-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
72 lines (48 loc) · 2.12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Import other files
from models import load_df, logistic_regression, decision_tree, neural_network, majority_classifier, calculate_metrics
from preprocess import preprocessAdmissions, preprocessDiagnoses, preprocessPatients
import pandas as pd
import pickle
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
def main():
# Load and preprocess the data
preprocessAdmissions()
preprocessDiagnoses()
preprocessPatients()
# Load the dataframe
master_df = load_df()
# Create the features and labels, label is atherosclerosis
X = master_df[['Hypertension', 'Hypercholesterolemia', 'Male', 'Female', 'Age <40', 'Age 40-59', 'Age 60-79', 'Age 80+']]
y = master_df['Atherosclerosis']
# Split the data into training and testing sets, 0.8 and 0.2
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Create a list of models
models = [logistic_regression, decision_tree, neural_network, majority_classifier]
# Create a list of model names
model_names = ['Logistic Regression', 'Decision Tree', 'Neural Network', 'Majority Classifier']
# Create a list of model predictions
model_predictions = []
# Create a list of model accuracies
model_accuracies = []
# Create a list of model precisions
model_precisions = []
# Create a list of model recalls
model_recalls = []
# Run each model
for model in models:
# Make predictions
y_pred = model(X_train, y_train, X_test, y_test)
# Calculate metrics
accuracy, precision, recall = calculate_metrics(y_test, y_pred)
# Append the predictions, accuracies, precisions, and recalls to their lists
model_predictions.append(y_pred)
model_accuracies.append(accuracy)
model_precisions.append(precision)
model_recalls.append(recall)
# Create a dataframe of the metrics
metrics_df = pd.DataFrame({'Model': model_names, 'Accuracy': model_accuracies, 'Precision': model_precisions, 'Recall': model_recalls})
# Print the dataframe
print(metrics_df)
if __name__ == '__main__':
main()