-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
307 lines (252 loc) · 10.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import copy
import logging
# import json
import os
import pwd
import sqlite3 as db
import sys
import time
from datetime import datetime
import matplotlib.pyplot as plt
import numpy as np
import piplates.DAQC2plate as das
logger = logging.getLogger("home_das")
logger.setLevel(logging.DEBUG)
fh = logging.FileHandler("/home/pi/home_das/python_output_log.txt")
fh.setLevel(logging.DEBUG)
def exception_handler(typ, value, tb):
logger.exception("Uncaught Exception: {}".format(str(value)))
sys.excepthook = exception_handler
# logger.addHandler(fh)
current_user = pwd.getpwuid(os.getuid())[0]
base_dir = os.path.join(os.path.sep, "home", "pi", "home_das")
startup_message = "Startup @ {}. Current user is: {}".format(
datetime.now().strftime("%c"), current_user
)
print(startup_message)
startup_file = open(os.path.join(base_dir, "home_das.log"), "a")
startup_file.write("{}\n".format(startup_message))
startup_file.close()
das_address = 0
data_schema = {
"0": {
"name": "Septic Pump",
"voltage": 0,
},
"1": {"name": "Empty", "voltage": 0},
"2": {"name": "Empty", "voltage": 0},
"3": {"name": "Empty", "voltage": 0},
"4": {"name": "Empty", "voltage": 0},
"5": {"name": "Empty", "voltage": 0},
"6": {"name": "Empty", "voltage": 0},
"7": {"name": "Empty", "voltage": 0},
}
data_rate_hz = 120 # Is this too much?
data_collection_voltage_threshold = 0.1
data = []
def setup_db():
connection = db.connect("home_das_data.db")
with connection:
cursor = connection.cursor()
cursor.execute(
"CREATE TABLE SEPTIC_DATA(timestamp DATETIME, raw_sensor_voltage NUMERIC, amperage NUMERIC)"
)
return connection
def acquire_data():
# all_data = das.getADCall(das_address)
all_data = das.getADC(das_address, 0)
# this_data = copy.deepcopy(data_schema)
# for index, value in enumerate(all_data):
# this_data[index]["voltage"] = value
# data.push([datetime.now(), all_data])
return all_data
def log_data():
return True
one_sample_time = 1000000000 // data_rate_hz
pump_gallons_per_minute = 43.5 # Per Anettes Engineering Docs
pump_gallons_per_second = pump_gallons_per_minute / 60
transport_volume = 12.8 # Gallons that drain from the pipe after pumping is complete
pump_gallons_per_dose = 107.2
def has_time_passed(input_loop_time):
if (time.time_ns() - input_loop_time) > one_sample_time:
return True
return False
def get_raw_to_voltage_to_amps_conversion_factor():
vin_min = 0.0
vin_max = 10.0
amps_min = 0.0
amps_max = 20.0
return (amps_max - amps_min) / (vin_max - vin_min)
def convert_raw_voltage_to_amps(raw_voltage):
return raw_voltage * get_raw_to_voltage_to_amps_conversion_factor()
loop_time = 0
conversion_factor = get_raw_to_voltage_to_amps_conversion_factor()
samples = []
sample_times = []
data_collection_start = 0
print("Monitoring data at {} sample(s) per second".format(data_rate_hz))
print("Amperage conversion factor is: {}".format(conversion_factor))
connection = db.connect(
os.path.join(base_dir, "home_das_db.db"),
detect_types=db.PARSE_DECLTYPES | db.PARSE_COLNAMES,
)
max_data_rate_hz_start = time.time_ns()
max_data_rate_samples = 0
for i in range(10):
acquire_data()
max_data_rate_samples = max_data_rate_samples + 1
max_data_rate_hz_end = time.time_ns()
average_ns_per_daq = (
max_data_rate_hz_end - max_data_rate_hz_start
) / max_data_rate_samples
print("Maximum Data rate is: {:.2f} hz".format(1_000_000_000 / average_ns_per_daq))
now = datetime.now()
# samples = 0
with connection:
cursor = connection.cursor()
cursor.execute(
"CREATE TABLE IF NOT EXISTS SEPTIC_data(timestamp DATETIME, raw_sensor_voltage NUMERIC, amperage NUMERIC)"
)
cursor.execute(
"CREATE TABLE IF NOT EXISTS WATER_USAGE_DATA(timestamp DATETIME, gallons_pumped NUMERIC)"
)
startup_file = open(os.path.join(base_dir, "home_das.log"), "a")
startup_file.write("{}\n".format("Starting Data Monitoring..."))
startup_file.close()
while True:
if has_time_passed(loop_time):
# print(
# "Current Data Rate: {} hz".format(
# 1_000_000_000 / (time.time_ns() - loop_time)
# )
# )
# print(time.time_ns() - loop_time)
# start = time.time_ns()
daq_time = time.time_ns()
data = acquire_data()
if data > data_collection_voltage_threshold:
if data_collection_start == 0:
now = datetime.now()
data_collection_start = daq_time
samples.append(data)
sample_times.append(daq_time)
else:
if len(samples) > 0:
compute_start = time.time_ns()
# Parse the data, save it, clear it
# Parse
# seconds = len(samples) / 30
seconds = (time.time_ns() - data_collection_start) / 1000000000
raw_samples = copy.copy(samples)
samples = np.array(samples)
# Convert everything to amperage
samples = samples * conversion_factor
max_amps = np.max(samples)
average_amps = np.average(samples)
start_time = now.strftime("%Y%m%d-%H:%M:%S")
pumped_gallons = (
seconds * pump_gallons_per_second
) - transport_volume
# Save
log_text = "{}: Dosing pump ran for {:.2f} seconds, pumped {:.2f} gallons with a max amperage of {:.2f}A, an average amperage of {:.2f}A, and an average wattage of {:.2f}W".format(
start_time,
seconds,
pumped_gallons,
max_amps,
average_amps,
average_amps * 120.0,
)
print(log_text)
# log_file = open("home_das.log", "a")
log_file = open(os.path.join(base_dir, "home_das.log"), "a")
log_file.write("{}\n".format(log_text))
np.savetxt(
os.path.join(base_dir, "{}.csv".format(start_time)),
samples,
delimiter=",",
)
np.savetxt(
os.path.join(base_dir, "RAW_{}.csv".format(start_time)),
raw_samples,
delimiter=",",
)
np.savetxt(
os.path.join(base_dir, "NS_{}.csv".format(start_time)),
sample_times,
delimiter=",",
)
plt.plot(samples)
plt.ylabel("Amps")
plt.title("Septic Pump Run - {}".format(start_time))
plt.savefig(
os.path.join(base_dir, "Amperage-{}.png".format(start_time))
)
plt.close()
# Water Usage
cursor.execute(
"INSERT INTO WATER_USAGE_DATA(timestamp, gallons_pumped) VALUES(?, ?)",
(now, pumped_gallons),
)
cursor.execute(
"SELECT * FROM WATER_USAGE_DATA",
)
# What order are these in?
water_data = cursor.fetchall()
print("Water data: ", water_data)
water_data_timestamps = [i[0] for i in water_data]
water_data_gallons_pumped = [i[1] for i in water_data]
water_data_gallons_pumped = np.cumsum(water_data_gallons_pumped)
print("Pump Timestamps: ", water_data_timestamps)
print("Gallons pumped: ", water_data_gallons_pumped)
plt.plot(water_data_timestamps, water_data_gallons_pumped)
plt.ylabel("Gallons")
plt.title(
"Water Usage: {} - {}".format(
water_data_timestamps[0], water_data_timestamps[-1]
)
)
plt.savefig(
os.path.join(base_dir, "WaterUsage-{}.png".format(start_time))
)
plt.close()
# Data Analysis
time_btw_samples = np.diff(np.array(sample_times))
data_analysis_text = "The average time between samples is: {}ns, std dev is: {}ns, it should be {}ns".format(
np.average(time_btw_samples),
np.std(time_btw_samples),
one_sample_time,
)
log_file.write("{}\n".format(data_analysis_text))
plt.plot(sample_times)
plt.ylabel("Sample Time (ns)")
plt.title("Sample Times - {}".format(start_time))
plt.savefig(
os.path.join(base_dir, "SampleTimes-{}.png".format(start_time))
)
plt.close()
compute_end = time.time_ns()
compute_log = (
"Parsing, Logging, Saving, and Graphing took {} ms".format(
(compute_end - compute_start) / 1000000
)
)
print(compute_log)
log_file.write("{}\n".format(compute_log))
log_file.close()
# Clear
samples = []
sample_times = []
data_collection_start = 0
# samples = np.array(samples)
# samples_min = np.min(samples)
# samples_max = np.max(samples)
# sample_times = np.array(sample_times)
loop_time = time.time_ns()
# print(data)
# cursor.execute("INSERT INTO SEPTIC_data values(datetime('now'), (?), (?))", (data, data * 2))
# samples += 1
# if samples % 1000 == 0:
# print("Acquired {} samples!".format(samples))
# print("Data Acquired in {} ms".format((time.time_ns() - start) / 1000000))
# print(time.time_ns() - loop_time)
# print(one_sample_time)