall_ex_not.
exists C. rewrite not_forall_ex_not. exists t.
rewrite not_imp. assumption.
Qed.
(* contrapositive form of RP, classically equivalent *)
Lemma contra_RP (P : prg) (pi : prop) : RP P pi <->
((exists (C': ctx') (t' : trace),
sem' (plug' (compile P) C') t' /\ ~ pi t') ->
(exists (C : ctx) (t: trace),
sem (plug P C) t /\ ~ pi t)).
Proof.
unfold RP. split.
- intros H. rewrite contra in H.
rewrite neg_rsat in H. rewrite neg_rsat' in H.
assumption.
- intros H. rewrite contra. rewrite neg_rsat. rewrite neg_rsat'.
assumption.
Qed.
(*********************************************************)
(* foall P : prg, *)
(* RC_dc P <-> Robust Preservation of Z_p *)
(*********************************************************)
Definition RSC_dc (P : prg) : Prop :=
forall (C' : ctx') (t : trace), sem' (plug' (compile P) C') t ->
(forall m : trace, prefix m t ->
exists (C : ctx) (t' : trace), sem (plug P C) t' /\
(prefix m t' \/ u_prefix P t' m)).
(*
this formulation of Z_p is different from the one in the paper
but better suited for proofs,
we will prove equivalence later on
*)
Definition Z_class (P: prg) (pi : prop) : Prop :=
forall t : trace, ~ pi t ->
(exists m : trace, prefix m t /\
forall t' : trace, (prefix m t' \/ u_prefix P t' m) -> ~ pi t').
Theorem RSC_dc_RZP : forall P : prg,
RSC_dc P -> (forall pi : prop, Z_class P pi -> RP P pi).
Proof.
intros P r pi z. rewrite contra_RP. intros [C' [t [h0 h1]]].
destruct (z t h1) as [m [pmt H]]. clear z.
destruct (r C' t h0 m pmt) as [C [ t' [k0 k1]]]. clear r.
exists C, t'. split. - assumption. - apply (H t' k1).
Qed.
Theorem RZP_RSC_dc : forall P : prg,
(forall pi : prop, Z_class P pi -> RP P pi) -> RSC_dc P.
Proof.
unfold RSC_dc. intros P rz C' t H0 m pmt.
assert (K : Z_class P (fun b => ~ (prefix m b \/ u_prefix P b m))).
{ unfold Z_class. intros b hb. rewrite <- dne in hb.
destruct hb as [pmb | ub].
+ exists m. split. assumption.
intros b' [b1 | b2]; rewrite <- dne. left. assumption.
right. assumption.
+ assert (fb : fin b). { apply (u_imp_fin P b m ub). }
unfold u_prefix in ub. destruct ub as [mb [ fmt [mtb ub ]]].
exists b. split. apply (prefix_refl b fb).
intros b' [k1 | k2]. apply (u_end P b b') in k1. rewrite <- dne.
right. rewrite <- k1. unfold u_prefix. exists mb. apply (conj fmt (conj mtb ub)).
exists mb. assumption. rewrite <- dne. right.
unfold u_prefix in k2. destruct k2 as [m2 [f2 [ p2 u2]]].
unfold u_prefix. rewrite <- ub in p2. apply (u_lemma0 P mb m2) in p2.
destruct p2.
rewrite H in u2. exfalso. symmetry in H. subst. now apply Undef_fin_no_undef in f2.
apply (prefix_trans m2 mb m H) in mtb.
exists m2. split. assumption. split; assumption.
}
assert (T : ~ (fun b => ~ (prefix m b \/ u_prefix P b m)) t).
{ rewrite <- dne. left. assumption. }
specialize (rz (fun b => ~ (prefix m b \/ u_prefix P b m)) K).
rewrite contra_RP in rz. destruct rz as [C [t' [k0 k1]]]. exists C',t. split. assumption.
rewrite <- dne. left. assumption. exists C,t'.
split. assumption. rewrite <- dne in k1. assumption.
Qed.
Corollary pointwise_equiv' : forall P : prg,
RSC_dc P <-> (forall pi : prop, Z_class P pi -> RP P pi).
Proof.
intros P. split.
- apply RSC_dc_RZP.
- apply RZP_RSC_dc.
Qed.
Corollary main_thm' :
(forall P, RSC_dc P) <-> (forall P pi, Z_class P pi -> RP P pi).
(* ^^^^^^^^^^^^^^^^ *)
(* RSC^DC *)
Proof.
split. - intros H P. now apply RSC_dc_RZP.
- intros H P. apply RZP_RSC_dc. now apply H.
Qed.
(*********************************************************)
(* Relation between Z_p and Safety *)
(*********************************************************)
Definition Safety (pi : prop) : Prop :=
forall t, ~ pi t -> exists m, prefix m t /\
(forall t', prefix m t' -> ~ pi t').
(* Z_class is a sublclass of safety *)
Lemma Z_p_Safety : forall (P : prg) (pi : prop),
Z_class P pi -> Safety pi.
Proof.
unfold Safety. intros P pi Z t nt.
destruct (Z t nt) as [m [pmt H]]. clear Z.
exists m. split.
- assumption.
- intros t' h0. apply (H t' (or_introl (u_prefix P t' m) h0)).
Qed.
(* Class of property closed under refinement
(undef due to program P)
*)
Definition ref_cl (P : prg) (pi : prop) : Prop :=
forall t, pi t -> forall t', u_prefix P t t' -> pi t'.
(* classically equivalent formulation for ref_cl *)
Lemma ref_cl' : forall (P : prg) (pi : prop),
ref_cl P pi <->
forall t', ~ pi t' -> forall t, u_prefix P t t' -> ~ pi t.
Proof.
intros P pi. split.
- intros r t' nt' t utt' pit. apply (nt' (r t pit t' utt')).
- unfold ref_cl. intros r t pit t' utt'. rewrite dne.
intros npi'. apply ((r t' npi' t utt') pit).
Qed.
Lemma U_general : forall (P : prg) (t1 t2 : trace),
u_prefix P t1 t2 ->
(forall m, prefix m t2 ->
(prefix m t1 \/ u_prefix P t1 m)).
Proof.
intros P t1 t2 u12 m pm2. unfold u_prefix in u12.
destruct u12 as [mm [fmm [pmm2 u1]]].
assert (foo : prefix m mm \/ prefix mm m).
{ eapply (prefix_comp t2); assumption. }
destruct foo as [k0 | k1].
+ left. assert (foo : prefix mm t1).
{ rewrite <- u1.
apply u_fin_no_undef_prefix. assumption. }
apply (prefix_trans m mm t1 k0 foo).
+ right. unfold u_prefix.
exists mm. split. assumption.
split; assumption.
Qed.
Lemma Z_p_equivalent : forall (P : prg) (pi : prop),
Z_class P pi <-> Safety pi /\ ref_cl P pi.
Proof.
intros P pi. split.
- intros z. split.
+ eapply Z_p_Safety. apply z.
+ rewrite ref_cl'. intros t' nt' t utt'.
destruct (z t' nt') as [m [pmt zz]].
assert (prefix m t \/ u_prefix P t m) as use_me by
apply (U_general P t t' utt' m pmt).
apply (zz t use_me).
- intros [s r]. unfold Z_class.
intros t nt. destruct (s t nt) as [m [pmt H]].
exists m. split. assumption.
intros t' [k0 | k1].
apply (H t' k0). assert (use_me : u_prefix P t' t).
{ unfold u_prefix. destruct k1 as [m0 [f0 [p0 u0]]].
exists m0. split. assumption. split.
apply (prefix_trans m0 m t p0 pmt).
assumption. }
rewrite ref_cl' in r. apply (r t nt t' use_me).
Qed.
Lemma easy_lemma0 :
(forall P pi, Z_class P pi -> RP P pi) <->
(forall P pi, (Safety pi /\ ref_cl P pi) -> RP P pi).
Proof.
split.
- intros L P pi H. rewrite <- (Z_p_equivalent P pi) in H.
apply (L P pi H).
- intros R P pi Z. rewrite (Z_p_equivalent P pi) in Z.
apply (R P pi Z).
Qed.
Lemma easy_lemma1 : forall P : prg,
(forall pi, Z_class P pi -> RP P pi) <->
(forall pi, (Safety pi /\ ref_cl P pi) -> RP P pi).
Proof.
intros P. split.
- intros L pi H. rewrite <- (Z_p_equivalent P pi) in H.
apply (L pi H).
- intros R pi H. rewrite (Z_p_equivalent P pi) in H.
apply (R pi H).
Qed.
(* theorem in the paper *)
Corollary main_thm :
(forall P : prg, RSC_dc P) <->
(forall P pi, (Safety pi /\ ref_cl P pi) -> RP P pi).
Proof. rewrite <- easy_lemma0. apply main_thm'. Qed.
Corollary pointwise_equiv : forall P : prg,
RSC_dc P <->
(forall pi : prop, (Safety pi /\ ref_cl P pi) -> RP P pi).
Proof.
intros P.
rewrite <- (easy_lemma1 P). apply pointwise_equiv'.
Qed.
(*********************************************************)
(* extracting a Z_class property from a Safety one *)
(*********************************************************)
(* starting from a safety property pi we define the following *)
Definition z_plus (pi : prop) (S:Safety pi) (P : prg) : prop :=
fun t : trace =>
pi t /\ forall (t' : trace), u_prefix P t t' -> pi t'.
(* z_plus is a subproperty of pi *)
Lemma sub : forall (pi : prop) (S : Safety pi)
(P : prg) (b : trace),
(z_plus pi S P b) -> pi b.
Proof. intros pi S P b [h0 h1]; assumption. Qed.
Lemma sub' : forall (pi : prop) (S : Safety pi)
(P : prg) (b : trace),
~ pi b -> ~ (z_plus pi S P b).
Proof. intros pi S P b. rewrite <- contra.
apply (sub pi S P).
Qed.
(* z_plus is in Z_class *)
Lemma extraction_lemma : forall (pi : prop) (P : prg)
(s : Safety pi),
Z_class P (z_plus pi s P).
Proof.
intros pi P s. rewrite Z_p_equivalent. split.
- unfold Safety. intros t nt.
unfold z_plus in nt. rewrite de_morgan1 in nt.
destruct nt as [k0 | k1].
+ destruct (s t k0) as [m [a1 a2]].
exists m. split. assumption.
intros t' H. specialize (a2 t' H).
apply (sub' pi s P t' a2).
+ rewrite not_forall_ex_not in k1.
destruct k1 as [m k]. rewrite not_imp in k.
destruct k as [k00 k11]. exists t.
assert (ft : fin t) by apply (u_imp_fin P t m k00).
split. apply (prefix_refl t ft).
intros t' ptt'. apply (u_end P) in ptt'.
rewrite <- ptt'. unfold z_plus. rewrite de_morgan1.
right. rewrite not_forall_ex_not. exists m. rewrite not_imp.
split;assumption. unfold u_prefix in k00.
destruct k00 as [m0 [foo0 [ foo1 use_me]]].
exists m0; assumption.
- rewrite ref_cl'. intros t nt t' utt'.
unfold z_plus in nt. rewrite de_morgan1 in nt.
unfold z_plus. rewrite de_morgan1.
destruct nt as [k0 | k1].
right. intros H. apply (k0 (H t utt')).
rewrite not_forall_ex_not in k1. destruct k1 as [m k].
rewrite not_imp in k. destruct k as [k1 k2].
right. rewrite not_forall_ex_not. exists m. rewrite not_imp.
split. apply (u_trans P t' t m); assumption. assumption.
Qed.
(* z_plus is the biggest property in Z_p that is included in pi *)
Lemma maximality_lemma : forall (P : prg) (pi phi : prop) (S : Safety pi)
(Zphi : Z_class P phi)
(H: forall b, phi b -> pi b),
forall b, phi b -> (z_plus pi S P) b.
Proof.
intros P pi phi S Zphi H b phib.
unfold z_plus. split.
- apply (H b phib).
- intros t ubt. rewrite dne. intros npit.
assert (nphit : ~ phi t).
{ intros phit. apply (npit (H t phit)). }
specialize (Zphi t nphit).
destruct Zphi as [m [pmt K]].
assert (use_me : prefix m b \/ u_prefix P b m).
{ apply (U_general P b t ubt m pmt). }
apply ((K b use_me) phib).
Qed.
(*********************************************************)
(* building a Z_class property on a Safety one *)
(*********************************************************)
(* starting from a safety property pi we define the following *)
Definition z_minus (P : prg) (pi : prop) : prop :=
fun b : trace =>
pi b \/ (exists t, pi t /\ (u_prefix P t b \/ prefix b t)).
(* pi is included in z_minus *)
Lemma sub_minus : forall (P : prg) (pi : prop) (b : trace),
pi b -> (z_minus P pi) b.
Proof. intros P pi b H. unfold z_minus. left. apply H. Qed.
(* z_minus is in Z_p *)
Lemma growth_lemma : forall (P : prg) (pi : prop) (S : Safety pi),
Z_class P (z_minus P pi).
Proof.
intros P pi S. rewrite Z_p_equivalent. split.
- unfold Safety. intros b nb. unfold z_minus in nb.
rewrite de_morgan2 in nb. destruct nb as [npib nn].
destruct (S b npib) as [m [pmb H]].
exists m. split. assumption.
intros b' pmb'. unfold z_minus. rewrite de_morgan2. split.
+ apply (H b' pmb').
+ intros [t [pit [k0 | k1]]].
unfold u_prefix in k0. destruct k0 as [x [fx [pxb' uxt]]].
assert (foo : prefix x m \/ prefix m x).
{ apply (prefix_comp b'); assumption. } destruct foo as [k | k].
assert (use_me : u_prefix P t b).
{ unfold u_prefix. exists x. split. assumption.
split. apply (prefix_trans x m b); assumption. assumption. }
apply nn. exists t. split. assumption.
left. assumption.
assert (use_me : prefix x t).
{ rewrite <- uxt. apply u_fin_no_undef_prefix. assumption. }
apply (prefix_trans m x t k) in use_me. apply ((H t use_me) pit).
apply (prefix_trans m b' t pmb') in k1. apply ((H t k1) pit).
- unfold ref_cl. intros b [k0 | [t [pit K]]] b' H.
+ unfold z_minus. right. exists b. split. assumption. left. assumption.
+ destruct K. unfold z_minus. right. exists t. split. assumption. left.
apply (u_trans P t b b'); assumption.
unfold z_minus. right. assert (h : t = b).
{ destruct H as [m [fm [pmb' ub]]].
rewrite <- ub in H0. rewrite <- ub. symmetry. apply (u_end' P); assumption. }
exists t. split. assumption. left. rewrite h. assumption.
Qed.
(* and is the smallest property in Z_p including pi *)
Lemma minimality_lemma : forall (P : prg) (pi phi : prop) (S: Safety pi) (Z: Z_class P phi),
(forall b, pi b -> phi b) ->
(forall b', z_minus P pi b' -> phi b').
Proof. intros P pi phi S Z H b' zb'.
unfold z_minus in zb'. rewrite Z_p_equivalent in Z. destruct Z as [Sphi ref_phi].
destruct zb' as [k0 | [t [k1 k2]]].
+ apply (H b' k0).
+ destruct k2. unfold ref_cl in ref_phi. apply (H t) in k1.
apply (ref_phi t k1 b' H0).
unfold Safety in Sphi. rewrite dne. intros ff.
destruct (Sphi b' ff) as [m [pmb' K]]. clear Sphi.
apply (prefix_trans m b' t pmb') in H0. apply ((K t H0) (H t k1)).
Qed.