-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathkeel_001_kdd_cup_1999.py
107 lines (94 loc) · 3.21 KB
/
keel_001_kdd_cup_1999.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import urllib.request
import io
import zipfile
import pandas # install pandas by "pip install pandas", or install Anaconda distribution (https://www.anaconda.com/)
# Warning: the data processing techniques shown below are just for concept explanation, which are not best-proctices
# data set repository
# https://sci2s.ugr.es/keel/dataset.php?cod=196
# if the file is on your local device, change url_data_train into local file path, e.g., 'D:\local_file.data'
url_data_train = 'https://sci2s.ugr.es/keel/dataset/data/classification/kddcup.zip'
def download_file(url):
resp = urllib.request.urlopen(url)
if resp.status != 200:
resp.close()
raise ValueError('Error: {0}'.format(resp.reason))
print('\rStarted', end = '\r')
content_length = resp.getheader('Content-Length')
if content_length is None:
content_length = '(total: unknown)'
else:
content_length = int(content_length)
if content_length < 1024:
content_length_str = '(total %.0f Bytes)' % content_length
elif content_length < 1024 * 1024:
content_length_str = '(total %.0f KB)' % (content_length / 1024)
else:
content_length_str = '(total %.1f MB)' % (content_length / 1024 / 1024)
total = bytes()
while not resp.isclosed():
total += resp.read(10 * 1024)
if len(total) < 1024:
print(('\rDownloaded: %.0f Bytes ' % len(total)) + content_length_str + ' ', end = '\r')
if len(total) < 1024 * 1024:
print(('\rDownloaded: %.0f KB ' % (len(total) / 1024)) + content_length_str + ' ', end = '\r')
else:
print(('\rDownloaded: %.1f MB ' % (len(total) / 1024 / 1024)) + content_length_str + ' ', end = '\r')
print()
return io.BytesIO(total)
# download data from website
data_train = download_file(url_data_train) if url_data_train.startswith('http') else url_data_train
columns = [
'Atr-0',
'Atr-1',
'Atr-2',
'Atr-3',
'Atr-4',
'Atr-5',
'Atr-6',
'Atr-7',
'Atr-8',
'Atr-9',
'Atr-10',
'Atr-11',
'Atr-12',
'Atr-13',
'Atr-14',
'Atr-15',
'Atr-16',
'Atr-17',
'Atr-18',
'Atr-19',
'Atr-20',
'Atr-21',
'Atr-22',
'Atr-23',
'Atr-24',
'Atr-25',
'Atr-26',
'Atr-27',
'Atr-28',
'Atr-29',
'Atr-30',
'Atr-31',
'Atr-32',
'Atr-33',
'Atr-34',
'Atr-35',
'Atr-36',
'Atr-37',
'Atr-38',
'Atr-39',
'Atr-40',
'Class']
# unzip the downloaded file, and get data files
with zipfile.ZipFile(data_train) as myzip:
with myzip.open('kddcup.dat') as myfile:
df_train = pandas.read_csv(myfile, header = None, names = columns, skiprows = 46, low_memory = False)
# the target variable, inserted into the dataframe as the first column, and drop the original Class variable
# set Class = normal. to 1 and Class = other values to 0
df_train.insert(0, 'target_Class', df_train['Class'].apply(lambda x: 1 if x == 'normal.' else 0))
df_train = df_train.drop('Class', axis = 1)
# save the dataframe as CSV file, you can zip it, upload it to t1modeler.com, and build a model
df_train.to_csv('keel_001_kdd_cup_1999.csv', index = False)