-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoptimization.py
224 lines (173 loc) · 7.57 KB
/
optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import numpy as np
from scipy.optimize import minimize
from functools import partial
import modules
class OpData():
def __init__(self, name):
self.name = name
self.list, self.nom_dict, self.unit, self.bnds, self.label = default_value(name)
@property
def nom0(self):
data0 = []
for i in range(len(self.list)):
data0.append(self.nom_dict[self.list[i]])
return data0
class OpObj(object):
def __init__(self, x0, x_name, p, max_iter):
self.x_name, self.p = x_name, p
self.x0 = x0
self.f = np.full(shape=(max_iter,), fill_value=np.NaN)
self.x_history = np.full(shape=(max_iter,len(x0)), fill_value=np.NaN)
self.obj_term_history = np.full(shape=(max_iter,len(modules.obj_terms(x0, x_name, p))), fill_value=np.NaN)
self.ineq = np.full(shape=(max_iter,len(modules.ineq_constraint(x0, x_name, p))), fill_value=np.NaN)
self.eq = np.full(shape=(max_iter,len(modules.eq_constraint(x0, x_name, p))), fill_value=np.NaN)
self.count = 0
def obj_fun(self, x):
return obj_fun(x, self.x_name, self.p)
def multi_obj_fun(self, x):
return multi_obj_fun(x, self.x_name, self.p)
def cb(xk, obj=None):
obj.f[obj.count] = obj.obj_fun(xk)
obj.x_history[obj.count] = xk
obj.obj_term_history[obj.count] = modules.obj_terms(xk, obj.x_name, obj.p)
obj.ineq[obj.count] = modules.ineq_constraint(xk, obj.x_name, obj.p)
obj.eq[obj.count] = modules.eq_constraint(xk, obj.x_name, obj.p)
obj.count += 1
def obj_fun(x0, x_name, p):
return modules.obj(x0, x_name, p)
def multi_obj_fun(x0, x_name, p):
return modules.multi_obj(x0, x_name, p)
# ============================================================================ #
# Set default and non-default values of design variables and parameters #
# ============================================================================ #
def default_value(v_name):
v_label = ''
for i in range(len(v_name)):
if (i!=0):
v_label += ' & '
v_label += v_name[i]
v_list = modules.variable_lookup(v_name)
v_list_default_values = modules.default_values(v_name)
v_list_bnds_values = modules.bnds_values(v_name)
v_nom = {}
v_unit = []
v_bnds = []
for i in range(len(v_list)):
v_nom[v_list[i]] = v_list_default_values[v_list[i]][0]
v_unit.append(v_list_default_values[v_list[i]][1])
if v_list[i] in v_list_bnds_values.keys():
v_bnds.append(v_list_bnds_values[v_list[i]])
return v_list, v_nom, v_unit, v_bnds, v_label
def argument_fun(x_name, p_name, p_vals, all_vars):
all_input = x_name + p_name
default_vars = []
for i in range(len(all_vars)):
if all_vars[i] not in all_input:
default_vars.append(all_vars[i])
p = OpData(default_vars)
# fill non-default parameters
if p_name!=[]:
p.name = p.name + p_name
new_list = modules.variable_lookup(p_name)
p.list = p.list + new_list
for i in range(len(new_list)):
p.nom_dict[new_list[i]] = p_vals[new_list[i]]
return p
# ============================================================================ #
# Single Objective Optimization #
# ============================================================================ #
#'Finding optimal '+ x + ' while holding '+ p + ' constant.'
def run_soo_optimization(x_name, x_vals, p_name, p_vals, all_vars, max_iter):
# optimizes the design variables x_name, with parameters p_name set to
# non-default values p_vals, and other parameters set to default values.
# design variables
x = OpData(x_name)
x0 = []
if x_vals==[]:
x0 = x.num0
else:
x0 = x_vals
# fill default parameters
p = argument_fun(x.name, p_name, p_vals, all_vars)
# set up optimization problem
op_obj = OpObj(x0, x.name, p.nom_dict, max_iter)
arguments = (x.name, p.nom_dict)
cons = []
cons.append({'type': 'ineq', 'fun': modules.ineq_constraint, 'args': arguments})
# cons.append({'type': 'eq', 'fun': modules.eq_constraint, 'args': arguments})
for factor in range(len(x.bnds)):
lower, upper = x.bnds[factor]
l = {'type': 'ineq',
'fun': lambda x, lb=lower, i=factor: x[i] - lb}
u = {'type': 'ineq',
'fun': lambda x, ub=upper, i=factor: ub - x[i]}
cons.append(l)
cons.append(u)
options={"maxiter":max_iter, "ftol": 1e-12} #, 'eps': .5} # "ftol": 1e-4 #, 'disp': True
res = minimize(obj_fun, op_obj.x0,
args=arguments,
method='SLSQP',
#bounds=x_bnds,
constraints=cons,
options=options,
callback=partial(cb, obj=op_obj))
if res.success:
cb(res.x, op_obj)
return res, op_obj, p
# ============================================================================ #
# Multi-Objective Optimization #
# ============================================================================ #
import numpy as np
import autograd.numpy as anp
from pymoo.core.problem import ElementwiseProblem
from pymoo.algorithms.moo.nsga2 import NSGA2
from pymoo.operators.crossover.sbx import SBX
from pymoo.operators.mutation.pm import PM
from pymoo.operators.sampling.rnd import FloatRandomSampling
from pymoo.termination import get_termination
from pymoo.optimize import minimize as min
class mooProblem(ElementwiseProblem):
# Problem definition of the multi-objective optimization
def __init__(self, n_obj, x_name, p_name, p_vals, all_vars, max_iter):
self.x = OpData(x_name)
self.p = argument_fun(self.x.name, p_name, p_vals, all_vars)
self.n_obj = n_obj
self.n_var = len(self.x.list)
self.n_ieq_constr = len(modules.ineq_constraint(self.x.nom0, self.x.name, self.p.nom_dict))
xl = np.zeros(self.n_var)
xu = np.zeros(self.n_var)
for i in range(len(self.x.bnds)):
lower, upper = self.x.bnds[i]
xl[i] = lower
xu[i] = upper
super().__init__(n_var=self.n_var,
n_obj=self.n_obj,
n_ieq_constr=self.n_ieq_constr,
xl=xl,
xu=xu)
self.max_iter = max_iter
# Evaluation of objective functions
def _evaluate(self, x, out, *args, **kwargs):
self.op_obj = OpObj(x, self.x.name, self.p.nom_dict, self.max_iter)
if (self.n_obj==1):
f = self.op_obj.obj_fun(x)
else:
f = self.op_obj.multi_obj_fun(x)[0:self.n_obj]
g = -1 * modules.ineq_constraint(x, self.x.name, self.p.nom_dict)
out["F"] = f
out["G"] = g
def run_moo_optimization(n_obj, x_name, p_name, p_vals, all_vars, max_iter):
problem = mooProblem(n_obj, x_name, p_name, p_vals, all_vars, max_iter)
algorithm = NSGA2(pop_size=100, #100
n_offsprings=30, #30
sampling=FloatRandomSampling(),
crossover=SBX(prob=0.9, eta=15),
mutation=PM(eta=20),
eliminate_duplicates=True)
termination = get_termination("n_gen", 500) #500
res = min(problem,
algorithm,
termination,
seed=1,
verbose=False)
return res, problem.op_obj, problem.p