-
Notifications
You must be signed in to change notification settings - Fork 893
/
Copy pathlib.py
457 lines (389 loc) · 13 KB
/
lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
from dataclasses import dataclass
import numpy as np
from chalk import *
from colour import Color
import chalk
from dataclasses import dataclass
from typing import List, Any
from collections import Counter
from numba import cuda
import numba
import random
@dataclass
class ScalarHistory:
last_fn: str
inputs: list
def __radd__(self, b):
return self + b
def __add__(self, b):
if isinstance(b, (float, int)):
return self
if isinstance(b, Scalar):
return ScalarHistory(self.last_fn, self.inputs + [b])
if isinstance(b, ScalarHistory):
return ScalarHistory(self.last_fn, self.inputs + b.inputs)
return NotImplemented
class Scalar:
def __init__(self, location):
self.location = location
def __mul__(self, b):
if isinstance(b, (float, int)):
return ScalarHistory("id", [self])
if isinstance(b, Scalar):
return ScalarHistory("*", [self, b])
return NotImplemented
def __radd__(self, b):
return self + b
def __add__(self, b):
if isinstance(b, (float, int)):
return ScalarHistory("id", [self])
if isinstance(b, Scalar):
return ScalarHistory("+", [self, b])
if isinstance(b, ScalarHistory):
return ScalarHistory("+", [self] + b.inputs)
return NotImplemented
class Table:
def __init__(self, name, array):
self.name = name
self.incoming = []
self.array = array
self.size = array.shape
def __getitem__(self, index):
self.array[index]
if isinstance(index, int):
index = (index,)
assert len(index) == len(self.size), "Wrong number of indices"
if index[0] >= self.size[0]:
assert False, "bad size"
return Scalar((self.name,) + index)
def __setitem__(self, index, val):
self.array[index]
if isinstance(index, int):
index = (index,)
assert len(index) == len(self.size), "Wrong number of indices"
if index[0] >= self.size[0]:
assert False, "bad size"
if isinstance(val, Scalar):
val = ScalarHistory("id", [val])
if isinstance(val, (float, int)):
return
assert isinstance(val, ScalarHistory), "Assigning an unrecognized value"
self.incoming.append((index, val))
@dataclass(frozen=True, eq=True)
class Coord:
x: int
y: int
def enumerate(self):
k = 0
for i in range(self.y):
for j in range(self.x):
yield k, Coord(j, i)
k += 1
def tuple(self):
return (self.x, self.y)
class RefList:
def __init__(self):
self.refs = []
def __getitem__(self, index):
return self.refs[-1][index]
def __setitem__(self, index, val):
self.refs[-1][index] = val
class Shared:
def __init__(self, cuda):
self.cuda = cuda
def array(self, size, ig):
if isinstance(size, int):
size = (size,)
s = np.zeros(size)
cache = Table("S" + str(len(self.cuda.caches)), s)
# self.caches.append(cache)
self.cuda.caches.append(RefList())
self.cuda.caches[-1].refs = [cache]
self.cuda.saved.append([])
return self.cuda.caches[-1]
class Cuda:
blockIdx: Coord
blockDim: Coord
threadIdx: Coord
caches: list
shared: Shared
def __init__(self, blockIdx, blockDim, threadIdx):
self.blockIdx = blockIdx
self.blockDim = blockDim
self.threadIdx = threadIdx
self.caches = []
self.shared = Shared(self)
self.saved = []
def syncthreads(self):
for i, c in enumerate(self.caches):
old_cache = c.refs[-1]
# self_links = cache.self_links()
# cache.clean()
temp = old_cache.incoming
old_cache.incoming = self.saved[i]
self.saved[i] = temp
cache = Table(old_cache.name + "'", old_cache.array)
c.refs.append(cache)
def finish(self):
for i, c in enumerate(self.caches):
old_cache = c.refs[-1]
old_cache.incoming = self.saved[i]
def rounds(self):
if len(self.caches) > 0:
return len(self.caches[0].refs)
else:
return 0
#li Some drawing constants.
black = Color("black")
white = Color("white")
im = image(
"robot.png", "https://raw.githubusercontent.com/minitorch/diagrams/main/robot.png"
).scale_uniform_to_x(1)
colors = list(Color("red").range_to(Color("blue"), 10))
def table(name, r, c):
if r == 0:
return concat(
[rectangle(1, 1).translate(0, j).named((name, j)) for j in range(c)]
).center_xy()
return concat(
[
rectangle(1, 1).translate(i, j).named((name, i, j))
for i in range(r)
for j in range(c)
]
).center_xy()
def myconnect(diagram, loc, color, con, name1, name2):
bb1 = diagram.get_subdiagram_envelope(name1)
bb2 = diagram.get_subdiagram_envelope(name2)
assert bb1 is not None, f"{name1}: You may be reading/writing from an un'synced array"
assert bb2 is not None, f"{name2}: You may be reading/writing from an un'synced array"
off = P2(loc[0] - 0.5, loc[1] - 0.5) * 0.85
dia = empty()
if con:
dia += (
arc_between(bb1.center - V2(0.5, 0), bb2.center + off, 0)
.line_width(0.04)
.line_color(color)
)
dia += place_at(
[rectangle(0.95, 0.95).fill_opacity(0).line_color(color).line_width(0.15)],
[bb1.center],
)
dia += place_at(
[circle(0.1).line_width(0.04).fill_color(color)], [bb2.center + off]
)
return dia
def draw_table(tab):
t = text(tab.name, 0.5).fill_color(black).line_width(0.0)
if len(tab.size) == 1:
tab = table(tab.name, 0, *tab.size)
else:
tab = table(tab.name, *tab.size)
tab = tab.line_width(0.05)
return tab.beside((t + vstrut(0.5)), -unit_y)
def draw_connect(tab, dia, loc2, color, con):
return concat(
[
myconnect(dia, loc2, color, con, (tab.name,) + loc, inp.location)
for (loc, val) in tab.incoming
for inp in val.inputs
]
)
def grid(mat, sep):
return vcat([ hcat([y for y in x] , sep) for x in mat], sep )
def draw_base(_, a, c, out):
inputs = vcat([draw_table(d) for d in a], 2.0).center_xy()
shared_tables = [[draw_table(c2.refs[i]) for i in range(1, c.rounds())] for c2 in c.caches]
shareds = grid(shared_tables, 1.0).center_xy()
outputs = draw_table(out).center_xy()
return hcat([inputs, shareds, outputs], 2.0)
def draw_coins(tpbx, tpby):
return concat(
[
(circle(0.5).fill_color(colors[tt]).fill_opacity(0.7) + im).translate(
pos.x * 1.1, pos.y * 1.1
)
for tt, pos in Coord(tpbx, tpby).enumerate()
]
)
def label(dia, content):
t = vstrut(0.5) / text(content, 0.5).fill_color(black).line_width(0) / vstrut(0.5)
dia = dia.center_xy()
return (dia + dia.juxtapose(t, -unit_y)).center_xy()
def draw_results(results, name, tpbx, tpby, sparse=False):
full = empty()
blocks = []
locations = []
base = draw_base(*results[Coord(0, 0)][Coord(0, 0)])
for block, inner in results.items():
dia = base
for pos, (tt, a, c, out) in inner.items():
loc = (
pos.x / tpbx + (1 / (2 * tpbx)),
(pos.y / tpby)
+ (1 / (2 * tpby)),
)
color = colors[tt]
lines = True
if sparse:
lines = (pos.x == 0 and pos.y == 0) or (
pos.x == (tpbx - 1)
and pos.y == (tpby - 1)
)
all_tabs = (
a + [c2.refs[i] for i in range(1, c.rounds()) for c2 in c.caches] + [out]
)
dia = dia + concat(
draw_connect(t, dia, loc, color, lines) for t in all_tabs
)
height = dia.get_envelope().height
# Label block and surround
dia = hstrut(1) | (label(dia, f"Block {block.x} {block.y}")) | hstrut(1)
dia = dia.center_xy().pad(1.2)
env = dia.get_envelope()
dia = dia + rectangle(env.width, env.height, 0.5).line_color(
Color("grey")
).fill_opacity(0.0)
blocks.append(dia.pad(1.1))
locations.append(P2(block.x, block.y))
# Grid blocks
env = blocks[0].get_envelope()
offset = V2(env.width, env.height)
full = place_at(blocks, [offset * l for l in locations])
coins = draw_coins(tpbx, tpby)
full = (
vstrut(1.5)
/ text(name, 1)
/ vstrut(1)
/ coins.center_xy()
/ vstrut(1)
/ full.center_xy()
)
full = full.pad(1.1).center_xy()
env = full.get_envelope()
set_svg_height(50 * env.height)
chalk.core.set_svg_output_height(500)
return rectangle(env.width, env.height).fill_color(white) + full
#
@dataclass
class CudaProblem:
name: str
fn: Any
inputs: List[np.ndarray]
out: np.ndarray
args: Tuple[int] = ()
blockspergrid: Coord = Coord(1, 1)
threadsperblock: Coord = Coord(1, 1)
spec: Any = None
def run_cuda(self):
fn = self.fn
fn = fn(numba.cuda)
jitfn = numba.cuda.jit(fn)
jitfn[self.blockspergrid.tuple(), self.threadsperblock.tuple()](
self.out, *self.inputs, *self.args
)
return self.out
def run_python(self):
results = {}
fn = self.fn
for _, block in self.blockspergrid.enumerate():
results[block] = {}
for tt, pos in self.threadsperblock.enumerate():
a = []
args = ["a", "b", "c", "d"]
for i, inp in enumerate(self.inputs):
a.append(Table(args[i], inp))
out = Table("out", self.out)
c = Cuda(block, self.threadsperblock, pos)
fn(c)(out, *a, *self.args)
c.finish()
results[block][pos] = (tt, a, c, out)
return results
def score(self, results):
total = 0
full = Counter()
for pos, (tt, a, c, out) in results[Coord(0, 0)].items():
total += 1
count = Counter()
for out, tab in [(False, c2.refs[i]) for i in range(1, c.rounds()) for c2 in c.caches] + [(True, out)]:
for inc in tab.incoming:
if out:
count["out_writes"] += 1
else:
count["shared_writes"] += 1
for ins in inc[1].inputs:
if ins.location[0].startswith("S"):
count["shared_reads"] += 1
else:
count["in_reads"] += 1
for k in count:
if count[k] > full[k]:
full[k] = count[k]
print(f"""# {self.name}
Score (Max Per Thread):
| {'Global Reads':>13} | {'Global Writes':>13} | {'Shared Reads' :>13} | {'Shared Writes' :>13} |
| {full['in_reads']:>13} | {full['out_writes']:>13} | {full['shared_reads']:>13} | {full['shared_writes']:>13} |
""")
def show(self, sparse=False):
results = self.run_python()
self.score(results)
return draw_results(results, self.name,
self.threadsperblock.x, self.threadsperblock.y, sparse)
def check(self):
x = self.run_cuda()
y = self.spec(*self.inputs)
try:
np.testing.assert_allclose(x, y)
print("Passed Tests!")
from IPython.display import HTML
pups = [
"2m78jPG",
"pn1e9TO",
"MQCIwzT",
"udLK6FS",
"ZNem5o3",
"DS2IZ6K",
"aydRUz8",
"MVUdQYK",
"kLvno0p",
"wScLiVz",
"Z0TII8i",
"F1SChho",
"9hRi2jN",
"lvzRF3W",
"fqHxOGI",
"1xeUYme",
"6tVqKyM",
"CCxZ6Wr",
"lMW0OPQ",
"wHVpHVG",
"Wj2PGRl",
"HlaTE8H",
"k5jALH0",
"3V37Hqr",
"Eq2uMTA",
"Vy9JShx",
"g9I2ZmK",
"Nu4RH7f",
"sWp0Dqd",
"bRKfspn",
"qawCMl5",
"2F6j2B4",
"fiJxCVA",
"pCAIlxD",
"zJx2skh",
"2Gdl1u7",
"aJJAY4c",
"ros6RLC",
"DKLBJh7",
"eyxH0Wc",
"rJEkEw4"]
return HTML("""
<video alt="test" controls autoplay=1>
<source src="https://openpuppies.com/mp4/%s.mp4" type="video/mp4">
</video>
"""%(random.sample(pups, 1)[0]))
except AssertionError:
print("Failed Tests.")
print("Yours:", x)
print("Spec :", y)