-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmodel.py
63 lines (52 loc) · 2.42 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import tensorflow as tf
import math
import numpy as np
class Model:
def __init__(self, vocab_dim, emb_dim, margin=0.01):
self._vocab_dim = vocab_dim
self._emb_dim = emb_dim
self._random_seed = 42
self._margin = margin
self._assemble_graph()
def _assemble_graph(self):
self._create_placeholders()
tf.set_random_seed(self._random_seed + 1)
A_var = tf.Variable(
initial_value=tf.random_uniform(
shape=[self._emb_dim, self._vocab_dim],
minval=-1, maxval=1, seed=(self._random_seed + 2)
)
)
B_var = tf.Variable(
initial_value=tf.random_uniform(
shape=[self._emb_dim, self._vocab_dim],
minval=-1, maxval=1, seed=(self._random_seed + 3)
)
)
self.global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step')
cont_mult = tf.transpose(tf.matmul(A_var, tf.transpose(self.context_batch)))
resp_mult = tf.matmul(B_var, tf.transpose(self.response_batch))
neg_resp_mult = tf.matmul(B_var, tf.transpose(self.neg_response_batch))
pos_raw_f = tf.diag_part(tf.matmul(cont_mult, resp_mult))
neg_raw_f = tf.diag_part(tf.matmul(cont_mult, neg_resp_mult))
self.f_pos = pos_raw_f
self.f_neg = neg_raw_f
self.loss = tf.reduce_sum(tf.nn.relu(self.f_neg - self.f_pos + self._margin))
def _create_placeholders(self):
self.context_batch = tf.placeholder(dtype=tf.float32, name='Context', shape=[None, self._vocab_dim])
self.response_batch = tf.placeholder(dtype=tf.float32, name='Response', shape=[None, self._vocab_dim])
self.neg_response_batch = tf.placeholder(dtype=tf.float32, name='NegResponse', shape=[None, self._vocab_dim])
# TODO: Implement summaries
def _init_summaries(self):
self.accuracy = tf.placeholder_with_default(0.0, shape=(), name='Accuracy')
self.accuracy_summary = tf.scalar_summary('Accuracy summary', self.accuracy)
self.f_pos_summary = tf.histogram_summary('f_pos', self.f_pos)
self.f_neg_summary = tf.histogram_summary('f_neg', self.f_neg)
self.loss_summary = tf.scalar_summary('Mini-batch loss', self.loss)
self.summary_op = tf.merge_summary(
[
self.f_pos_summary,
self.f_neg_summary,
self.loss_summary
]
)