forked from naru-project/naru
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmade.py
752 lines (655 loc) · 29.7 KB
/
made.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
"""MADE and ResMADE."""
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class MaskedLinear(nn.Linear):
def __init__(self, in_features, out_features, bias=True):
super().__init__(in_features, out_features, bias)
self.register_buffer('mask', torch.ones(out_features, in_features))
self.masked_weight = None
def set_mask(self, mask):
"""Accepts a mask of shape [in_features, out_features]."""
self.mask.data.copy_(torch.from_numpy(mask.astype(np.uint8).T))
def forward(self, input):
if self.masked_weight is None:
return F.linear(input, self.mask * self.weight, self.bias)
else:
# ~17% speedup for Prog Sampling.
return F.linear(input, self.masked_weight, self.bias)
class MaskedResidualBlock(nn.Module):
def __init__(self, in_features, out_features, activation):
assert in_features == out_features, [in_features, out_features]
super().__init__()
self.layers = nn.ModuleList()
self.layers.append(MaskedLinear(in_features, out_features, bias=True))
self.layers.append(MaskedLinear(in_features, out_features, bias=True))
self.activation = activation
def set_mask(self, mask):
self.layers[0].set_mask(mask)
self.layers[1].set_mask(mask)
def forward(self, input):
out = input
out = self.activation(out)
out = self.layers[0](out)
out = self.activation(out)
out = self.layers[1](out)
return input + out
class MADE(nn.Module):
def __init__(
self,
nin,
hidden_sizes,
nout,
num_masks=1,
natural_ordering=True,
input_bins=None,
activation=nn.ReLU,
do_direct_io_connections=False,
input_encoding=None,
output_encoding='one_hot',
embed_size=32,
input_no_emb_if_leq=True,
residual_connections=False,
column_masking=False,
seed=11123,
fixed_ordering=None,
):
"""MADE.
Args:
nin: integer; number of input variables. Each input variable
represents a column.
hidden sizes: a list of integers; number of units in hidden layers.
nout: integer; number of outputs, the sum of all input variables'
domain sizes.
num_masks: number of orderings + connectivity masks to cycle through.
natural_ordering: force natural ordering of dimensions, don't use
random permutations.
input_bins: classes each input var can take on, e.g., [5, 2] means
input x1 has values in {0, ..., 4} and x2 in {0, 1}. In other
words, the domain sizes.
activation: the activation to use.
do_direct_io_connections: whether to add a connection from inputs to
output layer. Helpful for information flow.
input_encoding: input encoding mode, see EncodeInput().
output_encoding: output logits decoding mode, either 'embed' or
'one_hot'. See logits_for_col().
embed_size: int, embedding dim.
input_no_emb_if_leq: optimization, whether to turn off embedding for
variables that have a domain size less than embed_size. If so,
those variables would have no learnable embeddings and instead are
encoded as one hot vecs.
residual_connections: use ResMADE? Could lead to faster learning.
column_masking: if True, turn on column masking during training time,
which enables the wildcard skipping optimization during inference.
Recommended to be set for any non-trivial datasets.
seed: seed for generating random connectivity masks.
fixed_ordering: variable ordering to use. If specified, order[i]
maps natural index i -> position in ordering. E.g., if order[0] =
2, variable 0 is placed at position 2.
"""
super().__init__()
print('fixed_ordering', fixed_ordering, 'seed', seed,
'natural_ordering', natural_ordering)
self.nin = nin
assert input_encoding in [None, 'one_hot', 'binary', 'embed']
self.input_encoding = input_encoding
assert output_encoding in ['one_hot', 'embed']
self.embed_size = self.emb_dim = embed_size
self.output_encoding = output_encoding
self.activation = activation
self.nout = nout
self.hidden_sizes = hidden_sizes
self.input_bins = input_bins
self.input_no_emb_if_leq = input_no_emb_if_leq
self.do_direct_io_connections = do_direct_io_connections
self.column_masking = column_masking
self.residual_connections = residual_connections
self.fixed_ordering = fixed_ordering
if fixed_ordering is not None:
assert num_masks == 1
print('** Fixed ordering {} supplied, ignoring natural_ordering'.
format(fixed_ordering))
assert self.input_bins
encoded_bins = list(
map(self._get_output_encoded_dist_size, self.input_bins))
self.input_bins_encoded = list(
map(self._get_input_encoded_dist_size, self.input_bins))
self.input_bins_encoded_cumsum = np.cumsum(
list(map(self._get_input_encoded_dist_size, self.input_bins)))
print('encoded_bins (output)', encoded_bins)
print('encoded_bins (input)', self.input_bins_encoded)
hs = [nin] + hidden_sizes + [sum(encoded_bins)]
self.net = []
for h0, h1 in zip(hs, hs[1:]):
if residual_connections:
if h0 == h1:
self.net.extend([
MaskedResidualBlock(
h0, h1, activation=activation(inplace=False))
])
else:
self.net.extend([
MaskedLinear(h0, h1),
])
else:
self.net.extend([
MaskedLinear(h0, h1),
activation(inplace=True),
])
if not residual_connections:
self.net.pop()
self.net = nn.Sequential(*self.net)
if self.input_encoding is not None:
# Input layer should be changed.
assert self.input_bins is not None
input_size = 0
for i, dist_size in enumerate(self.input_bins):
input_size += self._get_input_encoded_dist_size(dist_size)
new_layer0 = MaskedLinear(input_size, self.net[0].out_features)
self.net[0] = new_layer0
if self.output_encoding == 'embed':
assert self.input_encoding == 'embed'
if self.input_encoding == 'embed':
self.embeddings = nn.ModuleList()
for i, dist_size in enumerate(self.input_bins):
if dist_size <= self.embed_size and self.input_no_emb_if_leq:
embed = None
else:
embed = nn.Embedding(dist_size, self.embed_size)
self.embeddings.append(embed)
# Learnable [MASK] representation.
if self.column_masking:
self.unk_embeddings = nn.ParameterList()
for i, dist_size in enumerate(self.input_bins):
self.unk_embeddings.append(
nn.Parameter(torch.zeros(1, self.input_bins_encoded[i])))
self.natural_ordering = natural_ordering
self.num_masks = num_masks
self.seed = seed if seed is not None else 11123
self.init_seed = self.seed
self.direct_io_layer = None
self.logit_indices = np.cumsum(encoded_bins)
self.m = {}
self.update_masks()
self.orderings = [self.m[-1]]
# Optimization: cache some values needed in EncodeInput().
self.bin_as_onehot_shifts = None
def _build_or_update_direct_io(self):
assert self.nout > self.nin and self.input_bins is not None
direct_nin = self.net[0].in_features
direct_nout = self.net[-1].out_features
if self.direct_io_layer is None:
self.direct_io_layer = MaskedLinear(direct_nin, direct_nout)
mask = np.zeros((direct_nout, direct_nin), dtype=np.uint8)
if self.natural_ordering:
curr = 0
for i in range(self.nin):
dist_size = self._get_input_encoded_dist_size(
self.input_bins[i])
# Input i connects to groups > i.
mask[self.logit_indices[i]:, curr:dist_size] = 1
curr += dist_size
else:
# Inverse: ord_idx -> natural idx.
inv_ordering = [None] * self.nin
for natural_idx in range(self.nin):
inv_ordering[self.m[-1][natural_idx]] = natural_idx
for ord_i in range(self.nin):
nat_i = inv_ordering[ord_i]
# x_(nat_i) in the input occupies range [inp_l, inp_r).
inp_l = 0 if nat_i == 0 else self.input_bins_encoded_cumsum[
nat_i - 1]
inp_r = self.input_bins_encoded_cumsum[nat_i]
assert inp_l < inp_r
for ord_j in range(ord_i + 1, self.nin):
nat_j = inv_ordering[ord_j]
# Output x_(nat_j) should connect to input x_(nat_i); it
# occupies range [out_l, out_r) in the output.
out_l = 0 if nat_j == 0 else self.logit_indices[nat_j - 1]
out_r = self.logit_indices[nat_j]
assert out_l < out_r
mask[out_l:out_r, inp_l:inp_r] = 1
mask = mask.T
self.direct_io_layer.set_mask(mask)
def _get_input_encoded_dist_size(self, dist_size):
if self.input_encoding == 'embed':
if self.input_no_emb_if_leq:
dist_size = min(dist_size, self.embed_size)
else:
dist_size = self.embed_size
elif self.input_encoding == 'one_hot':
pass
elif self.input_encoding == 'binary':
dist_size = max(1, int(np.ceil(np.log2(dist_size))))
elif self.input_encoding is None:
return 1
else:
assert False, self.input_encoding
return dist_size
def _get_output_encoded_dist_size(self, dist_size):
if self.output_encoding == 'embed':
if self.input_no_emb_if_leq:
dist_size = min(dist_size, self.embed_size)
else:
dist_size = self.embed_size
elif self.output_encoding == 'one_hot':
pass
elif self.output_encoding == 'binary':
dist_size = max(1, int(np.ceil(np.log2(dist_size))))
return dist_size
def update_masks(self, invoke_order=None):
"""Update m() for all layers and change masks correspondingly.
No-op if "self.num_masks" is 1.
"""
if self.m and self.num_masks == 1:
return
L = len(self.hidden_sizes)
### Precedence of several params determining ordering:
#
# invoke_order
# orderings
# fixed_ordering
# natural_ordering
#
# from high precedence to low.
if invoke_order is not None:
found = False
for i in range(len(self.orderings)):
if np.array_equal(self.orderings[i], invoke_order):
found = True
break
assert found, 'specified={}, avail={}'.format(
ordering, self.orderings)
# orderings = [ o0, o1, o2, ... ]
# seeds = [ init_seed, init_seed+1, init_seed+2, ... ]
rng = np.random.RandomState(self.init_seed + i)
self.seed = (self.init_seed + i + 1) % self.num_masks
self.m[-1] = invoke_order
elif hasattr(self, 'orderings'):
# Cycle through the special orderings.
rng = np.random.RandomState(self.seed)
self.seed = (self.seed + 1) % self.num_masks
self.m[-1] = self.orderings[self.seed % 4]
else:
rng = np.random.RandomState(self.seed)
self.seed = (self.seed + 1) % self.num_masks
self.m[-1] = np.arange(
self.nin) if self.natural_ordering else rng.permutation(
self.nin)
if self.fixed_ordering is not None:
self.m[-1] = np.asarray(self.fixed_ordering)
if self.nin > 1:
for l in range(L):
if self.residual_connections:
# Sequential assignment for ResMade: https://arxiv.org/pdf/1904.05626.pdf
self.m[l] = np.array([(k - 1) % (self.nin - 1)
for k in range(self.hidden_sizes[l])])
else:
# Samples from [0, ncols - 1).
self.m[l] = rng.randint(self.m[l - 1].min(),
self.nin - 1,
size=self.hidden_sizes[l])
else:
# This should result in first layer's masks == 0.
# So output units are disconnected to any inputs.
for l in range(L):
self.m[l] = np.asarray([-1] * self.hidden_sizes[l])
masks = [self.m[l - 1][:, None] <= self.m[l][None, :] for l in range(L)]
masks.append(self.m[L - 1][:, None] < self.m[-1][None, :])
if self.nout > self.nin:
# Last layer's mask needs to be changed.
if self.input_bins is None:
k = int(self.nout / self.nin)
# Replicate the mask across the other outputs
# so [x1, x2, ..., xn], ..., [x1, x2, ..., xn].
masks[-1] = np.concatenate([masks[-1]] * k, axis=1)
else:
# [x1, ..., x1], ..., [xn, ..., xn] where the i-th list has
# input_bins[i - 1] many elements (multiplicity, # of classes).
mask = np.asarray([])
for k in range(masks[-1].shape[0]):
tmp_mask = []
for idx, x in enumerate(zip(masks[-1][k], self.input_bins)):
mval, nbins = x[0], self._get_output_encoded_dist_size(
x[1])
tmp_mask.extend([mval] * nbins)
tmp_mask = np.asarray(tmp_mask)
if k == 0:
mask = tmp_mask
else:
mask = np.vstack([mask, tmp_mask])
masks[-1] = mask
if self.input_encoding is not None:
# Input layer's mask should be changed.
assert self.input_bins is not None
# [nin, hidden].
mask0 = masks[0]
new_mask0 = []
for i, dist_size in enumerate(self.input_bins):
dist_size = self._get_input_encoded_dist_size(dist_size)
# [dist size, hidden]
new_mask0.append(
np.concatenate([mask0[i].reshape(1, -1)] * dist_size,
axis=0))
# [sum(dist size), hidden]
new_mask0 = np.vstack(new_mask0)
masks[0] = new_mask0
layers = [
l for l in self.net if isinstance(l, MaskedLinear) or
isinstance(l, MaskedResidualBlock)
]
assert len(layers) == len(masks), (len(layers), len(masks))
for l, m in zip(layers, masks):
l.set_mask(m)
if self.do_direct_io_connections:
self._build_or_update_direct_io()
def name(self):
n = 'made'
if self.residual_connections:
n += '-resmade'
n += '-hidden' + '_'.join(str(h) for h in self.hidden_sizes)
n += '-emb' + str(self.embed_size)
if self.num_masks > 1:
n += '-{}masks'.format(self.num_masks)
if not self.natural_ordering:
n += '-nonNatural'
n += ('-no' if not self.do_direct_io_connections else '-') + 'directIo'
n += '-{}In{}Out'.format(self.input_encoding, self.output_encoding)
if self.input_no_emb_if_leq:
n += '-inputNoEmbIfLeq'
if self.column_masking:
n += '-colmask'
return n
def Embed(self, data, natural_col=None, out=None):
if data is None:
if out is None:
return self.unk_embeddings[natural_col]
out.copy_(self.unk_embeddings[natural_col])
return out
bs = data.size()[0]
y_embed = []
data = data.long()
if natural_col is not None:
# Fast path only for inference. One col.
coli_dom_size = self.input_bins[natural_col]
# Embed?
if coli_dom_size >= self.embed_size or not self.input_no_emb_if_leq:
res = self.embeddings[natural_col](data.view(-1,))
if out is not None:
out.copy_(res)
return out
return res
else:
if out is None:
out = torch.zeros(bs, coli_dom_size, device=data.device)
out.scatter_(1, data, 1)
return out
else:
for i, coli_dom_size in enumerate(self.input_bins):
# Wildcard column? use -1 as special token.
# Inference pass only (see estimators.py).
skip = data[0][i] < 0
# Embed?
if coli_dom_size >= self.embed_size or not self.input_no_emb_if_leq:
col_i_embs = self.embeddings[i](data[:, i])
if not self.column_masking:
y_embed.append(col_i_embs)
else:
dropped_repr = self.unk_embeddings[i]
def dropout_p():
return np.random.randint(0, self.nin) / self.nin
# During training, non-dropped 1's are scaled by
# 1/(1-p), so we clamp back to 1.
batch_mask = torch.clamp(
torch.dropout(torch.ones(bs, 1, device=data.device),
p=dropout_p(),
train=self.training), 0, 1)
y_embed.append(batch_mask * col_i_embs +
(1. - batch_mask) * dropped_repr)
else:
if skip:
y_embed.append(self.unk_embeddings[i])
continue
y_onehot = torch.zeros(bs,
coli_dom_size,
device=data.device)
y_onehot.scatter_(1, data[:, i].view(-1, 1), 1)
if self.column_masking:
def dropout_p():
return np.random.randint(0, self.nin) / self.nin
# During training, non-dropped 1's are scaled by
# 1/(1-p), so we clamp back to 1.
batch_mask = torch.clamp(
torch.dropout(torch.ones(bs, 1, device=data.device),
p=dropout_p(),
train=self.training), 0, 1)
y_embed.append(batch_mask * y_onehot +
(1. - batch_mask) *
self.unk_embeddings[i])
else:
y_embed.append(y_onehot)
return torch.cat(y_embed, 1)
def ToOneHot(self, data):
assert not self.column_masking, 'not implemented'
bs = data.size()[0]
y_onehots = []
data = data.long()
for i, coli_dom_size in enumerate(self.input_bins):
if coli_dom_size <= 2:
y_onehots.append(data[:, i].view(-1, 1).float())
else:
y_onehot = torch.zeros(bs, coli_dom_size, device=data.device)
y_onehot.scatter_(1, data[:, i].view(-1, 1), 1)
y_onehots.append(y_onehot)
# [bs, sum(dist size)]
return torch.cat(y_onehots, 1)
def ToBinaryAsOneHot(self, data, threshold=0, natural_col=None, out=None):
if data is None:
if out is None:
return self.unk_embeddings[natural_col]
out.copy_(self.unk_embeddings[natural_col])
return out
bs = data.size()[0]
data = data.long()
if self.bin_as_onehot_shifts is None:
# This caching gives very sizable gains.
self.bin_as_onehot_shifts = [None] * self.nin
const_one = torch.ones([], dtype=torch.long, device=data.device)
for i, coli_dom_size in enumerate(self.input_bins):
# Max with 1 to guard against cols with 1 distinct val.
one_hot_dims = max(1, int(np.ceil(np.log2(coli_dom_size))))
self.bin_as_onehot_shifts[i] = const_one << torch.arange(
one_hot_dims, device=data.device)
if natural_col is None:
# Train path.
assert out is None
y_onehots = [None] * self.nin
for i, coli_dom_size in enumerate(self.input_bins):
if coli_dom_size > threshold:
# Bit shift in PyTorch + GPU is 27% faster than np.
data_np = data.narrow(1, i, 1)
binaries = (data_np & self.bin_as_onehot_shifts[i]) > 0
y_onehots[i] = binaries
if self.column_masking:
dropped_repr = self.unk_embeddings[i]
def dropout_p():
return np.random.randint(0, self.nin) / self.nin
# During training, non-dropped 1's are scaled by
# 1/(1-p), so we clamp back to 1.
batch_mask = torch.clamp(
torch.dropout(torch.ones(bs, 1, device=data.device),
p=dropout_p(),
train=self.training), 0, 1)
binaries = binaries.to(torch.float32,
non_blocking=True,
copy=False)
y_onehots[i] = batch_mask * binaries + (
1. - batch_mask) * dropped_repr
else:
# Encode as plain one-hot.
y_onehot = torch.zeros(bs,
coli_dom_size,
device=data.device)
y_onehot.scatter_(1, data[:, i].view(-1, 1), 1)
y_onehots[i] = y_onehot
res = torch.cat(y_onehots, 1)
return res.to(torch.float32, non_blocking=True, copy=False)
else:
# Inference path.
natural_idx = natural_col
coli_dom_size = self.input_bins[natural_idx]
if coli_dom_size > threshold:
# Bit shift in PyTorch + GPU is 27% faster than np.
data_np = data
if out is None:
res = (data_np & self.bin_as_onehot_shifts[natural_idx]) > 0
return res.to(torch.float32, non_blocking=True, copy=False)
else:
out.copy_(
(data_np & self.bin_as_onehot_shifts[natural_idx]) > 0)
return out
else:
assert False, 'inference'
if out is None:
y_onehot = torch.zeros(bs,
coli_dom_size,
device=data.device)
y_onehot.scatter_(1, data, 1)
res = y_onehot
return res.to(torch.float32, non_blocking=True, copy=False)
out.scatter_(1, data, 1)
return out
def EncodeInput(self, data, natural_col=None, out=None):
""""Warning: this could take up a significant portion of a forward pass.
Args:
natural_col: if specified, 'data' has shape [N, 1] corresponding to
col-'natural-col'. Otherwise 'data' corresponds to all cols.
out: if specified, assign results into this Tensor storage.
"""
if self.input_encoding == 'binary':
return self.ToBinaryAsOneHot(data, natural_col=natural_col, out=out)
elif self.input_encoding == 'embed':
return self.Embed(data, natural_col=natural_col, out=out)
elif self.input_encoding is None:
return data
elif self.input_encoding == 'one_hot':
return self.ToOneHot(data)
else:
assert False, self.input_encoding
def forward(self, x):
"""Calculates unnormalized logits.
If self.input_bins is not specified, the output units are ordered as:
[x1, x2, ..., xn], ..., [x1, x2, ..., xn].
So they can be reshaped as thus and passed to a cross entropy loss:
out.view(-1, model.nout // model.nin, model.nin)
Otherwise, they are ordered as:
[x1, ..., x1], ..., [xn, ..., xn]
And they can't be reshaped directly.
Args:
x: [bs, ncols].
"""
x = self.EncodeInput(x)
if self.direct_io_layer is not None:
residual = self.direct_io_layer(x)
return self.net(x) + residual
return self.net(x)
def forward_with_encoded_input(self, x):
if self.direct_io_layer is not None:
residual = self.direct_io_layer(x)
return self.net(x) + residual
return self.net(x)
def logits_for_col(self, idx, logits):
"""Returns the logits (vector) corresponding to log p(x_i | x_(<i)).
Args:
idx: int, in natural (table) ordering.
logits: [batch size, hidden] where hidden can either be sum(dom
sizes), or emb_dims.
Returns:
logits_for_col: [batch size, domain size for column idx].
"""
assert self.input_bins is not None
if idx == 0:
logits_for_var = logits[:, :self.logit_indices[0]]
else:
logits_for_var = logits[:, self.logit_indices[idx - 1]:self.
logit_indices[idx]]
if self.output_encoding != 'embed':
return logits_for_var
embed = self.embeddings[idx]
if embed is None:
# Can be None for small-domain columns.
return logits_for_var
# Otherwise, dot with embedding matrix to get the true logits.
# [bs, emb] * [emb, dom size for idx]
return torch.matmul(logits_for_var, embed.weight.t())
def nll(self, logits, data):
"""Calculates -log p(data), given logits (the conditionals).
Args:
logits: [batch size, hidden] where hidden can either be sum(dom
sizes), or emb_dims.
data: [batch size, nin].
Returns:
nll: [batch size].
"""
if data.dtype != torch.long:
data = data.long()
nll = torch.zeros(logits.size()[0], device=logits.device)
for i in range(self.nin):
logits_i = self.logits_for_col(i, logits)
nll += F.cross_entropy(logits_i, data[:, i], reduction='none')
return nll
def sample(self, num=1, device=None):
assert self.natural_ordering
assert self.input_bins and self.nout > self.nin
with torch.no_grad():
sampled = torch.zeros((num, self.nin), device=device)
indices = np.cumsum(self.input_bins)
for i in range(self.nin):
logits = self.forward(sampled)
s = torch.multinomial(
torch.softmax(self.logits_for_i(i, logits), -1), 1)
sampled[:, i] = s.view(-1,)
return sampled
if __name__ == '__main__':
# Checks for the autoregressive property.
rng = np.random.RandomState(14)
# (nin, hiddens, nout, input_bins, direct_io)
configs_with_input_bins = [
(2, [10], 2 + 5, [2, 5], False),
(2, [10, 30], 2 + 5, [2, 5], False),
(3, [6], 2 + 2 + 2, [2, 2, 2], False),
(3, [4, 4], 2 + 1 + 2, [2, 1, 2], False),
(4, [16, 8, 16], 2 + 3 + 1 + 2, [2, 3, 1, 2], False),
(2, [10], 2 + 5, [2, 5], True),
(2, [10, 30], 2 + 5, [2, 5], True),
(3, [6], 2 + 2 + 2, [2, 2, 2], True),
(3, [4, 4], 2 + 1 + 2, [2, 1, 2], True),
(4, [16, 8, 16], 2 + 3 + 1 + 2, [2, 3, 1, 2], True),
]
for nin, hiddens, nout, input_bins, direct_io in configs_with_input_bins:
print(nin, hiddens, nout, input_bins, direct_io, '...', end='')
model = MADE(nin,
hiddens,
nout,
input_bins=input_bins,
natural_ordering=True,
do_direct_io_connections=direct_io)
model.eval()
print(model)
for k in range(nout):
inp = torch.tensor(rng.rand(1, nin).astype(np.float32),
requires_grad=True)
loss = model(inp)
l = loss[0, k]
l.backward()
depends = (inp.grad[0].numpy() != 0).astype(np.uint8)
depends_ix = np.where(depends)[0].astype(np.int32)
var_idx = np.argmax(k < np.cumsum(input_bins))
prev_idxs = np.arange(var_idx).astype(np.int32)
# Asserts that k depends only on < var_idx.
print('depends', depends_ix, 'prev_idxs', prev_idxs)
assert len(torch.nonzero(inp.grad[0, var_idx:])) == 0
print('ok')
print('[MADE] Passes autoregressive-ness check!')