-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtokens_count.py
322 lines (225 loc) · 7.72 KB
/
tokens_count.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import os, sys, lzma, glob, json
from multiprocessing import Pool
import re, subprocess
from utils import *
from utils_lang import *
from tokens_check import *
min_count = 0
max_count = 0
try:
# bỏ / ở cuối tham số đầu vào
x = re.sub(r'/*$', "", sys.argv[1].strip())
if re.match(r"\d+", x):
input_files = "stats_mode"
min_count = int(x)
else:
input_files = glob.glob(f"{x}/*.lzma")
except:
input_files = ["data/test.jsonl.xz"]
print(input_files)
try:
max_count = int( sys.argv[2] )
except:
pass
print(min_count, max_count)
from config import ONLINE_MODEL_PATH as model_path
PATH = f"data/{model_path}"
mkdirs(PATH)
###
def ok(x):
tid, count = x
tid = int(tid)
token = tokenizer.decode(tid)
if "Ġ" in token: return True
if "�" in token: return True
if contains_unwanted(token):
return False
if count < min_count:
if contains_emoji(token):
return True
if mostly_alphabet(token):
return True
if canbe_vietnamese(token):
return True
if is_ascii(token):
return True
elif count < max_count:
if canbe_vietnamese(token):
return True
if contains_emoji(token):
return True
if is_ascii(token):
return True
else:
return True
return False
def count_tokens(texts):
count = {}
for text in texts:
token_ids = tokenizer.encode(text)
for tid in token_ids:
if tid not in count:
count[tid] = 0
count[tid] += 1
return count
def merge_count(count, x):
for k, v in x.items():
if k not in count:
count[k] = 0
count[k] += v
def get_uniq_tokens(infile):
x = infile.split("/")[-1]
outfile = f"{PATH}/{x}_count.json.xz"
try: count = json.load(lzma.open(outfile))
except: count = { "last_line_idx": 0 }
if os.path.exists(infile) and "last_line_idx" in count: # DONE
texts = []
for idx, line in enumerate( lzma.open(infile) ):
if idx <= count["last_line_idx"]:
continue
text = json.loads(line)["text"]
texts.append( text )
if idx % 10000 == 9999:
merge_count(count, count_tokens(texts))
count["last_line_idx"] = idx
with lzma.open(outfile, "wt") as f:
f.write(json.dumps(count))
print(f'get_uniq_token {infile}:{count["last_line_idx"]} ...', flush = True)
texts = []
merge_count(count, count_tokens(texts))
count.pop("last_line_idx")
with lzma.open(outfile, "wt") as f:
f.write(json.dumps(count))
print(f'get_uniq_token {infile} DONE.', flush = True)
count = json.load(lzma.open(outfile))
if "last_line_idx" in count:
count.pop("last_line_idx")
return count
def get_final_count(input_files):
if input_files == "stats_mode":
input_files = glob.glob(f"{PATH}/*_count.json.xz")
input_files = [ x.replace("_count.json.xz", "") for x in input_files ]
count = {}
with Pool( processes = num_procs() ) as pool:
for x in pool.imap_unordered(get_uniq_tokens, input_files):
merge_count(count, x)
return count
print("get_final_count ...")
count = get_final_count(input_files)
tid_count_pairs = [ [k, v] for k, v in count.items() ]
total = len(tid_count_pairs)
def remove_not_ok_pairs(pairs):
keep = []
remove = []
for x in pairs:
if ok(x): keep.append(x)
else: remove.append(x)
return keep, remove
chunk_size = 1024*2
chunks = [tid_count_pairs[i:i + chunk_size] for i in range(0, len(tid_count_pairs), chunk_size)]
kept = []
removed = []
print("remove_not_ok_pairs ...")
with Pool( processes = num_procs() ) as pool:
for keep, remove in pool.imap_unordered(remove_not_ok_pairs, chunks):
kept += keep
removed += remove
print("sort kept pairs and removed pairs ...")
kept.sort( key = lambda x: -x[1] )
removed.sort( key = lambda x: -x[1] )
mid = len(removed) // 2
x = \
removed[ : 100] + \
[[ "0" , 0 ]] + \
removed[ mid-50 : mid+50] + \
[[ "0" , 0 ]] + \
removed[ -100 : ] + \
[[ "0" , 0 ]]
maxx = 25
spaces = " " * 100
def pretty(tid, count):
token = json.dumps(tokenizer.decode(int(tid)), ensure_ascii = False)
n = len(token)
return f"{tid}{spaces[:10 - len(tid)]} {token}{spaces[:maxx - n]}\t{count:10.0f}"
print("\n=== Một số removed tokens ===\n")
for tid, count in x:
if count == 0:
print("\n")
else:
print(pretty(tid, count))
def pretty_token(token, tid, count):
s = json.dumps([ token, tid, count ], ensure_ascii = False)
s = "[ " + s[1:]
a, b = s.split(", ", 1)
return f"{a}{spaces[:50 - len(a)]}, {b}" + "\n"
def pretty_json(tid, count):
tid = int(tid)
token = tokenizer.decode(tid)
return pretty_token(token, tid, count)
subprocess.run("rm tokens_*.jsonl", shell = True)
for tid, count in removed:
tid = int(tid)
token = tokenizer.decode(tid)
p_token = pretty_token(token, tid, count)
if is_ascii(token):
if is_alphabet(token):
if is_english_word(token):
with open("tokens_kept__english.jsonl", "at") as f:
f.write(p_token)
else:
with open("tokens_removed__alphabet.jsonl", "at") as f:
f.write(p_token)
else:
with open("tokens_removed__ascii.jsonl", "at") as f:
f.write(p_token)
else:
with open("tokens_removed__others.jsonl", "at") as f:
f.write(p_token)
for tid, count in kept:
tid = int(tid)
token = tokenizer.decode(tid)
p_token = pretty_token(token, tid, count)
if is_ascii(token):
if is_alphabet(token):
if is_english_word(token):
with open("tokens_kept__english.jsonl", "at") as f:
f.write(p_token)
else:
if len(token) > 12:
with open("tokens_kept__alphabet_long.jsonl", "at") as f:
f.write(p_token)
else:
with open("tokens_kept__alphabet_short.jsonl", "at") as f:
f.write(p_token)
else:
if len(token) > 12:
with open("tokens_kept__ascii_long.jsonl", "at") as f:
f.write(p_token)
else:
with open("tokens_kept__ascii_short.jsonl", "at") as f:
f.write(p_token)
else:
with open("tokens_kept__others.jsonl", "at") as f:
f.write(p_token)
remains = set(wanted_tids)
for tid, _ in removed:
tid = int(tid)
if tid in remains:
remains.remove(tid)
print(f"kept / total = {len(kept)} / {tokenizer.vocab_size}")
print(f"remains / total = {len(remains)} / {tokenizer.vocab_size}")
print("( remains = wanted - removed )")
"""
python3 tokens_count.py 1000 20000
[ Gemma ]
kept / total = 117942 / 256000
remains / total = 191746 / 256000
[ Qwen ]
kept / total = 92548 / 151643
remains / total = 93169 / 151643
[ Llama ] (bỏ qua vì hiệu quả ko nhiều + tied embeddings)
kept / total = 97764 / 128000
remains / total = 98115 / 128000
( remains = wanted - removed )
Final = kept + special tokens
"""