-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsram.sv
262 lines (235 loc) · 9.07 KB
/
sram.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
//
// sram.v
//
// Static RAM controller implementation using SDRAM MT48LC16M16A2
//
// Copyright (c) 2015,2016 Sorgelig
//
// Some parts of SDRAM code used from project:
// http://hamsterworks.co.nz/mediawiki/index.php/Simple_SDRAM_Controller
//
// This source file is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This source file is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// ------------------------------------------
//
// v2.1 - Add universal 8/16 bit mode.
//
module sram
(
input init, // reset to initialize RAM
input clk, // clock ~100MHz
//
// SDRAM_* - signals to the MT48LC16M16 chip
inout reg [15:0] SDRAM_DQ, // 16 bit bidirectional data bus
output reg [12:0] SDRAM_A, // 13 bit multiplexed address bus
output reg SDRAM_DQML, // two byte masks
output reg SDRAM_DQMH, //
output reg [1:0] SDRAM_BA, // two banks
output SDRAM_nCS, // a single chip select
output SDRAM_nWE, // write enable
output SDRAM_nRAS, // row address select
output SDRAM_nCAS, // columns address select
output SDRAM_CKE, // clock enable
//
input [1:0] wtbt, // 16bit mode: bit1 - write high byte, bit0 - write low byte,
// 8bit mode: 2'b00 - use addr[0] to decide which byte to write
// Ignored while reading.
//
input [24:0] addr, // 25 bit address for 8bit mode. addr[0] = 0 for 16bit mode for correct operations.
output [15:0] dout, // data output to cpu
input [15:0] din, // data input from cpu
input we, // cpu requests write
input rd, // cpu requests read
output reg ready // dout is valid. Ready to accept new read/write.
);
assign SDRAM_nCS = command[3];
assign SDRAM_nRAS = command[2];
assign SDRAM_nCAS = command[1];
assign SDRAM_nWE = command[0];
assign SDRAM_CKE = cke;
assign dout = latched ? data_l : data_d;
// no burst configured
localparam BURST_LENGTH = 3'b000; // 000=1, 001=2, 010=4, 011=8
localparam ACCESS_TYPE = 1'b0; // 0=sequential, 1=interleaved
localparam CAS_LATENCY = 3'd2; // 2 for < 100MHz, 3 for >100MHz
localparam OP_MODE = 2'b00; // only 00 (standard operation) allowed
localparam NO_WRITE_BURST = 1'b1; // 0= write burst enabled, 1=only single access write
localparam MODE = {3'b000, NO_WRITE_BURST, OP_MODE, CAS_LATENCY, ACCESS_TYPE, BURST_LENGTH};
localparam sdram_startup_cycles= 14'd12100;// 100us, plus a little more, @ 100MHz
localparam cycles_per_refresh = 14'd780; // (64000*100)/8192-1 Calc'd as (64ms @ 100MHz)/8192 rose
localparam startup_refresh_max = 14'b11111111111111;
// SDRAM commands
localparam CMD_INHIBIT = 4'b1111;
localparam CMD_NOP = 4'b0111;
localparam CMD_ACTIVE = 4'b0011;
localparam CMD_READ = 4'b0101;
localparam CMD_WRITE = 4'b0100;
localparam CMD_BURST_TERMINATE = 4'b0110;
localparam CMD_PRECHARGE = 4'b0010;
localparam CMD_AUTO_REFRESH = 4'b0001;
localparam CMD_LOAD_MODE = 4'b0000;
reg [13:0] refresh_count = startup_refresh_max - sdram_startup_cycles;
reg [3:0] command = CMD_INHIBIT;
reg cke = 0;
reg [24:0] save_addr;
reg latched;
reg [15:0] data;
wire[15:0] data_l = save_addr[0] ? {data[7:0], data[15:8]} : {data[15:8], data[7:0]};
wire[15:0] data_d = save_addr[0] ? {SDRAM_DQ[7:0], SDRAM_DQ[15:8]} : {SDRAM_DQ[15:8], SDRAM_DQ[7:0]};
typedef enum
{
STATE_STARTUP,
STATE_OPEN_1, STATE_OPEN_2,
STATE_WRITE,
STATE_READ,
STATE_IDLE, STATE_IDLE_1, STATE_IDLE_2, STATE_IDLE_3,
STATE_IDLE_4, STATE_IDLE_5, STATE_IDLE_6, STATE_IDLE_7
} state_t;
always @(posedge clk) begin
reg old_we, old_rd;
reg [CAS_LATENCY:0] data_ready_delay;
reg [15:0] new_data;
reg [1:0] new_wtbt;
reg new_we;
reg new_rd;
reg save_we = 1;
state_t state = STATE_STARTUP;
command <= CMD_NOP;
refresh_count <= refresh_count+1'b1;
data_ready_delay <= {1'b0, data_ready_delay[CAS_LATENCY:1]};
// make it ready 1T in advance
if(data_ready_delay[1]) {latched, ready} <= {1'b0, 1'b1};
if(data_ready_delay[0]) {latched, data} <= {1'b1, SDRAM_DQ};
case(state)
STATE_STARTUP: begin
//------------------------------------------------------------------------
//-- This is the initial startup state, where we wait for at least 100us
//-- before starting the start sequence
//--
//-- The initialisation is sequence is
//-- * de-assert SDRAM_CKE
//-- * 100us wait,
//-- * assert SDRAM_CKE
//-- * wait at least one cycle,
//-- * PRECHARGE
//-- * wait 2 cycles
//-- * REFRESH,
//-- * tREF wait
//-- * REFRESH,
//-- * tREF wait
//-- * LOAD_MODE_REG
//-- * 2 cycles wait
//------------------------------------------------------------------------
cke <= 1;
SDRAM_DQ <= 16'bZZZZZZZZZZZZZZZZ;
SDRAM_DQML <= 1;
SDRAM_DQMH <= 1;
SDRAM_A <= 0;
SDRAM_BA <= 0;
// All the commands during the startup are NOPS, except these
if(refresh_count == startup_refresh_max-31) begin
// ensure all rows are closed
command <= CMD_PRECHARGE;
SDRAM_A[10] <= 1; // all banks
SDRAM_BA <= 2'b00;
end else if (refresh_count == startup_refresh_max-23) begin
// these refreshes need to be at least tREF (66ns) apart
command <= CMD_AUTO_REFRESH;
end else if (refresh_count == startup_refresh_max-15)
command <= CMD_AUTO_REFRESH;
else if (refresh_count == startup_refresh_max-7) begin
// Now load the mode register
command <= CMD_LOAD_MODE;
SDRAM_A <= MODE;
end
//------------------------------------------------------
//-- if startup is complete then go into idle mode,
//-- get prepared to accept a new command, and schedule
//-- the first refresh cycle
//------------------------------------------------------
if(!refresh_count) begin
state <= STATE_IDLE;
ready <= 1;
refresh_count <= 0;
end
end
STATE_IDLE_7: state <= STATE_IDLE_6;
STATE_IDLE_6: state <= STATE_IDLE_5;
STATE_IDLE_5: state <= STATE_IDLE_4;
STATE_IDLE_4: state <= STATE_IDLE_3;
STATE_IDLE_3: state <= STATE_IDLE_2;
STATE_IDLE_2: state <= STATE_IDLE_1;
STATE_IDLE_1: begin
SDRAM_DQ <= 16'bZZZZZZZZZZZZZZZZ;
state <= STATE_IDLE;
// mask possible refresh to reduce colliding.
if(refresh_count > cycles_per_refresh) begin
//------------------------------------------------------------------------
//-- Start the refresh cycle.
//-- This tasks tRFC (66ns), so 6 idle cycles are needed @ 100MHz
//------------------------------------------------------------------------
state <= STATE_IDLE_7;
command <= CMD_AUTO_REFRESH;
refresh_count <= refresh_count - cycles_per_refresh + 1'd1;
end
end
STATE_IDLE: begin
// Priority is to issue a refresh if one is outstanding
if(refresh_count > (cycles_per_refresh<<1)) state <= STATE_IDLE_1;
else if(new_rd | new_we) begin
new_we <= 0;
new_rd <= 0;
save_addr<= addr;
save_we <= new_we;
state <= STATE_OPEN_1;
command <= CMD_ACTIVE;
SDRAM_A <= addr[13:1];
SDRAM_BA <= addr[24:23];
end
end
// ACTIVE-to-READ or WRITE delay >20ns (-75)
STATE_OPEN_1: state <= STATE_OPEN_2;
STATE_OPEN_2: begin
SDRAM_A <= {4'b0010, save_addr[22:14]};
SDRAM_DQML <= save_we & (new_wtbt ? ~new_wtbt[0] : save_addr[0]);
SDRAM_DQMH <= save_we & (new_wtbt ? ~new_wtbt[1] : ~save_addr[0]);
state <= save_we ? STATE_WRITE : STATE_READ;
end
STATE_READ: begin
state <= STATE_IDLE_5;
command <= CMD_READ;
SDRAM_DQ <= 16'bZZZZZZZZZZZZZZZZ;
// Schedule reading the data values off the bus
data_ready_delay[CAS_LATENCY] <= 1;
end
STATE_WRITE: begin
state <= STATE_IDLE_5;
command <= CMD_WRITE;
SDRAM_DQ <= new_wtbt ? new_data : {new_data[7:0], new_data[7:0]};
ready <= 1;
end
endcase
if(init) begin
state <= STATE_STARTUP;
refresh_count <= startup_refresh_max - sdram_startup_cycles;
end
old_we <= we;
if(we & ~old_we) {ready, new_we, new_data, new_wtbt} <= {1'b0, 1'b1, din, wtbt};
old_rd <= rd;
if(rd & ~old_rd) begin
if(ready & ~save_we & (save_addr[24:1] == addr[24:1])) save_addr <= addr;
else {ready, new_rd} <= {1'b0, 1'b1};
end
end
endmodule