-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
196 lines (163 loc) · 5.77 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import cv2
import numpy as np
import dlib
import os
import win32api
import win32con
import time
from pynput import keyboard
pressed = set()
def on_press(key):
global pressed
pressed.add(key)
def on_release(key):
global pressed
pressed.remove(key)
print("wait keycode")
# Collect events until released
def listen():
with keyboard.Listener(
on_press=on_press,
on_release=on_release) as listener:
listener.join()
import _thread
try:
_thread.start_new_thread(listen, ())
except BaseException:
print("ERROR TO START THREAD")
print("start")
net = cv2.dnn.readNetFromCaffe("deploy.prototxt", "res10_300x300_ssd_iter_140000_fp16.caffemodel")
# face_detector = dlib.get_frontal_face_detector()
face_predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
face_rec_model = dlib.face_recognition_model_v1("dlib_face_recognition_resnet_model_v1.dat")
class HideState:
def __init__(self):
self.is_hide = False
self.last_operation = 0
self.hide_cnt = 0
self.r = .5
self.v = 10
def hide(self):
if len(pressed):
return
self.hide_cnt += 1;
if self.hide_cnt < self.v:
return
else:
self.hide_cnt = 0
if time.time() - self.last_operation < self.r:
return
if not self.is_hide:
self.is_hide = True
self.last_operation = time.time()
win32api.keybd_event(162, 0, 0, 0)
win32api.keybd_event(91, 0, 0, 0)
win32api.keybd_event(39, 0, 0, 0)
win32api.keybd_event(39, 0, win32con.KEYEVENTF_KEYUP, 0)
win32api.keybd_event(91, 0, win32con.KEYEVENTF_KEYUP, 0)
win32api.keybd_event(162, 0, win32con.KEYEVENTF_KEYUP, 0)
def show(self):
if len(pressed):
return
if time.time() - self.last_operation < self.r:
return
if self.is_hide:
self.is_hide = False
self.last_operation = time.time()
win32api.keybd_event(162, 0, 0, 0)
win32api.keybd_event(91, 0, 0, 0)
win32api.keybd_event(37, 0, 0, 0)
win32api.keybd_event(37, 0, win32con.KEYEVENTF_KEYUP, 0)
win32api.keybd_event(91, 0, win32con.KEYEVENTF_KEYUP, 0)
win32api.keybd_event(162, 0, win32con.KEYEVENTF_KEYUP, 0)
def load_faces():
dir = os.listdir('faces')
known_faces = {}
for file in dir:
path = "faces/" + file
name = file.split(".")[0].split("_")[1]
face = np.load(path)
known_faces[name] = face
return known_faces
known_faces = load_faces()
threshold = .2
def compare_face(face1, face2):
diff = 0
for i in range(len(face1)):
diff += (face1[i] - face2[i]) ** 2
# diff = np.sqrt(diff)
# print("diff", diff)
if diff < threshold:
return True
else:
return False
def rec_face(face):
global known_faces
for name in known_faces:
target_face = known_faces[name]
if compare_face(face, target_face):
return name
return False
hide_ctrl = HideState()
capture = cv2.VideoCapture(0)
while True:
_, frame = capture.read()
b, g, r = cv2.split(frame)
img2 = cv2.merge([r, g, b])
h = len(frame)
w = len(frame[0])
blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300), [104., 117., 123.], False, False)
net.setInput(blob)
detections = net.forward()
detected_faces = 0
has_unknown = False
for i in range(0, detections.shape[2]):
# 获取当前检测结果的置信度
confidence = detections[0, 0, i, 2]
# 如果置信大于最小置信度,则将其可视化
if confidence > 0.7:
detected_faces += 1
# 获取当前检测结果的坐标
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
# print(box)
(startX, startY, endX, endY) = box.astype('int')
# 绘制检测结果和置信度
text = "{:.3f}%".format(confidence * 100)
y = startY - 10 if startY - 10 > 10 else startY + 10
# face = frame[startY:endY, startX:endX]
face = dlib.rectangle(startX, startY, endX, endY)
shape = face_predictor(img2, face)
# print("shape", shape)
# for _, pt in enumerate(shape.parts()):
# pt_pos = (pt.x, pt.y)
# cv2.circle(frame, pt_pos, 2, (255, 0, 0), 1)
# cv2.rectangle(frame, (startX, startY), (endX, endY), (255, 0, 0), 3)
# cv2.putText(frame, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
face_descriptor = face_rec_model.compute_face_descriptor(img2, shape)
face_descriptor = np.array(face_descriptor)
name = rec_face(face_descriptor)
cv2.putText(frame, text + " " + (name if name else "???"), (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.9,
(0, 0, 255), 2)
if not name:
hide_ctrl.hide()
has_unknown = True
if not has_unknown:
hide_ctrl.show()
# dets = face_detector(frame, 1)
# for index, face in enumerate(dets):
# print('face {}; left {}; top {}; right {}; bottom {}'.format(index, face.left(), face.top(), face.right(),
# face.bottom()))
# print()
# # 在图片中标注人脸,并显示
# left = face.left()
# top = face.top()
# right = face.right()
# bottom = face.bottom()
# cv2.rectangle(frame, (left, top), (right, bottom), (0, 255, 0), 3)
# 显示图片
cv2.imshow('img', frame)
key = cv2.waitKey(1)
if key == 27: # 判断是哪一个键按下
break
cv2.destroyAllWindows()
exit(0)