-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathLinearTriangulation.py
40 lines (32 loc) · 1.07 KB
/
LinearTriangulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import numpy as np
def LinearTriangulation(K, T1, R1, T2, R2, x1, x2):
# https://temugeb.github.io/opencv/python/2021/02/02/stereo-camera-calibration-and-triangulation.html
I = np.identity(3)
T1 = np.reshape(T1, (3, 1))
T2 = np.reshape(T2, (3, 1))
# projection matrices
P1 = np.dot(K, np.dot(R1, np.hstack((I, -T1))))
P2 = np.dot(K, np.dot(R2, np.hstack((I, -T2))))
p1T = P1[0,:].reshape(1,4)
p2T = P1[1,:].reshape(1,4)
p3T = P1[2,:].reshape(1,4)
p_dash_1T = P2[0,:].reshape(1,4)
p_dash_2T = P2[1,:].reshape(1,4)
p_dash_3T = P2[2,:].reshape(1,4)
X_all = []
for i in range(x1.shape[0]):
x = x1[i, 0]
y = x1[i, 1]
x_dash = x2[i, 0]
y_dash = x2[i, 1]
A = []
A.append((y * p3T) - p2T)
A.append(p1T - (x * p3T))
A.append((y_dash * p_dash_3T) - p_dash_2T)
A.append(p_dash_1T - (x_dash * p_dash_3T))
A = np.array(A).reshape(4,4)
_, _, vt = np.linalg.svd(A)
V = vt.T
X = V[:, -1]
X_all.append(X)
return np.array(X_all)