-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathsparseAutoencoder.py
257 lines (168 loc) · 10.3 KB
/
sparseAutoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# This piece of software is bound by The MIT License (MIT)
# Copyright (c) 2013 Siddharth Agrawal
# Code written by : Siddharth Agrawal
# Email ID : [email protected]
import numpy
import math
import time
import scipy.io
import scipy.optimize
import matplotlib.pyplot
###########################################################################################
""" The Sparse Autoencoder class """
class SparseAutoencoder(object):
#######################################################################################
""" Initialization of Autoencoder object """
def __init__(self, visible_size, hidden_size, rho, lamda, beta):
""" Initialize parameters of the Autoencoder object """
self.visible_size = visible_size # number of input units
self.hidden_size = hidden_size # number of hidden units
self.rho = rho # desired average activation of hidden units
self.lamda = lamda # weight decay parameter
self.beta = beta # weight of sparsity penalty term
""" Set limits for accessing 'theta' values """
self.limit0 = 0
self.limit1 = hidden_size * visible_size
self.limit2 = 2 * hidden_size * visible_size
self.limit3 = 2 * hidden_size * visible_size + hidden_size
self.limit4 = 2 * hidden_size * visible_size + hidden_size + visible_size
""" Initialize Neural Network weights randomly
W1, W2 values are chosen in the range [-r, r] """
r = math.sqrt(6) / math.sqrt(visible_size + hidden_size + 1)
rand = numpy.random.RandomState(int(time.time()))
W1 = numpy.asarray(rand.uniform(low = -r, high = r, size = (hidden_size, visible_size)))
W2 = numpy.asarray(rand.uniform(low = -r, high = r, size = (visible_size, hidden_size)))
""" Bias values are initialized to zero """
b1 = numpy.zeros((hidden_size, 1))
b2 = numpy.zeros((visible_size, 1))
""" Create 'theta' by unrolling W1, W2, b1, b2 """
self.theta = numpy.concatenate((W1.flatten(), W2.flatten(),
b1.flatten(), b2.flatten()))
#######################################################################################
""" Returns elementwise sigmoid output of input array """
def sigmoid(self, x):
return (1 / (1 + numpy.exp(-x)))
#######################################################################################
""" Returns the cost of the Autoencoder and gradient at a particular 'theta' """
def sparseAutoencoderCost(self, theta, input):
""" Extract weights and biases from 'theta' input """
W1 = theta[self.limit0 : self.limit1].reshape(self.hidden_size, self.visible_size)
W2 = theta[self.limit1 : self.limit2].reshape(self.visible_size, self.hidden_size)
b1 = theta[self.limit2 : self.limit3].reshape(self.hidden_size, 1)
b2 = theta[self.limit3 : self.limit4].reshape(self.visible_size, 1)
""" Compute output layers by performing a feedforward pass
Computation is done for all the training inputs simultaneously """
hidden_layer = self.sigmoid(numpy.dot(W1, input) + b1)
output_layer = self.sigmoid(numpy.dot(W2, hidden_layer) + b2)
""" Estimate the average activation value of the hidden layers """
rho_cap = numpy.sum(hidden_layer, axis = 1) / input.shape[1]
""" Compute intermediate difference values using Backpropagation algorithm """
diff = output_layer - input
sum_of_squares_error = 0.5 * numpy.sum(numpy.multiply(diff, diff)) / input.shape[1]
weight_decay = 0.5 * self.lamda * (numpy.sum(numpy.multiply(W1, W1)) +
numpy.sum(numpy.multiply(W2, W2)))
KL_divergence = self.beta * numpy.sum(self.rho * numpy.log(self.rho / rho_cap) +
(1 - self.rho) * numpy.log((1 - self.rho) / (1 - rho_cap)))
cost = sum_of_squares_error + weight_decay + KL_divergence
KL_div_grad = self.beta * (-(self.rho / rho_cap) + ((1 - self.rho) / (1 - rho_cap)))
del_out = numpy.multiply(diff, numpy.multiply(output_layer, 1 - output_layer))
del_hid = numpy.multiply(numpy.dot(numpy.transpose(W2), del_out) + numpy.transpose(numpy.matrix(KL_div_grad)),
numpy.multiply(hidden_layer, 1 - hidden_layer))
""" Compute the gradient values by averaging partial derivatives
Partial derivatives are averaged over all training examples """
W1_grad = numpy.dot(del_hid, numpy.transpose(input))
W2_grad = numpy.dot(del_out, numpy.transpose(hidden_layer))
b1_grad = numpy.sum(del_hid, axis = 1)
b2_grad = numpy.sum(del_out, axis = 1)
W1_grad = W1_grad / input.shape[1] + self.lamda * W1
W2_grad = W2_grad / input.shape[1] + self.lamda * W2
b1_grad = b1_grad / input.shape[1]
b2_grad = b2_grad / input.shape[1]
""" Transform numpy matrices into arrays """
W1_grad = numpy.array(W1_grad)
W2_grad = numpy.array(W2_grad)
b1_grad = numpy.array(b1_grad)
b2_grad = numpy.array(b2_grad)
""" Unroll the gradient values and return as 'theta' gradient """
theta_grad = numpy.concatenate((W1_grad.flatten(), W2_grad.flatten(),
b1_grad.flatten(), b2_grad.flatten()))
return [cost, theta_grad]
###########################################################################################
""" Normalize the dataset provided as input """
def normalizeDataset(dataset):
""" Remove mean of dataset """
dataset = dataset - numpy.mean(dataset)
""" Truncate to +/-3 standard deviations and scale to -1 to 1 """
std_dev = 3 * numpy.std(dataset)
dataset = numpy.maximum(numpy.minimum(dataset, std_dev), -std_dev) / std_dev
""" Rescale from [-1, 1] to [0.1, 0.9] """
dataset = (dataset + 1) * 0.4 + 0.1
return dataset
###########################################################################################
""" Randomly samples image patches, normalizes them and returns as dataset """
def loadDataset(num_patches, patch_side):
""" Load images into numpy array """
images = scipy.io.loadmat('IMAGES.mat')
images = images['IMAGES']
""" Initialize dataset as array of zeros """
dataset = numpy.zeros((patch_side*patch_side, num_patches))
""" Initialize random numbers for random sampling of images
There are 10 images of size 512 X 512 """
rand = numpy.random.RandomState(int(time.time()))
image_indices = rand.randint(512 - patch_side, size = (num_patches, 2))
image_number = rand.randint(10, size = num_patches)
""" Sample 'num_patches' random image patches """
for i in xrange(num_patches):
""" Initialize indices for patch extraction """
index1 = image_indices[i, 0]
index2 = image_indices[i, 1]
index3 = image_number[i]
""" Extract patch and store it as a column """
patch = images[index1:index1+patch_side, index2:index2+patch_side, index3]
patch = patch.flatten()
dataset[:, i] = patch
""" Normalize and return the dataset """
dataset = normalizeDataset(dataset)
return dataset
###########################################################################################
""" Visualizes the obtained optimal W1 values as images """
def visualizeW1(opt_W1, vis_patch_side, hid_patch_side):
""" Add the weights as a matrix of images """
figure, axes = matplotlib.pyplot.subplots(nrows = hid_patch_side,
ncols = hid_patch_side)
index = 0
for axis in axes.flat:
""" Add row of weights as an image to the plot """
image = axis.imshow(opt_W1[index, :].reshape(vis_patch_side, vis_patch_side),
cmap = matplotlib.pyplot.cm.gray, interpolation = 'nearest')
axis.set_frame_on(False)
axis.set_axis_off()
index += 1
""" Show the obtained plot """
matplotlib.pyplot.show()
###########################################################################################
""" Loads data, trains the Autoencoder and visualizes the learned weights """
def executeSparseAutoencoder():
""" Define the parameters of the Autoencoder """
vis_patch_side = 8 # side length of sampled image patches
hid_patch_side = 5 # side length of representative image patches
rho = 0.01 # desired average activation of hidden units
lamda = 0.0001 # weight decay parameter
beta = 3 # weight of sparsity penalty term
num_patches = 10000 # number of training examples
max_iterations = 400 # number of optimization iterations
visible_size = vis_patch_side * vis_patch_side # number of input units
hidden_size = hid_patch_side * hid_patch_side # number of hidden units
""" Load randomly sampled image patches as dataset """
training_data = loadDataset(num_patches, vis_patch_side)
""" Initialize the Autoencoder with the above parameters """
encoder = SparseAutoencoder(visible_size, hidden_size, rho, lamda, beta)
""" Run the L-BFGS algorithm to get the optimal parameter values """
opt_solution = scipy.optimize.minimize(encoder.sparseAutoencoderCost, encoder.theta,
args = (training_data,), method = 'L-BFGS-B',
jac = True, options = {'maxiter': max_iterations})
opt_theta = opt_solution.x
opt_W1 = opt_theta[encoder.limit0 : encoder.limit1].reshape(hidden_size, visible_size)
""" Visualize the obtained optimal W1 weights """
visualizeW1(opt_W1, vis_patch_side, hid_patch_side)
executeSparseAutoencoder()