-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathResilPlots.py
216 lines (181 loc) · 7 KB
/
ResilPlots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 22 08:56:33 2018
@author: skoebric
"""
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import geocoder
import geopandas as gpd
Countiesshpfile = "/Users/skoebric/Dropbox/shp files/cb_2017_us_county_20m/cb_2017_us_county_20m.shp"
Countiesshp = gpd.read_file(Countiesshpfile)
#Countiesshp = Countiesshp.to_crs({'init': 'esri:102009'}) #conical
state_codes = {'53': 'WA', '10': 'DE', '11': 'DC', '55': 'WI','54': 'WV','15': 'HI','12': 'FL','56': 'WY','72': 'PR','34': 'NJ','35': 'NM',
'48': 'TX','22': 'LA','37': 'NC','38': 'ND','31': 'NE','47': 'TN','36': 'NY','42': 'PA','02': 'AK','32': 'NV','33': 'NH',
'51': 'VA','08': 'CO','06': 'CA','01': 'AL','05': 'AR','50': 'VT','17': 'IL','13': 'GA','18': 'IN','19': 'IA','25': 'MA',
'04': 'AZ','16': 'ID','09': 'CT','23': 'ME','24': 'MD','40': 'OK','39': 'OH','49': 'UT','29': 'MO','27': 'MN','26': 'MI',
'44': 'RI','20': 'KS','30': 'MT','28': 'MS','45': 'SC','21': 'KY','41': 'OR','46': 'SD'}
state_codes.pop("72") #remove Puerto Rico
Countiesshp = Countiesshp.loc[Countiesshp['STATEFP'].isin(list(state_codes.keys()))]
def stateusps(row):
return state_codes[row['STATEFP']]
Countiesshp['STUSPS'] = Countiesshp.apply(stateusps, axis = 1)
def FIPcountystatestring(row):
FIP = str(row['STATEFP']) + str(row['COUNTYFP'])
return FIP
Countiesshp['fip'] = Countiesshp.apply(FIPcountystatestring, axis=1)
countydf = pd.read_excel('/Users/skoebric/Dropbox/Resilience/Resilience Heat Map 9-14-18.xlsx',
sheet_name = 'Updates 9-14-18')
def fipstringer(row):
fip_in = str(row['fip']).split('.')[0]
if len(fip_in) < 5:
fip_in = '0' + fip_in
return fip_in
countydf['fip'] = countydf.apply(fipstringer, axis = 1)
def countylookuper(row):
fip_in = row['fip']
matches = countydf.loc[countydf['fip'] == fip_in]
if len(matches) > 1:
print(fip_in, 'ERROR df is too long')
elif len(matches) == 0:
print(fip_in, 'ERROR df is empty, no FIP match')
elif len(matches) == 1:
return matches
def indlooker(row):
matches = countylookuper(row)
ResilInd = float(matches['res_ind'])
LMIburd = float(matches['energy_burden_lmi'])
AirSea = float(matches['air_sea'])
RevCap = float(matches['rev'])
FEMAspend = float(matches['total_FEMA_spend'])
return ResilInd, LMIburd, AirSea, RevCap, FEMAspend
Countiesshp['tuples'] = Countiesshp.apply(indlooker, axis = 1)
Countiesshp['resil_ind'] = [i[0] for i in Countiesshp['tuples']]
Countiesshp['lmi_burd'] = [i[1] for i in Countiesshp['tuples']]
Countiesshp['air_sea'] = [i[2] for i in Countiesshp['tuples']]
Countiesshp['rev'] = [i[3] for i in Countiesshp['tuples']]
Countiesshp['total_FEMA_spend'] = [i[4] for i in Countiesshp['tuples']]
Countiesshp['air_sea'].fillna(0, inplace = True)
Countiesshp = Countiesshp.to_crs({'init': 'epsg:4326'})
xwdf = gpd.read_file('/Users/skoebric/Dropbox/Resilience/susceptibility_extreme_weather/susceptibility_extreme_weatherPolygon.shp')
xwdf = xwdf.fillna(0)
xwdf = xwdf.replace('None', 0)
xwdf = xwdf.replace('Low', 1)
xwdf = xwdf.replace('Moderate',2)
xwdf = xwdf.replace('Medium',3)
xwdf = xwdf.replace('High',4)
xwdf = xwdf.replace('Extreme',5)
xwdf['fip'] = [i[0:5] for i in xwdf['geoid']]
xwdf = xwdf[['geoid',
'state_abbr',
'county_nam',
'flood_risk',
'cyclone_ri',
'drought_ri',
'gid',
'risk',
'fip']]
floodlist = []
droughtlist = []
cyclonelist = []
risklist = []
for fip in Countiesshp.GEOID:
df_ = xwdf.loc[xwdf['fip'] == fip]
if len(df_) > 0:
floodlist.append(round(df_['flood_risk'].mean()))
droughtlist.append(round(df_['drought_ri'].mean()))
cyclonelist.append(round(df_['cyclone_ri'].mean()))
risklist.append(round(df_['risk'].mean()))
elif len(df_) == 0:
floodlist.append(0)
droughtlist.append(0)
cyclonelist.append(0)
risklist.append(0)
Countiesshp['floodrisk'] = floodlist
Countiesshp['droughtrisk'] = droughtlist
Countiesshp['cyclonerisk'] = cyclonelist
Countiesshp['risk'] = risklist
Cshp = Countiesshp[['GEOID','geometry','resil_ind','lmi_burd','rev','total_FEMA_spend',
'floodrisk', 'droughtrisk', 'cyclonerisk', 'risk']]
#%%
import multiprocessing
import geocoder
import pandas as pd
import time
import requests
from multiprocessing.dummy import Pool as ThreadPool
participants = pd.read_excel('/Users/skoebric/Dropbox/GitHub/resilmap/Participant_List.xlsx')
participants = participants.drop_duplicates(subset = ['City','State'])
participants = participants[['City', 'State']]
participants = participants.dropna(how = 'any')
participants['geocoderstring'] = participants['City'] + ' ' + participants['State'] + ' USA'
def geocode_worker(inputrow):
try:
r = geocoder.mapquest(inputrow, key = 'rszS6XG8TKX2oHEIiJexOAHiMwdYYxCS')
lat = r.lat
lng = r.lng
print(r)
except Exception:
lat = None
lng = None
print('fail')
return lat, lng
def multithreadgeocoder(inputlist):
start = time.time()
pool = ThreadPool(20)
outputtuples = pool.map(geocode_worker, inputlist)
outputlist = []
for t in outputtuples:
try:
outputlist.append([float(t[1]),float(t[0])])
except TypeError:
outputlist.append('fail')
print(time.time() - start)
return outputlist
participants['lat_lng'] = multithreadgeocoder(list(participants['geocoderstring']))
#%%
participants = participants.loc[participants['lat_lng'] != 'fail']
from shapely.geometry import Point
import geopandas as gpd
participants['geometry'] = participants['lat_lng'].apply(Point)
participants = gpd.GeoDataFrame(participants, geometry = 'geometry')
def point_in_polygon_worker(inputgeometry):
def pointpasser(row):
return inputgeometry.contains(row.geometry)
allcities = participants.apply(pointpasser, axis = 1)
if allcities.sum() == 0:
print(False)
return False
else:
print(True)
return True
def cityincountychecker(inputlist):
start = time.time()
pool = ThreadPool(40)
outputlist = pool.map(point_in_polygon_worker, inputlist)
print(time.time() - start)
return outputlist
Cshp['contains_participant'] = cityincountychecker(list(Cshp['geometry']))
#%%
plt.cla()
import seaborn as sns
#Cshp = Cshp.loc[Cshp['rev'] < Cshp['rev'].quantile(.95)]
#Cshp = Cshp.loc[Cshp['total_FEMA_spend'] < Cshp['total_FEMA_spend'].quantile(.95)]
#Cshp = Cshp.loc[Cshp['rev'] > Cshp['rev'].quantile(.05)]
#Cshp = Cshp.loc[Cshp['total_FEMA_spend'] > Cshp['total_FEMA_spend'].quantile(.05)]
resilquantile = []
for r in Cshp['resil_ind']:
if r < 0.25:
resilquantile.append('1')
elif r < 1:
resilquantile.append('2')
elif r < 1.5:
resilquantile.append('3')
elif r < 2:
resilquantile.append('4')
else:
resilquantile.append('5')
Cshp['resquant'] = resilquantile
sns.lmplot(x = 'risk', y = 'total_FEMA_spend', hue = 'resquant', data = Cshp)