forked from lvze92/DMR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
110 lines (99 loc) · 3.16 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# coding: utf-8
from model import *
from data_iterator import *
import numpy as np
import tensorflow as tf
import sys
import random
from datetime import timedelta, datetime
num_epochs = 1
batch_size = 256
window_size = 50
starter_learning_rate = 0.001
learning_rate_decay = 1.0
today = datetime.today() + timedelta(0)
today_format = today.strftime('%Y%m%d')
ckpt_dir = './dmr_' + today_format
def train():
train_data = DataIterator('alimama.txt', batch_size, 20)
global_step = tf.Variable(0, name="global_step", trainable=False)
learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step, 2000000, learning_rate_decay, staircase=True)
# construct the model structure
model = Model_DMR(learning_rate, global_step)
iter = 0
test_iter = 100
loss_sum = 0.0
accuracy_sum = 0.
aux_loss_sum = 0.
stored_arr = []
init = tf.global_variables_initializer()
local_init = tf.local_variables_initializer()
with tf.Session() as sess:
sess.run(init)
sess.run(local_init)
saver = tf.train.Saver()
for features, targets in train_data:
loss, acc, aux_loss, prob = model.train(sess, features, targets)
loss_sum += loss
accuracy_sum += acc
aux_loss_sum += aux_loss
prob_1 = prob[:, 0].tolist()
target_1 = targets.tolist()
for p, t in zip(prob_1, target_1):
stored_arr.append([p, t])
iter += 1
if (iter % test_iter) == 0:
print(datetime.now().ctime())
print('globel step=', global_step)
print('iter: %d ----> train_loss: %.4f ---- train_accuracy: %.4f ---- train_aux_loss: %.4f ---- train_auc: %.4f' % \
(iter, loss_sum / test_iter, accuracy_sum / test_iter, aux_loss_sum / test_iter, calc_auc(stored_arr)))
loss_sum = 0.0
accuracy_sum = 0.0
aux_loss_sum = 0.0
stored_arr = []
saver.save(sess, save_path=ckpt_dir)
print("session finished.")
def eval():
test_data = DataIterator('alimama_test.txt', batch_size, 20)
global_step = tf.Variable(0, name="global_step", trainable=False)
learning_rate = 0.001
model = Model_DMR(learning_rate, global_step)
iter = 0
test_iter = 100
loss_sum = 0.0
accuracy_sum = 0.
aux_loss_sum = 0.
stored_arr = []
init = tf.global_variables_initializer()
local_init = tf.local_variables_initializer()
with tf.Session() as sess:
sess.run(init)
sess.run(local_init)
saver = tf.train.Saver()
saver.restore(sess, save_path=ckpt_dir)
for features, targets in test_data:
loss, acc, aux_loss, prob = model.calculate(sess, features, targets)
loss_sum += loss
accuracy_sum += acc
aux_loss_sum += aux_loss
prob_1 = prob[:, 0].tolist()
target_1 = targets.tolist()
for p, t in zip(prob_1, target_1):
stored_arr.append([p, t])
iter += 1
if (iter % test_iter) == 0:
print(datetime.now().ctime())
print('globel step=', global_step)
print(
'iter: %d ----> test_loss: %.4f ---- test_accuracy: %.4f ---- test_aux_loss: %.4f ---- test_auc: %.4f' % \
(iter, loss_sum / iter, accuracy_sum / iter, aux_loss_sum / iter, calc_auc(stored_arr)))
print("session finished.")
if __name__ == "__main__":
SEED = 3
tf.set_random_seed(SEED)
np.random.seed(SEED)
random.seed(SEED)
if sys.argv[1] == 'train':
train()
elif sys.argv[1] == 'test':
eval()