-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathretinanet_inference_example.py
197 lines (153 loc) · 6.82 KB
/
retinanet_inference_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# coding: utf-8
__author__ = 'ZFTurbo: https://kaggle.com/zfturbo'
if __name__ == '__main__':
import os
gpu_use = 0
print('GPU use: {}'.format(gpu_use))
os.environ["KERAS_BACKEND"] = "tensorflow"
os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(gpu_use)
from a00_utils_and_constants import *
from a01_ensemble_boxes_functions import *
def show_image_debug(id_to_labels, draw, boxes, scores, labels):
from keras_retinanet.utils.visualization import draw_box, draw_caption
from keras_retinanet.utils.colors import label_color
# visualize detections
for box, score, label in zip(boxes[0], scores[0], labels[0]):
# scores are sorted so we can break
if score < 0.3:
break
color = (0, 255, 0)
b = box.astype(int)
draw_box(draw, b, color=color)
caption = "{} {:.3f}".format(id_to_labels[label], score)
draw_caption(draw, b, caption)
draw = cv2.cvtColor(draw, cv2.COLOR_RGB2BGR)
show_image(draw)
def get_retinanet_predictions_for_files(files, out_dir, pretrained_model_path, backbone):
from keras_retinanet.utils.image import read_image_bgr, preprocess_image, resize_image
from keras_retinanet import models
show_debug_images = False
show_mirror_predictions = False
model = models.load_model(pretrained_model_path, backbone_name=backbone)
print('Proc {} files...'.format(len(files)))
for f in files:
id = os.path.basename(f)[:-4]
cache_path = out_dir + id + '.pkl'
if os.path.isfile(cache_path):
continue
# try:
image = read_image_bgr_fast(f)
if show_debug_images:
# copy to draw on
draw = image.copy()
draw = cv2.cvtColor(draw, cv2.COLOR_BGR2RGB)
# preprocess image for network
image = preprocess_image(image)
if backbone == 'resnet152':
image, scale = resize_image(image, min_side=600, max_side=800)
elif backbone == 'resnet101':
image, scale = resize_image(image, min_side=768, max_side=1024)
# Add mirror
image = np.stack((image, image[:, ::-1, :]), axis=0)
# process image
start = time.time()
print('ID: {} Image shape: {} Scale: {}'.format(id, image.shape, scale))
boxes, scores, labels = model.predict_on_batch(image)
print('Detections shape: {} {} {}'.format(boxes.shape, scores.shape, labels.shape))
print("Processing time: {:.2f} sec".format(time.time() - start))
if show_debug_images:
if show_mirror_predictions:
draw = draw[:, ::-1, :]
boxes_init = boxes.copy()
boxes_init /= scale
boxes[:, :, 0] /= image.shape[2]
boxes[:, :, 2] /= image.shape[2]
boxes[:, :, 1] /= image.shape[1]
boxes[:, :, 3] /= image.shape[1]
if show_debug_images:
if show_mirror_predictions:
show_image_debug(LEVEL_1_LABELS, draw.astype(np.uint8), boxes_init[1:], scores[1:], labels[1:])
else:
show_image_debug(LEVEL_1_LABELS, draw.astype(np.uint8), boxes_init[:1], scores[:1], labels[:1])
save_in_file_fast((boxes, scores, labels), cache_path)
def create_csv_for_retinanet(input_dir, out_file, label_arr, skip_box_thr=0.05, intersection_thr=0.55, limit_boxes=300, type='avg'):
out = open(out_file, 'w')
out.write('ImageId,PredictionString\n')
d1, d2 = get_description_for_labels()
files = glob.glob(input_dir + '*.pkl')
for f in files:
id = os.path.basename(f)[:-4]
boxes, scores, labels = load_from_file_fast(f)
filtered_boxes = filter_boxes(boxes, scores, labels, skip_box_thr)
merged_boxes = merge_all_boxes_for_image(filtered_boxes, intersection_thr, type)
print(id, len(filtered_boxes[0]), len(filtered_boxes[1]), len(merged_boxes))
if len(merged_boxes) > limit_boxes:
# sort by score
merged_boxes = np.array(merged_boxes)
merged_boxes = merged_boxes[merged_boxes[:, 1].argsort()[::-1]][:limit_boxes]
out.write(id + ',')
for i in range(len(merged_boxes)):
label = int(merged_boxes[i][0])
score = merged_boxes[i][1]
b = merged_boxes[i][2:]
google_name = label_arr[label]
if '/' not in google_name:
google_name = d2[google_name]
xmin = b[0]
if xmin < 0:
xmin = 0
if xmin > 1:
xmin = 1
xmax = b[2]
if xmax < 0:
xmax = 0
if xmax > 1:
xmax = 1
ymin = b[1]
if ymin < 0:
ymin = 0
if ymin > 1:
ymin = 1
ymax = b[3]
if ymax < 0:
ymax = 0
if ymax > 1:
ymax = 1
if (xmax < xmin):
print('X min value larger than max value {}: {} {}'.format(label_arr[label], xmin, xmax))
continue
if (ymax < ymin):
print('Y min value larger than max value {}: {} {}'.format(label_arr[label], ymin, ymax))
continue
if abs(xmax - xmin) < 1e-5:
print('Too small diff for {}: {} and {}'.format(label_arr[label], xmin, xmax))
continue
if abs(ymax - ymin) < 1e-5:
print('Too small diff for {}: {} and {}'.format(label_arr[label], ymin, ymax))
continue
str1 = "{} {:.6f} {:.4f} {:.4f} {:.4f} {:.4f} ".format(google_name, score, xmin, ymin, xmax, ymax)
out.write(str1)
out.write('\n')
if __name__ == '__main__':
skip_box_confidence = 0.01
iou_thr = 0.55
limit_boxes_per_image = 300
type = 'avg'
# files_to_process = glob.glob(INPUT_PATH + 'kaggle/challenge2018_test/*.jpg')
files_to_process = glob.glob(DATASET_PATH + 'validation_big/*.jpg')
if 1:
backbone = 'resnet101'
pretrained_model_path = MODELS_PATH + 'retinanet_resnet101_level_1_converted.h5'
labels_list = LEVEL_1_LABELS
if 0:
backbone = 'resnet152'
pretrained_model_path = MODELS_PATH + 'retinanet_resnet152_level_1_converted.h5'
labels_list = LEVEL_1_LABELS
output_cache_directory = OUTPUT_PATH + 'cache_retinanet_level_1_{}/'.format(backbone)
if not os.path.isdir(output_cache_directory):
os.mkdir(output_cache_directory)
get_retinanet_predictions_for_files(files_to_process, output_cache_directory, pretrained_model_path, backbone)
create_csv_for_retinanet(output_cache_directory,
SUBM_PATH + 'predictions_{}_{}_{}.csv'.format(skip_box_confidence, iou_thr, type),
labels_list,
skip_box_confidence, iou_thr, limit_boxes_per_image, type=type)