-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_saved_models_even_better.py
739 lines (522 loc) · 24.7 KB
/
evaluate_saved_models_even_better.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 12 15:52:35 2022
@author: surajb
"""
#%% Import libraries
import matplotlib.pyplot as plt
import numpy as np
import glob
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from random import randint
import os
import argparse
import cv2
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import yaml
from data_load import create_datasets,RescaleCustom, RandomCropCustom, NormalizeNew, ToTensorCustom, RandomRotateCustom, RandomHorizontalFlip,RandomVerticalFlip,NewColorJitter
from torchvision import transforms, utils
from data_load import MarineBenthicDataset
from sklearn.preprocessing import StandardScaler,MinMaxScaler
from sklearn.decomposition import PCA
from sklearn import manifold
from numpy.random import RandomState
import seaborn as sns
#%% Define helper functions
# Function to load yaml configuration file
def load_config(config_name):
with open(os.path.join(CONFIG_PATH, config_name)) as file:
config = yaml.safe_load(file)
return config
def vae_loss(recon_x, x, mu, logvar,variational_beta):
# Mean squared error loss - by default, the loss is averaged over number of elements,
# alternatives for reduction are 'none' or 'sum'
recon_loss = torch.nn.MSELoss(reduction='sum') (recon_x,x)
#recon_loss = 0.4*torch.nn.L1Loss(reduction='mean') (recon_x,x)+(1-ssim(recon_x,x))
kldivergence = torch.mean(-0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp(),dim=1),dim=0) # mostly consistent with https://arxiv.org/pdf/1907.08956v1.pdf
return recon_loss + variational_beta * kldivergence, recon_loss, kldivergence
# Function for evaluating reconstruction loss and extracting latent space from a dataset
def evaluate_loss_latent(dataset,config):
# function for evaluating trained model loss and latent space
#inputs
# - dataset object
# - config dictionary
length_dataset = len(dataset)
latent_size = int(config['model_params']['latent_dim'])
#initialize array for storing loss
total_loss_over_time = np.zeros(length_dataset)
recon_loss_over_time = np.zeros(length_dataset)
kl_loss_over_time = np.zeros(length_dataset)
latent_mu = np.zeros((length_dataset,latent_size))
latent_logvar = np.zeros((length_dataset,latent_size))
model.eval()
for idx, data in enumerate(dataset):
# get the input images in each batch and their corresponding names
images = data['image']
name = data['name']
#images = images.to(device)
images = torch.unsqueeze(images,0)
# forward pass the images through the network
image_recon,latent_sample_z,mu_z,log_var_z = model(images)
# Calculate loss
total_loss,recon_loss,kl_loss = vae_loss(image_recon, images, mu_z,log_var_z,variational_beta)
total_loss_over_time[idx] = total_loss.item()
recon_loss_over_time[idx]=recon_loss.item()
kl_loss_over_time[idx] = kl_loss.item()
latent_logvar[idx,:] = log_var_z.detach().cpu().numpy()
latent_mu[idx,:] = mu_z.detach().cpu().numpy()
return latent_mu,recon_loss_over_time
def reduce_dimensions(features,num_components=2):
pca = PCA(n_components=num_components,whiten=False)
features = StandardScaler().fit_transform(features)
features = MinMaxScaler().fit_transform(features)
rng = RandomState(0)
t_sne = manifold.TSNE(
n_components=num_components,learning_rate=200,verbose=1,
perplexity=40,
n_iter=2000,
init="pca",early_exaggeration=12.0,
random_state=24,metric="cosine")
reduced_features = t_sne.fit_transform(features)
return reduced_features
def load_dataset_dataloader(config):
train_data_path = config['data_params']['train_data_path']
test_data_path = config['data_params']['test_data_path']
val_data_path = config['data_params']['val_data_path']
target_data_path = config['data_params']['target_data_path']
# Empty list to store paths to images
train_image_paths = []
test_image_paths = []
val_image_paths = []
target_image_paths=[]
# Grab paths to images in train folder
for data_path in glob.glob(train_data_path + '/*'):
train_image_paths.append(data_path)
train_image_paths = list(train_image_paths)
# Grab paths to images in test folder
for data_path in glob.glob(test_data_path + '/*'):
test_image_paths.append(data_path)
test_image_paths = list(test_image_paths)
# Grab paths to images in validation folder
for data_path in glob.glob(val_data_path + '/*'):
val_image_paths.append(data_path)
val_image_paths = list(val_image_paths)
for data_path in glob.glob(target_data_path + '/*'):
target_image_paths.append(data_path)
target_image_paths = list(target_image_paths)
transform = transforms.Compose([RescaleCustom(64), ToTensorCustom()])
# create datasets for training, validation and testing.
test_dataset = MarineBenthicDataset(test_image_paths,transform=transform)
# create new training dataset for each epoch
train_dataset = MarineBenthicDataset(train_image_paths,transform=transform)
target_dataset = MarineBenthicDataset(target_image_paths,transform=transform)
# load training data in batches
train_loader = DataLoader(train_dataset,
batch_size=32,
shuffle=True,
num_workers=0)
# load test data in batches
test_loader = DataLoader(test_dataset,
batch_size=len(test_dataset),
shuffle=True,
num_workers=0)
target_loader = DataLoader(target_dataset,
batch_size=len(target_dataset),
shuffle=True,
num_workers=0)
return train_dataset,test_dataset,target_dataset
#%% Main routine
# Create the parser
my_parser = argparse.ArgumentParser(description='train and test a model using a specified config file')
# Add the arguments
my_parser.add_argument('Experimentname',
metavar='experimentname',
type=int,
help='the name of the experiment to evaluate')
# Execute the parse_args() method
args = my_parser.parse_args()
experiment_name = args.Experimentname
CONFIG_PATH = str(experiment_name) + '/'
config_file_name = str(experiment_name) + '.yaml'
config = load_config(config_file_name)
# define model
latent_dims = config['model_params']['latent_dim']
variational_beta = config['model_params']['kld_weight']
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3,stride=2,padding=1) # input_dim = [3,224,280];out: [96,54,68]
self.bn1 = nn.BatchNorm2d(32)
self.drop1 = nn.Dropout(p=0.05)
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3,stride=2,padding=1) # input_dim = [3,224,280];out: [96,54,68]
self.bn2 = nn.BatchNorm2d(64)
self.drop2 = nn.Dropout(p=0.05)
self.conv3 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3,stride=2,padding=1) # input_dim = [3,224,280];out: [96,54,68]
self.bn3 = nn.BatchNorm2d(128)
self.drop3 = nn.Dropout(p=0.1)
self.conv4 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3,stride=2,padding=1) # input_dim = [3,224,280];out: [96,54,68]
self.bn4 = nn.BatchNorm2d(256)
self.drop4 = nn.Dropout(p=0.1)
self.conv5 = nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3,stride=2,padding=1) # input_dim = [3,224,280];out: [96,54,68]
self.bn5 = nn.BatchNorm2d(512)
self.drop5 = nn.Dropout(p=0.5)
#Original (when input image size was 64,64)
# self.fc_mu = nn.Linear(in_features=512*4, out_features=latent_dims)
# self.fc_logvar = nn.Linear(in_features=512*4, out_features=latent_dims)
self.fc_mu = nn.Linear(in_features=512*6, out_features=latent_dims) # image after all convolutions is 2,3
self.fc_logvar = nn.Linear(in_features=512*6, out_features=latent_dims)
def forward(self, x):
x = F.leaky_relu(self.bn1(self.conv1(x)))
# x=self.drop1(x)
x = F.leaky_relu(self.bn2(self.conv2(x)))
# x=self.drop2(x)
x = F.leaky_relu(self.bn3(self.conv3(x)))
#x=self.drop3(x)
x = F.leaky_relu(self.bn4(self.conv4(x)))
# x=self.drop4(x)
x = F.leaky_relu(self.bn5(self.conv5(x)))
#x=self.drop5(x)
x = x.view(x.size(0), -1)
x_mu = self.fc_mu(x)
x_logvar = self.fc_logvar(x)
return x_mu, x_logvar
class Decoder(nn.Module):
def __init__(self):
super(Decoder, self).__init__()
self.fc6 = nn.Linear(in_features=latent_dims, out_features=512*6)
self.unflatten = nn.Unflatten(dim=1, unflattened_size=(512, 2, 3))
self.conv_transpose7 = nn.ConvTranspose2d(in_channels=512, out_channels=256, kernel_size=3, stride=2,padding=1,output_padding=(1,0))
self.bn7 = nn.BatchNorm2d(256)
self.conv_transpose8 = nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=3, stride=2,padding=1,output_padding=1)
self.bn8 = nn.BatchNorm2d(128)
self.conv_transpose9 = nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=3, stride=2,padding=1,output_padding=1)
self.bn9 = nn.BatchNorm2d(64)
self.conv_transpose10 = nn.ConvTranspose2d(in_channels=64, out_channels=32, kernel_size=3, stride=2,padding=1,output_padding=1)
self.bn10 = nn.BatchNorm2d(32)
self.conv_transpose11 = nn.ConvTranspose2d(in_channels=32, out_channels=32, kernel_size=3, stride=2,padding=1,output_padding=1)
self.bn11 = nn.BatchNorm2d(32)
self.conv12 = nn.Conv2d(in_channels=32, out_channels=3, kernel_size=3,padding=1)
def forward(self, x):
x = F.leaky_relu(self.fc6(x))
x = self.unflatten(x)
x = F.leaky_relu(self.bn7(self.conv_transpose7(x)))
x = F.leaky_relu(self.bn8(self.conv_transpose8(x)))
x = F.leaky_relu(self.bn9(self.conv_transpose9(x)))
x = F.leaky_relu(self.bn10(self.conv_transpose10(x)))
x = F.leaky_relu(self.bn11(self.conv_transpose11(x)))
x = F.tanh(self.conv12(x))
return x
class VariationalAutoencoder(nn.Module):
def __init__(self):
super(VariationalAutoencoder, self).__init__()
self.encoder = Encoder()
self.decoder = Decoder()
def forward(self, x):
latent_mu, latent_logvar = self.encoder(x)
latent = self.latent_sample(latent_mu, latent_logvar) #sample the latent vector z
x_recon = self.decoder(latent_mu) # pass the sampled latent vector z to the decoder. changed to latent_mu for vanilla autoencoder i.e. no sampling
# return x_recon, latent_mu, latent_logvar #was this previously
return x_recon,latent,latent_mu,latent_logvar #also return latent sample
def latent_sample(self, mu, logvar):
if self.training:
# the reparameterization trick - compute the latent vector z from the mean and sigma
std = logvar.mul(0.5).exp_()
eps = torch.empty_like(std).normal_()
return eps.mul(std).add_(mu)
else:
return mu
#%% Load saved model
model = VariationalAutoencoder()
list_of_files = glob.glob(CONFIG_PATH +'saved_models/*') # * means all if need specific format then *.csv
latest_file = max(list_of_files, key=os.path.getmtime)
model_file_name = latest_file
model.load_state_dict(torch.load(model_file_name,map_location=('cpu'))) # original mapped location is cpu
#%% Load datasets
train_dataset,test_dataset,target_dataset = load_dataset_dataloader(config)
#%% Evaluate loss on different datasets and extract latent spaces
test_latent_features,test_recon_loss = evaluate_loss_latent(test_dataset, config)
target_latent_features,target_recon_loss = evaluate_loss_latent(target_dataset, config)
plt.figure()
plt.title('reconstruction loss')
plt.plot(test_recon_loss,label='test')
plt.plot(target_recon_loss,label='target ')
plt.legend()
plt.grid()
plt.show(block=False)
#%%Find best fit distributions for normal (test data) and anomalous (target data)
from fitter import Fitter, get_common_distributions, get_distributions
# f = Fitter(test_recon_loss,
# distributions=['gamma',
# 'lognorm',
# "beta",
# "burr",
# "norm"])
f = Fitter(test_recon_loss,distributions=['norm'])
f.fit()
f.summary()
f.get_best(method = 'sumsquare_error')
#%% Combine latent spaces of test and target datasets
combined_latent_features = np.concatenate((test_latent_features,target_latent_features),axis=0)
#%% Apply dimensionality redcution on dataset
reduced_latent_features = reduce_dimensions(combined_latent_features,num_components=2)
reduced_latent_features_normalized = MinMaxScaler().fit_transform(reduced_latent_features)
combined_recon = np.concatenate((test_recon_loss,target_recon_loss),axis=0)
combined_recon_normalized = MinMaxScaler().fit_transform(combined_recon.reshape(-1,1))
reduced_latent_features_normalized = np.concatenate((reduced_latent_features_normalized,combined_recon_normalized),axis=1)
# convert reduced features to dataframe
feature_dataframe = pd.DataFrame(reduced_latent_features_normalized)
feature_dataframe["category"] = pd.NaT
feature_dataframe.loc[0:len(test_dataset)-1,['category']] = 'normal'
feature_dataframe.loc[len(test_dataset):,['category']] = 'anomaly'
#%%
# plt.figure(figsize=(20,20))
# g = sns.PairGrid(feature_dataframe,hue='category')
# g.map(sns.scatterplot,alpha =0.2)
#%% plot latent space in 3D
fig = plt.figure(figsize=(15,15))
ax = fig.add_subplot(projection='3d')
ax.scatter(reduced_latent_features_normalized[0:len(test_dataset)-1,0],reduced_latent_features_normalized[0:len(test_dataset)-1,1] , reduced_latent_features_normalized[0:len(test_dataset)-1,2])
ax.scatter(reduced_latent_features_normalized[len(test_dataset):,0],reduced_latent_features_normalized[len(test_dataset):,1] , reduced_latent_features_normalized[len(test_dataset):,2],c='red')
ax.view_init(elev=90, azim=270)
#%% Implement Local Outlier Factor (LOF)
# from sklearn.neighbors import LocalOutlierFactor
# X_inliers = reduced_latent_features_normalized[0:len(test_dataset)-1,:]
# X_outliers = reduced_latent_features_normalized[len(test_dataset):,:]
# X = reduced_latent_features_normalized
# n_outliers = len(X_outliers)
# ground_truth = np.ones(len(reduced_latent_features_normalized), dtype=int)
# ground_truth[-n_outliers:] = -1
# # fit the model for outlier detection (default)
# clf = LocalOutlierFactor(n_neighbors=4,contamination=0.1,metric="manhattan")
# # use fit_predict to compute the predicted labels of the training samples
# # (when LOF is used for outlier detection, the estimator has no predict,
# # decision_function and score_samples methods).
# y_pred = clf.fit_predict(MinMaxScaler().fit_transform(reduced_latent_features_normalized))
# n_errors = (y_pred != ground_truth).sum()
# X_scores = clf.negative_outlier_factor_
# plt.figure(figsize=(20,20))
# plt.title("Local Outlier Factor (LOF)")
# plt.scatter(X[:, 0], X[:, 1], color="k", s=3.0, label="Data points")
# plt.scatter(X_outliers[:, 0], X_outliers[:, 1],marker="x", s=20,color="m", label="true anomalies")
# # plot circles with radius proportional to the outlier scores
# radius = (X_scores.max() - X_scores) / (X_scores.max() - X_scores.min())
# plt.scatter(
# X[:, 0],
# X[:, 1],
# s=400 * radius,
# edgecolors="r",
# facecolors="none",
# label="Outlier scores",alpha=0.3,
# )
# plt.axis("tight")
# # plt.xlim((-5, 5))
# # plt.ylim((-5, 5))
# plt.xlabel("prediction errors: %d" % (n_errors))
# legend = plt.legend(loc="upper left")
# legend.legendHandles[0]._sizes = [10]
# legend.legendHandles[1]._sizes = [20]
# plt.show()
# from sklearn.metrics import recall_score
# from sklearn.metrics import precision_score
# precision = precision_score(ground_truth, y_pred)
# recall = recall_score(ground_truth,y_pred)
# print('precision score: ',precision)
# print('recall score: ',recall)
#%% Use outlier detection methods
from sklearn.ensemble import IsolationForest
X_inliers = reduced_latent_features_normalized[0:len(test_dataset)-1,:]
X_outliers = reduced_latent_features_normalized[len(test_dataset):,:]
X = reduced_latent_features_normalized
n_outliers = len(X_outliers)
ground_truth = np.ones(len(reduced_latent_features_normalized), dtype=int)
ground_truth[-n_outliers:] = -1
# fit the model for outlier detection (default)
clf = IsolationForest(n_estimators=200)
# use fit_predict to compute the predicted labels of the training samples
# (when LOF is used for outlier detection, the estimator has no predict,
# decision_function and score_samples methods).
y_pred = clf.fit_predict(MinMaxScaler().fit_transform(X))
n_errors = (y_pred != ground_truth).sum()
X_scores = clf.decision_function(X)
plt.figure(figsize=(20,20))
plt.title("Local Outlier Factor (LOF)")
plt.scatter(X[:, 0], X[:, 1], color="k", s=3.0, label="Data points")
plt.scatter(X_outliers[:, 0], X_outliers[:, 1],marker="x", s=20,color="m", label="true anomalies")
# plot circles with radius proportional to the outlier scores
radius = (X_scores.max() - X_scores) / (X_scores.max() - X_scores.min())
plt.scatter(
X[:, 0],
X[:, 1],
s=400 * radius,
edgecolors="r",
facecolors="none",
label="Outlier scores",alpha=0.3,
)
plt.axis("tight")
# plt.xlim((-5, 5))
# plt.ylim((-5, 5))
plt.xlabel("prediction errors: %d" % (n_errors))
legend = plt.legend(loc="upper left")
legend.legendHandles[0]._sizes = [10]
legend.legendHandles[1]._sizes = [20]
plt.show()
from sklearn.metrics import recall_score
from sklearn.metrics import precision_score,confusion_matrix
ground_truth_copy = np.copy(ground_truth)
y_pred_copy = np.copy(y_pred)
ground_truth_copy[ground_truth_copy==1]=0
ground_truth_copy[ground_truth_copy==-1]=1
y_pred_copy[y_pred_copy==1]=0
y_pred_copy[y_pred_copy==-1]=1
conf_matrix = confusion_matrix(ground_truth_copy,y_pred_copy)
tn, fp, fn, tp = conf_matrix.ravel()
precision = precision_score(ground_truth_copy, y_pred_copy,average=None)
recall = recall_score(ground_truth_copy,y_pred_copy,average=None)
print('true positives: ',tp)
print('false positives: ',fp)
print('true negatives: ',tn)
print('false negatives: ',fn)
print('precision score: ',precision)
print('recall score: ',recall)
print(conf_matrix)
#%%
import seaborn as sns
from scipy import stats
from sklearn.cluster import DBSCAN
from sklearn import metrics
# =============================================================================
# plt.figure()
# somefig, someax = plt.subplots(figsize=(6, 6))
# sns.scatterplot(
# data=pca_components,
# x=pca_components[:,0],
# y=pca_components[:,1],
# color="g",
# ax=someax,alpha=0.4
# )
#
# sns.scatterplot(
# data=pca_components,
# x=target_pca_components[:,0],
# y=target_pca_components[:,1],
# color="r",
# ax=someax,alpha=0.4
# )
# sns.kdeplot(
# data=pca_components,
# x=pca_components[:,0],
# y=pca_components[:,1],
# levels=50,
# alpha=0.4,
# ax=someax,
# )
# =============================================================================
# %%
#pca_combined = np.concatenate((pca_components,target_pca_components))
db = DBSCAN(eps=0.03, min_samples=6).fit(reduced_latent_features_normalized[:,:2])
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_
cluster_anomaly_predictions = np.zeros(len(labels))
cluster_anomaly_predictions[labels==-1] = 1
# Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
n_noise_ = list(labels).count(-1)
print("Estimated number of clusters: %d" % n_clusters_)
print("Estimated number of noise points: %d" % n_noise_)
# # =============================================================================
# print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
# print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
# print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
# print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels))
# print(
# "Adjusted Mutual Information: %0.3f"
# % metrics.adjusted_mutual_info_score(labels_true, labels)
# )
# print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels))
# # =============================================================================
plt.figure()
# Black removed and is used for noise instead.
unique_labels = set(labels)
colors = [plt.cm.Spectral(each) for each in np.linspace(0, 1, len(unique_labels))]
for k, col in zip(unique_labels, colors):
if k == -1:
# Black used for noise.
col = [0, 0, 0, 1]
class_member_mask = labels == k
xy = reduced_latent_features_normalized[class_member_mask & core_samples_mask]
plt.plot(
xy[:, 0],
xy[:, 1],
"o",
markerfacecolor=tuple(col),
markeredgecolor="k",
markersize=14,
)
xy = reduced_latent_features_normalized[class_member_mask & ~core_samples_mask]
plt.plot(
xy[:, 0],
xy[:, 1],
"o",
markerfacecolor=tuple(col),
markeredgecolor="k",
markersize=6,
)
plt.scatter(reduced_latent_features_normalized[len(test_dataset):,0],reduced_latent_features_normalized[len(test_dataset):,1] ,s=165,c='red')
plt.title("Estimated number of clusters: %d" % n_clusters_)
plt.show()
cluster_conf_matrix = confusion_matrix(ground_truth_copy,cluster_anomaly_predictions)
tn_cluster, fp_cluster, fn_cluster, tp_cluster = cluster_conf_matrix.ravel()
precision_cluster = precision_score(ground_truth_copy,cluster_anomaly_predictions,average=None)
recall_cluster = recall_score(ground_truth_copy,cluster_anomaly_predictions,average=None)
print('cluster true positives: ',tp_cluster)
print('cluster false positives: ',fp_cluster)
print('cluster true negatives: ',tn_cluster)
print('cluster false negatives: ',fn_cluster)
print('cluster precision score: ',precision_cluster)
print('cluster recall score: ',recall_cluster)
print(cluster_conf_matrix)
#%% obtain optimal epsilon value
from sklearn.neighbors import NearestNeighbors
from matplotlib import pyplot as plt
neighbors = NearestNeighbors(n_neighbors=20)
neighbors_fit = neighbors.fit(reduced_latent_features_normalized[:,:2])
distances, indices = neighbors_fit.kneighbors(reduced_latent_features_normalized[:,:2])
distances = np.sort(distances, axis=0)
distances = distances[:,1]
plt.plot(distances)
#%% select threshold for reconstruction error
fitter = Fitter(combined_recon_normalized,distributions=['norm'])
fitter.fit()
fitter.summary()
recon_stats = fitter.get_best(method = 'sumsquare_error')
recon_avg = recon_stats['norm']['loc']
recon_std = recon_stats['norm']['scale']
num_std_dev = 0.6
threshold = recon_avg + num_std_dev*recon_std
recon_anomaly_mask = (combined_recon_normalized>=threshold)
cluster_anomaly_mask = cluster_anomaly_predictions.astype(dtype=(bool))
joint_prediction_mask = (cluster_anomaly_mask.reshape(-1,1) & recon_anomaly_mask)
num_remaining = sum(joint_prediction_mask)
print('number of remaining points: ',num_remaining)
remaining_data = reduced_latent_features_normalized[:,:2][joint_prediction_mask]
maskArr1 = np.ma.masked_array(reduced_latent_features_normalized[:,0], mask =joint_prediction_mask)
maskArr2 = np.ma.masked_array(reduced_latent_features_normalized[:,1], mask =joint_prediction_mask)
joint_predictions = np.ma.concatenate([np.ma.expand_dims(maskArr1,axis=1),np.ma.expand_dims(maskArr2,axis=1)],axis=1)
#%%
plt.figure(figsize=(15,15))
plt.title("reconstruction error scores")
plt.scatter(X[:, 0], X[:, 1], c=X[:,2],s=10.0, label="Data points")
plt.colorbar()
#plt.scatter(X_outliers[:, 0], X_outliers[:, 1],c=X_outliers[:,2], s=10, label="true anomalies")
#%%
plt.figure(figsize=(15,15))
plt.title("reconstruction error scores")
plt.scatter(joint_predictions[:, 0], joint_predictions[:, 1],s=10.0, label="Data points")
plt.colorbar()