-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathBanglaDigitTensorFlow.py
158 lines (118 loc) · 4.51 KB
/
BanglaDigitTensorFlow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# -*- coding: utf-8 -*-
"""
Created on Thu Dec 01 19:52:18 2016
@author: sezan1992
"""
from os import listdir
from os.path import isfile,join
import numpy as np
import cv2
import tensorflow as tf
#Functions
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
def xbatchCreate(num_batch,trainNp):
batch = []
while num_batch in range(len(trainNp)):
batch.append(trainNp[num_batch])
num_batch= num_batch+120
return np.float32(batch)
def ybatchCreate(num_batch,responseNp):
batch = []
while num_batch in range(len(responseNp)):
batch.append(responseNp[num_batch])
num_batch = num_batch+120
return np.float32(batch)
def Gray2BW(im, r=127, b=127, g=127):
imRGBA = cv2.cvtColor(im,cv2.COLOR_RGB2RGBA) # Convert to RGBA
data = np.array(imRGBA) # "data" is a height x width x 4 numpy array
red, green, blue, alpha = data.T # Temporarily unpack the bands for readability
# Replace grey with white... (leaves alpha values alone...)
grey_areas = (red == r) & (blue == b) & (green == g)
data[..., :-1][grey_areas.T] = (255, 255, 255) # Transpose back needed
#im2.show()
return cv2.cvtColor(data,cv2.COLOR_RGBA2GRAY)
#Data Preparation
path = '/home/sezan92/BanglaDigit/'
TestPath = '/home/sezan92/BanglaML/Test/'
FolderNames = []
TestFolderNames = []
for i in range(10):
FolderNames.append(path+str(i))
TestFolderNames.append(TestPath+str(i))
trainData = []
responseData = []
testData=[]
testResponseData=[]
k=0
for folder in FolderNames:
k=k+1
for image in listdir(folder):
img =cv2.imread(join(folder,image))
img = cv2.resize(img,(32,32))
trainData.append(img.flatten())
responseData.append(k)
trainNp = np.float32(trainData)
responseNp = np.float32(responseData)
responseNpOH = np.zeros((responseNp.shape[0],responseData[-1]))
k=0
#OneHot
for i in range(responseNpOH.shape[0]):
np.put(responseNpOH[i],responseNp[i]-1,1)
all_data = np.concatenate((trainNp,responseNpOH),axis=1)
np.random.shuffle(all_data)
#TensorFlow
sess = tf.InteractiveSession()
feature_cols = trainNp.shape[1]
num_labels=10
x = tf.placeholder(tf.float32, shape=[None,feature_cols])
y_ = tf.placeholder(tf.float32, shape=[None, num_labels])
x_image = tf.reshape(x, [-1,32,32,3])
W_conv1 = weight_variable([5, 5, 3, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_conv3 = weight_variable([5, 5, 64, 128])
b_conv3 = bias_variable([128])
h_conv3 = tf.nn.relu(conv2d(h_pool2, W_conv3) + b_conv3)
h_pool3 = max_pool_2x2(h_conv3)
W_fc1 = weight_variable([4*4 * 128, feature_cols])
b_fc1 = bias_variable([feature_cols])
h_pool3_flat = tf.reshape(h_pool3, [-1, 4*4*128])
h_fc1 = tf.nn.relu(tf.matmul(h_pool3_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([feature_cols,num_labels])
b_fc2 = bias_variable([num_labels])
y_conv = (tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(0.0003).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess.run(tf.global_variables_initializer())
num_batch =0
while num_batch<2181:
#batch = mnist.train.next_batch(50)
if num_batch%100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x:all_data[num_batch:num_batch+10,0:feature_cols],
y_:all_data[num_batch:num_batch+10,feature_cols:feature_cols+10],
keep_prob:1.0})
print("step %d, training accuracy %g"%(num_batch, train_accuracy))
train_step.run(feed_dict={x:all_data[num_batch:num_batch+10,0:feature_cols],
y_:all_data[num_batch:num_batch+10,feature_cols:feature_cols+10], keep_prob: 0.5})
num_batch = num_batch+10