-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathshoaling_1d.py
260 lines (216 loc) · 8.02 KB
/
shoaling_1d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#shoaling in 1 spatial dimension
import numpy as np
from numpy.lib import scimath as SM
from scipy.optimize import fsolve
import matplotlib.pyplot as plt
from scipy.special import gamma
from scipy.interpolate import interp1d
from scipy.integrate import dblquad, quad, simps
from scipy import integrate
from matplotlib import cm
from help_tools import plotting_interface
import h5py
from wave_tools import surface_core, peak_tracking
class Bathymetry:
def __init__(self, x, bathy_filename=None):
dx = x[1] - x[0]
x_u = x
self.x = x_u
self.Nx = len(self.x)
if not bathy_filename is None:
# read profile from file
hf = h5py.File(bathy_filename, 'r')
h = np.array(hf['bathy'])
r = np.array(hf['r'])
hf.close()
# interpolate profile to given grid where available
if x[0] >= r[0]:
x_max_ind = np.argwhere(x>r[-1])[0][0]
x_int = x[:x_max_ind]
bathy_func = interp1d(r, h, kind='cubic')
bathy1 = bathy_func(x_int)
else:
print('Error not yet implemented!')
bathy2 = -0.005*((np.arange(0, len(x)-x_max_ind))*dx) + bathy1[-1]
bathy = np.block([bathy1, bathy2])
h_func = interp1d(x_u, bathy, kind='cubic')
self.h = h_func(x)
self.H = -self.h
else:
bathy1 = -10 * (x<=700)
bathy2 = (-0.05*x + 25)*(np.logical_and(x>700, x<=1700))
bathy3 = -60*(x>1700)
b = bathy1 + bathy2 + bathy3
self.h = b
self.H = -b
def plot(self):
plt.figure()
plt.plot(self.x, self.h, 'k', linewidth=0.8)
plt.xlabel(r'$x~[\mathrm{m}]$')
plt.ylabel(r'$z~[\mathrm{m}]$')
def calc_wavenumber(self, f):
N_f = np.size(f)
k_out = np.zeros((N_f, self.Nx))
eps = 10**(-6)
N_max = 100
for i in range(N_f):
w = 2*np.pi*f[i]
ki = w**2/(9.81)
wt = np.sqrt(9.81*ki*np.tanh(ki*(-self.h)))
count = 0
while np.max(np.abs(w-wt))>eps and count<N_max:
latter = 9.81*np.tanh(ki*(-self.h))
ki = w**2/(latter)
wt = np.sqrt(latter)
count = count + 1
k_out[i,:] = ki
return k_out
class Spectrum:
def __init__(self, Tp, gam, F):
self.Tp = Tp
self.fp = 1./Tp
self.gam = gam
g = 9.81
U = lambda UU: 3.5*(g/UU)*(g/UU**2*F)**(-0.33)-self.fp
self.U10 = fsolve(U, 10, xtol=1e-04)[0]
self.xxn = g/self.U10**2*F
self.S = lambda f:(0.076*self.xxn**(-0.22)*g**2/(2*np.pi)**4*(f)**(-5)*np.exp(-5/4*(self.fp/f)**4)
*gam**np.exp(-((f-self.fp)**2)/(2*(self.fp*(0.07*(1/2 + 1/2*np.sign(self.fp - f))
+0.09*(1/2 -1/2*np.sign(self.fp - f))))**2)))
def distribute_f(self, f_min, f_max, N_f, plot_it=False):
#'''
f = np.zeros(N_f)
N_found = 0
while N_found<N_f:
fi = f_min + (f_max - f_min) * np.random.uniform()
eta = self.S(self.fp) * np.random.uniform() + 1
if np.sqrt(eta) < np.sqrt(self.S(fi)) + 1:
f[N_found] = fi
N_found = N_found + 1
f = np.sort(f)
if plot_it:
plt.figure()
plt.plot(f, self.S(f), 'x')
plt.xlabel(r'$f~[Hz]$')
plt.ylabel(r'$\mathrm{S}(f)$')
plt.show()
return f
def define_realization(self, f_min, f_max, N_f, plot_it=False):
f = self.distribute_f(f_min, f_max, N_f)
a = np.zeros(N_f)
df = np.gradient(f)
a = np.sqrt(2*self.S(f)*df)
return f, a
def plot(self):
f = self.distribute_f(0, 0.3, 200)
plt.figure()
plt.plot(f, self.S(f), 'k', linewidth=0.8)
plt.xlabel(r'$f~[Hz]$')
plt.ylabel(r'$\mathrm{S}(f)$')
class SpectralRealization:
def __init__(self, DirSpec, f_min, f_max, N_f, dx):
self.N_f = N_f
self.dx = dx
self.DirSpec = DirSpec
self.f_min = f_min
self.f_max = f_max
self.f, self.a = DirSpec.define_realization(f_min, f_max, N_f)
self.w = 2*np.pi*self.f
self.phase = np.random.uniform(0,2*np.pi,size=self.N_f)
def calc_wavenumber(self, Nx, bathy=None, h=1000):
if bathy==None:
k_loc_f = fsolve((lambda k: ((9.81*k*np.tanh(k*h)) - (self.w[:,0])**2)), 0.01*np.ones(self.N_f))
k_loc = np.outer(k_loc_f, np.ones(self.Nx)).reshape((self.N_f, Nx))
else:
k_loc = bathy.calc_wavenumber(self.f)
return k_loc
def invert(self, bathy, ti, x):
Nx = len(x)
k = self.calc_wavenumber(Nx, bathy)
H = bathy.H
Nt = len(ti)
eta = np.zeros((Nt,Nx))
for i in range(0, self.N_f):
K2H = 2*k[i,:]*H
k2H_by_sinh_2kH = np.where(K2H>0, K2H / np.sinh(K2H), 0)
ksh = np.cumsum(k[i,:]*self.dx)
Cgx = self.w[i]/(2*k[i]*(1+k2H_by_sinh_2kH))
Cg0x = self.w[-1]/(2*k[-1]*(1+k2H_by_sinh_2kH[-1]))
for j in range(0, Nt):
eta[j,:] = eta[j,:] + self.a[i]*np.abs(SM.sqrt(Cg0x/Cgx))*np.cos(self.phase[i]+self.w[i]*ti[j]+ksh)
'''
TODO: make faster!
eta += np.outer(self.a[i]*np.abs(SM.sqrt(Cg0x/Cgx)),np.cos(self.phase[i]*np.ones(Nt)+w[i]*ti+np.outer(ksh*,np.ones(Nt))))
'''
return eta
def vel(self, eta, bathy, ti, x):
Nx = len(x)
k = self.calc_wavenumber(Nx, bathy)
w = 2*np.pi*self.f
H = bathy.H
vel = np.zeros((np.size(ti),Nx))
for i in range(0, self.N_f):
k2H_by_sinh_2kH = np.where(k[i,:]*H < 50, 2*k[i,:]*H / np.sinh(2*k[i,:]*H), 0)
ksh = np.cumsum(k[i,:]*self.dx)
Cgx = w[i]/(2*k[i]*(1+k2H_by_sinh_2kH))
Cg0x = w[-1]/(2*k[-1]*(1+k2H_by_sinh_2kH[-1]))
for j in range(0,np.size(ti)):
vel[j,:] += self.a[i]*np.abs(SM.sqrt(Cg0x/Cgx))*(-w[i])/np.sinh(k[i,:]*H)*np.cosh(k[i,:]*(eta[j,:]+H))*np.cos(self.phase[i]+w[i]*ti[j]+ksh)
# TODO: make it faster!
# TODO combine vel and eta
return vel
if __name__=='__main__':
from_file=True
fn = 'example_data/surfprofile'
#from_file=False
#fn = 'example_data/test'
if not from_file:
dx = 0.5
x = np.arange(200, 2200+dx, dx)
g = 9.81
Tp = 10
fp = 1./Tp
gam = 3.3
N_f = 100
f_min = 0.001
f_max = 0.4
F = 300000
# Define Spectrum
spec = Spectrum(Tp, gam, F)
realization = SpectralRealization(spec, f_min, f_max, N_f, dx)
print('Directional Spectrum defined')
# Define bathymetry
bathy_filename = 'RR23605_bathy.hdmf'
b = Bathymetry(x, bathy_filename)
#b.plot()
#plotting_interface.show()
print('Bathymetry defined')
# Construct wave field from spectrum
Nt = 1200
Nx = len(x)
eta = np.zeros((Nt, Nx))
vel = np.zeros((Nt, Nx))
t = np.linspace(0, 120, Nt)
eta = realization.invert(b, t, x)
vel = realization.vel(eta, b, t, x)
bsurf = surface_core.spacetempSurface('surfprofile', eta, [x, t])
bsurf.save(fn, 'eta', False)
bsurf.save_velocity(fn, vel)
else:
bsurf = surface_core.surface_from_file(fn, spaceTime=True)
t = bsurf.t
x = bsurf.x
eta = bsurf.eta
bsurf.load_velocity(fn)
vel = bsurf.vel
ax = bsurf.plot_3d_as_2d()
pt = peak_tracking.get_PeakTracker(x, t, eta, vel)
pt.plot_all_tracks(ax=ax)
ax2 = bsurf.plot_3d_as_2d()
pt.plot_breaking_tracks(ax=ax2)
ids_breaking_peaks = pt.get_ids_breaking_peaks()
#gt = peak_tracking.get_GroupTracker(x, t, eta, vel)
#gt.plot_all_tracks(ax=ax)
# follow one track
peak_dict = pt.get_peak_dict()
plotting_interface.show()