-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcomputation.py
104 lines (89 loc) · 3.35 KB
/
computation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from pandas_datareader import data as web
from datetime import datetime
from scipy import stats
from dateutil.relativedelta import relativedelta
today = datetime.today().strftime('%Y-%m-%d')
def changeCol(df, col, name):
df = df.rename(columns = {col : name})
return df
def norm_dist(symbol,df):
'''
This function takes:
symbol - The symbol of the underlying stock
df- pandas dataframe with just the column of close price with title Adj Close
Returns a dataframe with the normally distributed values of the stock data.
'''
df =changeCol(df, "Adj Close","Noarmallized {}".format(symbol))
#Normalizing the Ditribution
df =(df)/df.iloc[0]-1
return df
def daily_return(symbol,df):
'''
This function takes:
symbol - The symbol of the underlying stock
df- pandas dataframe with just the column of close price with title Adj Close
Returns a dataframe with the daily of the stock data.
'''
df_return = df.pct_change()
df_return.iloc[0] = 0
df_return = changeCol(df_return,"Adj Close", "Daily Returns of {}".format(symbol))
return df_return
def cumulative_return(symbol,df):
'''
This function takes:
symbol - The symbol of the underlying stock
df- pandas dataframe with just the column of close price with title Adj Close
Returns a dataframe with the cumulative returns of the stock data.
'''
df_cr = df
df_cr= changeCol(df_cr,'Adj Close',"Cumulative Returns of {}".format(symbol))
df_cr[1:] = (df[1:]/df.iloc[0])-1
df_cr.iloc[0] = 0
return df_cr
def bollinger_bands(symbol,df, rolling_range = 20):
'''
This function takes:
symbol - The symbol of the underlying stock
df- pandas dataframe with just the column of close price with title Adj Close
rolling_range - The amount of days to calculate the rolling mean
Returns a dataframe with the the SMA, Upper Band and Lower Band for the stock data.
'''
#Moving stats
rm = pd.DataFrame(df['Adj Close'].rolling(rolling_range).mean())
rstd = pd.DataFrame(df.rolling(rolling_range).std())
ub = pd.DataFrame(rm+ 2*rstd)
lb = pd.DataFrame(rm- 2*rstd)
rm = changeCol(rm,'Adj Close',"Rolling Mean")
rstd = changeCol(rstd,'Adj Close',"Rolling Deviation")
ub = changeCol(ub,'Adj Close',"Upper Bound")
lb = changeCol(lb,'Adj Close',"Lower Bound")
df_bb = df.join([rm,rstd,ub,lb])
return df_bb
def beta(symbol):
'''
This function takes:
symbol - Name of stock ticker
returns - Beta value of the stock
'''
end = datetime.now()
start = end - relativedelta(years=5)
start = start.strftime('%m-%d-%Y')
ls = start.split('-')
ls[1] = "01"
start = '-'.join(ls)
df = pd.DataFrame(web.get_data_yahoo(symbol, start = start, end = end,interval='m')['Adj Close'])
df = changeCol(df, "Adj Close", "Price")
df_spy = pd.DataFrame(web.get_data_yahoo('SPY', start = start, end = end,interval='m')['Adj Close'])
df_spy = changeCol(df_spy, "Adj Close", "S&P")
df_spy= df_spy.pct_change()
df = df.pct_change()
df = df.join(df_spy)
df = df.dropna()
X = df['S&P']
Y = df['Price']
slope, intercept, r_value, p_value, std_err = stats.linregress(X, Y)
print("5Y monthly Beta for {}:".format(symbol), round(slope,3))
return slope