-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmy_eval.py
231 lines (178 loc) · 7.28 KB
/
my_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import argparse
import os
os.environ['CUDA_VISIBLE_DEVICES']='2'
import shutil
import time
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
import matplotlib.pyplot as plt
import numpy as np
from MobileNetV2 import MobileNetV2
import pdb
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
model_names.append('mobilenetv2')
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--data', metavar='DIR',
help='path to dataset')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=4, type=int,
metavar='N', help='mini-batch size (default: 4)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--evaluate', default='', type=str, metavar='PATH',
help='path to evaluate model (default: none)')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
best_prec1 = 0
MEAN_COEF = [0.48502, 0.45796, 0.40760]
DIV_COEF = [0.23068, 0.23068, 0.23068]
# functions to show an image
def imshow(img):
npimg = img.numpy() * np.array(DIV_COEF).reshape([3,1,1]) \
+ np.array(MEAN_COEF).reshape([3,1,1]) # Un-normalize
plt.imshow(np.transpose(npimg, (1, 2, 0)))
def main():
global args, best_prec1
args = parser.parse_args()
# create model
if args.pretrained:
print("=> using pre-trained model '{}'".format(args.arch))
model = models.__dict__[args.arch](pretrained=True)
else:
print("=> creating model '{}'".format(args.arch))
if args.arch.startswith('mobilenetv1'):
model = MobileNetV1()
elif args.arch.startswith('mobilenetv2'):
model = MobileNetV2()
else:
model = models.__dict__[args.arch]()
print(model)
if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
model.features = torch.nn.DataParallel(model.features)
model.cuda()
else:
model=model.cuda()
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
if args.evaluate:
if os.path.isfile(args.evaluate):
print("=> loading model '{}'".format(args.evaluate))
model.load_state_dict(torch.load(args.evaluate))
else:
print("=> no model found at '{}'".format(args.evaluate))
cudnn.benchmark = True
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=MEAN_COEF,
std=DIV_COEF)
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
if args.evaluate:
validate(val_loader, model, criterion)
return
def validate(val_loader, model, criterion):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
for i, (inputs, target) in enumerate(val_loader):
#pdb.set_trace()
permute = [2, 1, 0]
inputs = inputs[:,permute]
#imshow(torchvision.utils.make_grid(inputs))
#plt.show()
target = target.cuda()
inputs = inputs.cuda()
input_var = torch.autograd.Variable(inputs, volatile=True)
target_var = torch.autograd.Variable(target, volatile=True)
# compute output
output = model(input_var)
#pdb.set_trace()
loss = criterion(output.squeeze(), target_var.long())
# measure accuracy and record loss
prec1, prec5 = accuracy(output.squeeze().data, target, topk=(1, 5))
losses.update(loss.data[0], inputs.size(0))
top1.update(prec1[0], inputs.size(0))
top5.update(prec5[0], inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return top1.avg
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()