-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
130 lines (104 loc) · 3.86 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import sys
import os.path
import math
import json
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
from tqdm import tqdm
import config
import data
import model
import utils
def update_learning_rate(optimizer, iteration):
lr = config.initial_lr * 0.5**(float(iteration) / config.lr_halflife)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
total_iterations = 0
def run(net, loader, optimizer, tracker, train=False, prefix='', epoch=0):
""" Run an epoch over the given loader """
if train:
net.train()
tracker_class, tracker_params = tracker.MovingMeanMonitor, {'momentum': 0.99}
else:
net.eval()
tracker_class, tracker_params = tracker.MeanMonitor, {}
answ = []
idxs = []
accs = []
tq = tqdm(loader, desc='{} E{:03d}'.format(prefix, epoch), ncols=0)
loss_tracker = tracker.track('{}_loss'.format(prefix), tracker_class(**tracker_params))
acc_tracker = tracker.track('{}_acc'.format(prefix), tracker_class(**tracker_params))
log_softmax = nn.LogSoftmax().cuda()
for v, q, a, idx, q_len in tq:
var_params = {
'volatile': not train,
'requires_grad': False,
}
v = Variable(v.cuda(async=True), **var_params)
q = Variable(q.cuda(async=True), **var_params)
a = Variable(a.cuda(async=True), **var_params)
q_len = Variable(q_len.cuda(async=True), **var_params)
out,_ = net(v, q, q_len)
nll = -log_softmax(out)
loss = (nll * a / 10).sum(dim=1).mean()
acc = utils.batch_accuracy(out.data, a.data).cpu()
if train:
global total_iterations
update_learning_rate(optimizer, total_iterations)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_iterations += 1
else:
# store information about evaluation of this minibatch
_, answer = out.data.cpu().max(dim=1)
answ.append(answer.view(-1))
accs.append(acc.view(-1))
idxs.append(idx.view(-1).clone())
loss_tracker.append(loss.item())
# acc_tracker.append(acc.mean())
for a in acc:
acc_tracker.append(a.item())
fmt = '{:.4f}'.format
tq.set_postfix(loss=fmt(loss_tracker.mean.value), acc=fmt(acc_tracker.mean.value))
if not train:
answ = list(torch.cat(answ, dim=0))
accs = list(torch.cat(accs, dim=0))
idxs = list(torch.cat(idxs, dim=0))
return answ, accs, idxs
def main():
if len(sys.argv) > 1:
name = ' '.join(sys.argv[1:])
else:
from datetime import datetime
name = datetime.now().strftime("%Y-%m-%d_%H:%M:%S")
target_name = os.path.join('logs', '{}.pth'.format(name))
print('will save to {}'.format(target_name))
cudnn.benchmark = True
train_loader = data.get_loader(train=True)
val_loader = data.get_loader(val=True)
net = model.Net(train_loader.dataset.num_tokens).cuda()
optimizer = optim.Adam([p for p in net.parameters() if p.requires_grad])
tracker = utils.Tracker()
config_as_dict = {k: v for k, v in vars(config).items() if not k.startswith('__')}
for i in range(config.epochs):
_ = run(net, train_loader, optimizer, tracker, train=True, prefix='train', epoch=i)
r = run(net, val_loader, optimizer, tracker, train=False, prefix='val', epoch=i)
results = {
'name': name,
'tracker': tracker.to_dict(),
'config': config_as_dict,
'weights': net.state_dict(),
'eval': {
'answers': r[0],
'accuracies': r[1],
'idx': r[2],
},
'vocab': train_loader.dataset.vocab,
}
torch.save(results, target_name)
if __name__ == '__main__':
main()