-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer_all.py
executable file
·143 lines (106 loc) · 4.87 KB
/
infer_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
import argparse
from glob import glob
parser = argparse.ArgumentParser(description='Draw inference from Results', formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("--dataset", help = "MNIST/CIFAR 10/CIFAR-nonlp", type = str, default = "MNIST") # MNIST, CIFAR10
parser.add_argument("--num_samples", help = "Number of Test Examples", type = int, default = 1000)
parser.add_argument("--path", help = "Override model (custom path)", type = str, default = None)
parser.add_argument("--pool", help = "Override model (custom path)", type = str, default = 'max')
parser.add_argument("--result", help = "Just values", type = int, default = 0)
params = parser.parse_args()
num_samples = params.num_samples
dataset = params.dataset
path = params.path
folder = path
pool = params.pool
result_mode = params.result
attacks_list_1 = [f'{pool}_l1',f'{pool}_l1fab-t']
# attacks_list_inf = [f'{pool}_FGSM', f'{pool}_linf', f'{pool}_PGD',f'{pool}_IGM',f'{pool}_linfapgd-ce', f'{pool}_linfapgd-dlr', f'{pool}_linfapgd-t',f'{pool}_linffab', f'{pool}_linffab-t', f'{pool}_linfsquare']
attacks_list_inf = [f'{pool}_linf',f'{pool}_linfapgd-ce', f'{pool}_linfapgd-dlr', f'{pool}_linfapgd-t', f'{pool}_linffab-t', f'{pool}_linfsquare']
# attacks_list_2 = [f'{pool}_l2',f'{pool}_IGD',f'{pool}_AGNA',f'{pool}_DeepFool', f'{pool}_DDN',f'{pool}_CWL2',f'{pool}_l2apgd-ce', f'{pool}_l2apgd-dlr', f'{pool}_l2apgd-t',f'{pool}_l2fab', f'{pool}_l2fab-t', f'{pool}_l2square']
attacks_list_2 = [f'{pool}_l2',f'{pool}_ddn',f'{pool}_l2apgd-ce', f'{pool}_l2apgd-dlr', f'{pool}_l2apgd-t', f'{pool}_l2fab-t', f'{pool}_l2square']
out = open("extras/" + dataset +"_RES/" + folder.split("/")[-1] + "test_logs.txt", "w")
def myprint(s):
print(s)
out.write(str(s) + "\n")
files = glob(folder + "/*.*")
not_found = []
attacks_npy_1 = []
attacks_npy_2 = []
attacks_npy_inf = []
l1_attacks = np.ones((num_samples, len(attacks_list_1)))
l2_attacks = np.ones((num_samples, len(attacks_list_2)))
linf_attacks = np.ones((num_samples, len(attacks_list_inf)))
all_attacks = np.ones((num_samples, 3))
pall_attacks = np.ones((num_samples, 3))
if dataset != "CIFAR-nonlp":
for a in attacks_list_1:
try:
y = np.load(folder + "/" + a+ ".npy")
attacks_npy_1.append(y.reshape(1000))
except:
y = np.load(folder + "/" + attacks_list_1[-1] + ".npy")
attacks_npy_1.append(y.reshape(1000))
not_found.append(a)
else:
stadv= np.load(f"{folder}/{pool}_stadv.npy")
recolor= np.load(f"{folder}/{pool}_recolor.npy")
for a in attacks_list_2:
try:
y = np.load(folder + "/" + a+ ".npy")
attacks_npy_2.append(y.reshape(1000))
except:
y = np.load(folder + "/" + attacks_list_2[0] + ".npy")
attacks_npy_2.append(y.reshape(1000))
not_found.append(a)
for a in attacks_list_inf:
try:
y = np.load(folder + "/" + a+ ".npy")
attacks_npy_inf.append(y.reshape(1000))
except:
y = np.load(folder + "/" + attacks_list_inf[0] + ".npy")
attacks_npy_inf.append(y.reshape(1000))
not_found.append(a)
if dataset == "MNIST": e_l1 = 10; e_l2 = 2.0; e_linf = 0.3
else: e_l1 = 10; e_l2 = 0.5; e_linf = 0.03
linf_dict = {'attacks_npy': attacks_npy_inf, 'attacks_list': attacks_list_inf, 'e': e_linf}
l1_dict = {'attacks_npy': attacks_npy_1, 'attacks_list': attacks_list_1, 'e': e_l1}
l2_dict = {'attacks_npy': attacks_npy_2, 'attacks_list': attacks_list_2, 'e': e_l2}
def print_func(name, acc):
if not result_mode:
myprint(name + " : " + str(acc))
else:
print(f"{acc:.1f}\%")
def get_acc(pos, l_dict):
a = l_dict['attacks_npy'][pos]
name = l_dict['attacks_list'][pos]
accuracy = (1-(a.sum()/num_samples)) *100
print_func(name,accuracy)
return a
for i in range(len(attacks_list_inf)):
linf_attacks[:,i] = get_acc(i,linf_dict)
linf_min = np.sum(linf_attacks, axis = 1).astype("bool")
accuracy = (1-(linf_min.sum()/num_samples)) *100
print_func("linf", accuracy)
for i in range(len(attacks_list_2)):
l2_attacks[:,i] = get_acc(i,l2_dict)
l2_min = np.sum(l2_attacks, axis = 1).astype("bool")
accuracy = (1-(l2_min.sum()/num_samples)) *100
print_func("l2", accuracy)
if dataset != "CIFAR-nonlp":
for i in range(len(attacks_list_1)):
l1_attacks[:,i] = get_acc(i,l1_dict)
l1_min = np.sum(l1_attacks, axis = 1).astype("bool")
accuracy = (1-(l1_min.sum()/num_samples)) *100
print_func("l1", accuracy)
else:
print_func("stadv", (1-(stadv.sum()/num_samples)) *100)
print_func("recolor", (1-(recolor.sum()/num_samples)) *100)
nonlp_min = (recolor+stadv)[:,0]
all_attacks[:,0] = l1_min if dataset != "CIFAR-nonlp" else nonlp_min
all_attacks[:,1] = l2_min
all_attacks[:,2] = linf_min
all_min = np.sum(all_attacks, axis = 1).astype("bool")
accuracy = (1-(all_min.sum()/num_samples)) *100
print_func("All", accuracy)
print(not_found)