-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdataIO_funcs.py
140 lines (115 loc) · 6.1 KB
/
dataIO_funcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# dataIO_funcs.py
# provided = datatype (point,raster)
import s3fs
import xarray as xr
import xesmf
from snowexsql.db import get_db
import requests
import datetime
from bs4 import BeautifulSoup
from snowexsql.db import get_db
from snowexsql.data import LayerData,PointData# Import the function to get connect to the db
from snowexsql.conversions import query_to_geopandas # Import a useful function to format that data into a dataframe
import geopandas as gpd
import pandas as pd
from shapely.geometry import Point, LineString, Polygon
import dateutil.parser
def date_between_prime_snowEx(start_date, end_date, folder_date):
result = [folder_date[i] for i in range(len(folder_date)) if (folder_date[i].date >= start_date and folder_date[i].date <= end_date)]
return result
class access_SWESARR:
def get_url_paths(url, ext='', params={}):
"""
Funtion to extract list of folders in an online directory
INPUT:
url: Source url
OUTPUT:
List of folders in an online directory
Note this does not download any files
"""
response = requests.get(url, params=params)
if response.ok:
response_text = response.text
else:
return response.raise_for_status()
soup = BeautifulSoup(response_text, 'html.parser')
folder_names = [url + node.get('href') for node in soup.find_all('a') if node.get('href').endswith(ext)]
folder_names = folder_names[5:-1]
folder_names = [name[62:] for name in folder_names]
folder_date = [datetime.datetime.strptime(date[24:30] , '%y%m%d') for date in folder_names]
return folder_names,folder_date
def access_LIS(lon_range,lat_range,dates,variables,path,dx,dy,rsmpl):
# access lis model outputs staged in a given location for a given box and set of dates
# access amazon database
s3 = s3fs.S3FileSystem(anon=False)
lis_output_mapper = s3.get_mapper(path)
lis_output_ds = xr.open_zarr(lis_output_mapper,
consolidated=True)
# specify spatiotemporal filtering
lis_output_ds = lis_output_ds.sel(time=dates)
lis_output_ds = lis_output_ds.where((lis_output_ds.lat >= lat_range[0]) &
(lis_output_ds.lat <= lat_range[1]) &
(lis_output_ds.lon >= lon_range[0]) &
(lis_output_ds.lon <= lon_range[1]) ,drop=True)
# regrid the data to a rectangular grid
lis_output_ds = lis_output_ds.rename_dims({'east_west':'x','north_south':'y'})
ds_out = xesmf.util.grid_2d(lis_output_ds['lon'].min(),lis_output_ds['lon'].max(),dx,
lis_output_ds['lat'].min(),lis_output_ds['lat'].max(),dy)
regridder = xesmf.Regridder(lis_output_ds,ds_out,rsmpl)
outt = regridder(lis_output_ds[variables])
# finalize the datafile properties and return it to the user
out_reproj = outt.assign_coords({'longitude':outt['lon'][0,:],'latitude':outt['lat'][:,0]})
out_reproj = out_reproj.rename({'x':'longitude','y':'latitude'})
out_reproj = out_reproj.rio.write_crs(4326)
out_reproj = out_reproj.drop_vars(['lat','lon'])
return out_reproj
class access_snowEx:
def access_pointData(db_name,time_sel,time_buffer_dy,var_name,lat_range,lon_range):
# open the session
engine, session = get_db(db_name)
# do date filtering
pointDates = session.query(PointData.date).distinct().all()
time_sel_newForm = dateutil.parser.parse(time_sel)
start_date = time_sel_newForm-datetime.timedelta(days=time_buffer_dy)
start_date = start_date.date()
end_date = time_sel_newForm+datetime.timedelta(days=time_buffer_dy)
end_date = end_date.date()
filtered_dates = date_between_prime_snowEx(start_date, end_date, pointDates)
# query the dataset and concatenate
q = session.query(PointData).filter(PointData.type == var_name)
data_day_list = []
for dt_count,dtt in enumerate(filtered_dates):
print(dtt)
dt_sel = datetime.date(dtt[0].year,dtt[0].month,dtt[0].day)
q_sub = q.filter(PointData.date == dt_sel)
df = query_to_geopandas(q_sub, engine)
# i think this is what you do to concatenate??
data_day_list.append(df)
df_concat = pd.concat(data_day_list)
df_concat_gpd = gpd.GeoDataFrame(df_concat)
session.close()
# list of coordindate pairs
coordinates = [[ lon_range[0], lat_range[0] ], [ lon_range[1], lat_range[0] ], [ lon_range[1], lat_range[1]], [lon_range[0], lat_range[1]]]
print(coordinates)
# Create a Shapely polygon from the coordinate-tuple list
ply_coord = Polygon(coordinates)
# create a dictionary with needed attributes and required geometry column
df = {'Attribute': ['name1'], 'geometry': ply_coord}
# Convert shapely object to a geodataframe
poly = gpd.GeoDataFrame(df, geometry='geometry', crs ="EPSG:4326").to_crs("EPSG:26912")
df_clipped = gpd.clip(df_concat_gpd, poly)
return df_clipped,poly
def access_layerData(db_name,time_sel,time_buffer_dy,var_name,lat_range,lon_range):
engine, session = get_db(db_name)
# do date filtering
layerDates = session.query(LayerData.date).distinct().all()
time_sel_newForm = dateutil.parser.parse(time_sel)
start_date = time_sel_newForm-datetime.timedelta(days=time_buffer_dy)
start_date = start_date.date()
end_date = time_sel_newForm+datetime.timedelta(days=time_buffer_dy)
end_date = end_date.date()
collection_date = date_between_prime_snowEx(start_date, end_date, layerDates)
site_name = 'Grand Mesa'
result = session.query(func.ST_AsTiff(gfunc.ST_Union(ImageData.raster, _type=Raster))).filter(SiteData.site_name == site_name).filter(ImageData.date == collection_date).filter(ImageData.instrument == 'lidar').filter(ImageData.type == 'depth')
datasets = raster_to_rasterio(session, result)
return datasets