-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathwith_faiss.py
250 lines (201 loc) · 8.59 KB
/
with_faiss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import sys
import pickle
import re
import logging
from abc import ABC, abstractmethod
from typing import List
import requests
import mimetypes
from bs4 import BeautifulSoup
from urllib.parse import urljoin, urlparse
from dotenv import load_dotenv
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS as BaseFAISS
from langchain.chat_models import ChatOpenAI
from langchain.schema import AIMessage, HumanMessage, SystemMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import (
PyPDFLoader,
CSVLoader,
UnstructuredWordDocumentLoader,
WebBaseLoader as BaseWebBaseLoader,
)
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
import time
load_dotenv()
logger = logging.getLogger(__name__)
OPENAI_API_KEY = os.getenv('OPEN_AI_KEY')
CHROMEDRIVER_PATH = os.getenv('CHROMEDRIVER_PATH')
# WEBSITE_URL = os.getenv('WEBSITE_URLS')
# WEBSITE_URLS = WEBSITE_URL.split(",")
embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
chat = ChatOpenAI(temperature=0, openai_api_key=OPENAI_API_KEY)
class WebBaseLoader(BaseWebBaseLoader):
def _fetch(
self, url: str, selector: str = 'body', retries: int = 3, cooldown: int = 2, backoff: float = 1.5
) -> str:
for i in range(retries):
try:
#Path to chromedriver executable
webdriver_service = Service(CHROMEDRIVER_PATH)
options = webdriver.ChromeOptions()
options.add_argument('headless')
driver = webdriver.Chrome(service=webdriver_service, options=options)
driver.get(url)
# Wait until the specific element is visible on the page
WebDriverWait(driver, timeout=500).until(
EC.visibility_of_element_located((By.CSS_SELECTOR, selector))
)
content = driver.page_source
driver.quit()
return content
except Exception as e:
if i == retries - 1:
raise
else:
logger.warning(
f"Error fetching {url} with attempt "
f"{i + 1}/{retries}: {e}. Retrying..."
)
time.sleep(cooldown * backoff ** i)
raise ValueError("retry count exceeded")
class DocumentLoader(ABC):
@abstractmethod
def load_and_split(self) -> List[str]:
pass
class FAISS(BaseFAISS):
def save(self, file_path):
with open(file_path, "wb") as f:
pickle.dump(self, f)
@staticmethod
def load(file_path):
with open(file_path, "rb") as f:
return pickle.load(f)
class URLHandler:
@staticmethod
def is_valid_url(url):
parsed = urlparse(url)
return bool(parsed.netloc) and bool(parsed.scheme)
@staticmethod
def extract_links(url):
urls = set()
domain_name = urlparse(url).netloc
soup = BeautifulSoup(requests.get(url).content, "html.parser")
for a_tag in soup.findAll("a"):
href = a_tag.attrs.get("href")
if href == "" or href is None:
continue
href = urljoin(url, href)
parsed_href = urlparse(href)
if parsed_href.path.endswith(
('.pdf', '.jpg', '.png', '.jpeg', '.gif', '.doc', '.docx', '.xls', '.xlsx', '.ppt', '.pptx')):
continue
href = parsed_href.scheme + "://" + parsed_href.netloc + parsed_href.path
if not URLHandler.is_valid_url(href):
continue
if href in urls:
continue
if domain_name not in href:
continue
urls.add(href)
return urls
@staticmethod
def extract_links_from_websites(websites):
all_links = set()
for website in websites:
links = URLHandler.extract_links(website)
all_links.update(links)
return list(all_links)
def remove_phrase(data, phrase):
# Create a pattern that matches the phrase and any words around it
pattern = re.compile(r'\b\w*?\s*' + re.escape(phrase) + r'\s*\w*\b', re.IGNORECASE)
# Remove the phrase and any surrounding words
cleaned_data = re.sub(pattern, '', data)
return cleaned_data
def get_loader(file_path_or_url):
if file_path_or_url.startswith("http://") or file_path_or_url.startswith("https://"):
handle_website = URLHandler()
return WebBaseLoader(handle_website.extract_links_from_websites([file_path_or_url]))
else:
mime_type, _ = mimetypes.guess_type(file_path_or_url)
if mime_type == 'application/pdf':
return PyPDFLoader(file_path_or_url)
elif mime_type == 'text/csv':
return CSVLoader(file_path_or_url)
elif mime_type in ['application/msword',
'application/vnd.openxmlformats-officedocument.wordprocessingml.document']:
return UnstructuredWordDocumentLoader(file_path_or_url)
else:
raise ValueError(f"Unsupported file type: {mime_type}")
def train_or_load_model(train, faiss_obj_path, file_path, index_name):
if train:
phrase = "Machine Translated by Google"
loader = get_loader(file_path)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000,
chunk_overlap=400)
pages = loader.load_and_split(text_splitter=text_splitter)
for i in pages:
print("\n ______________")
i.page_content = remove_phrase(i.page_content, phrase) # remove if the data translate from google
# i.page_content = structured_chunk(i.page_content)
print(i.page_content)
# Save pages to a text file
with open('output.txt', 'w', encoding='utf-8') as f:
sys.stdout = f # Redirect standard output to the file
print(pages) # The output will be saved to 'output.txt'
sys.stdout = sys.__stdout__ # Reset standard output
if os.path.exists(faiss_obj_path):
faiss_index = FAISS.load(faiss_obj_path)
new_embeddings = faiss_index.from_documents(pages, embeddings)
new_embeddings.save(faiss_obj_path)
else:
faiss_index = FAISS.from_documents(pages, embeddings)
faiss_index.save(faiss_obj_path)
return FAISS.load(faiss_obj_path)
else:
return FAISS.load(faiss_obj_path)
def structured_chunk(message):
messages = [SystemMessage(
content="Please enhance and refine the following text to ensure clarity and standardization. Remove all "
"extraneous components, including HTML tags, miscellaneous characters, and any segments "
"translated by automatic systems like Google Translate."), HumanMessage(content=message)]
ai_response = chat(messages).content
return ai_response
def answer_questions(faiss_index):
messages = [
SystemMessage(
content='I want you to act as a document that I am having a conversation with. Your name is "AI '
'Assistant". You will provide me with answers from the given info. If the answer is not included, '
'say exactly "Hmm, I am not sure." and stop after that. Refuse to answer any question not about '
'the info. Never break character.')
]
while True:
question = input("Ask a question (type 'stop' to end): ")
if question.lower() == "stop":
break
docs = faiss_index.similarity_search(query=question, k=2)
print(docs)
main_content = question + "\n\n"
for doc in docs:
main_content += doc.page_content + "\n\n"
messages.append(HumanMessage(content=main_content))
ai_response = chat(messages).content
messages.pop()
messages.append(HumanMessage(content=question))
messages.append(AIMessage(content=ai_response))
print(ai_response)
def main():
faiss_obj_path = "models/ycla.pickle"
file_path = "data/ycla_en.pdf"
index_name = "ycla"
train = int(input("Do you want to train the model? (1 for yes, 0 for no): "))
faiss_index = train_or_load_model(train, faiss_obj_path, file_path, index_name)
answer_questions(faiss_index)
if __name__ == "__main__":
main()