-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathqat_training.py
103 lines (80 loc) · 5.32 KB
/
qat_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import os
import numpy as np
import tensorflow as tf
print(tf.__version__)
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/MNIST_data/", one_hot=True)
print('training info:')
print(mnist.train.images.shape, mnist.train.labels.shape)
print('testing info:')
print(mnist.test.images.shape, mnist.test.labels.shape)
print('val info:')
print(mnist.validation.images.shape, mnist.validation.labels.shape)
with tf.device('/gpu:0'):
x = tf.placeholder(tf.float32, [None, 1, 28, 28], name='input_0')
y_ = tf.placeholder(tf.float32, [None, 10], name='output_0')
def network(inputs):
model = tf.layers.conv2d(inputs, filters=64, kernel_size=(3, 3), padding='same', activation='relu',
data_format='channels_first') # 28x28
model = tf.layers.conv2d(model, filters=64, kernel_size=(3, 3), padding='same', activation='relu',
data_format='channels_first') # 28x28
model = tf.layers.max_pooling2d(model, pool_size=(2, 2), strides=2, data_format='channels_first') # 14x14
model = tf.layers.conv2d(model, filters=128, kernel_size=(3, 3), padding='same', activation='relu',
data_format='channels_first') # 14x14
model = tf.layers.conv2d(model, filters=128, kernel_size=(3, 3), padding='same', activation='relu',
data_format='channels_first') # 14x14
model = tf.layers.max_pooling2d(model, pool_size=(2, 2), strides=2, data_format='channels_first') # 7x7
model = tf.layers.conv2d(model, filters=256, kernel_size=(3, 3), padding='same', activation='relu',
data_format='channels_first') # 7x7
model = tf.layers.conv2d(model, filters=256, kernel_size=(3, 3), padding='same', activation='relu',
data_format='channels_first') # 7x7
model = tf.layers.max_pooling2d(model, pool_size=(2, 2), strides=1, data_format='channels_first') # 6X6
model = tf.layers.conv2d(model, filters=512, kernel_size=(3, 3), padding='same', activation='relu',
data_format='channels_first') # 6X6
model = tf.layers.conv2d(model, filters=512, kernel_size=(3, 3), padding='same', activation='relu',
data_format='channels_first') # 6X6
model = tf.layers.max_pooling2d(model, pool_size=(2, 2), strides=2, data_format='channels_first') # 3X3
model = tf.layers.conv2d(model, filters=54, kernel_size=(3, 3), padding='same', activation='relu',
data_format='channels_first') # 3X3
logits = tf.layers.conv2d(model, filters=10, kernel_size=(3, 3), activation='relu',
data_format='channels_first', name='output_embeddings')
# logits = tf.squeeze(logits, axis=[-2, -1])
return logits
logits = network(x)
probs = tf.nn.softmax(logits, name='softmax', axis=1)
logits = tf.squeeze(logits, axis=[-2, -1])
# y = tf.argmax(logits, axis=1)
loss = tf.losses.softmax_cross_entropy(logits=logits, onehot_labels=y_)
accuracy_op = tf.metrics.accuracy(labels=tf.argmax(y_, axis=1), predictions=tf.argmax(logits, axis=1))[1]
# cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(logits),reduction_indices=[1]))
# correct_prediction = tf.equal(tf.argmax(y_,1), tf.argmax(logits, axis=1))
# accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.contrib.quantize.experimental_create_training_graph(tf.get_default_graph(), symmetric=True, use_qdq=True,
quant_delay=4500)
global_steps = tf.Variable(0, trainable=False)
learning_rate = tf.train.exponential_decay(0.01, global_steps, 100, 0.9, staircase=True)
train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_steps)
# train_op = tf.train.GradientDescentOptimizer(0.001).minimize(loss)
init = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
saver = tf.train.Saver(max_to_keep=3)
checkpoint_dir = 'saved_results/mnist_ckpt/'
with tf.Session() as sess:
sess.run(init)
for i in range(5000):
mnist_images, batch_ys = mnist.train.next_batch(256)
batch_xs = np.array(mnist_images * 255, dtype=np.uint8)
train_loss, _, current_learning_rate = sess.run([loss, train_op, learning_rate],
{x: batch_xs.reshape(-1, 28, 28, 1).transpose((0, 3, 1, 2)),
y_: batch_ys.reshape(-1, 10)})
saver.save(sess, checkpoint_dir + 'model.ckpt')
print(train_loss)
if (i % 100 == 0):
print('current_learning_rate:', current_learning_rate)
test_accuracy = sess.run(accuracy_op, {x: batch_xs.reshape(-1, 28, 28, 1).transpose((0, 3, 1, 2)),
y_: batch_ys.reshape(-1, 10)})
print("Step=%d, Train loss=%.4f,[Test accuracy=%.2f]" % (i, train_loss, test_accuracy))
print('acc is:')
test_images = mnist.validation.images.reshape(-1, 28, 28, 1).transpose((0, 3, 1, 2))
test_images = np.array(test_images * 255, dtype=np.uint8)
print(accuracy_op.eval({x: test_images, y_: mnist.validation.labels.reshape(-1, 10)}))
sess.close()