-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
76 lines (60 loc) · 2.05 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
import torch
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
from modules.embedding import Embedding
PATH = 'experiments/en-de/08_19_2023/17_27_32'
NUM_EPOCHS = 100
def plot_losses():
train_df = pd.read_csv(
os.path.join(PATH, 'scalars', 'loss', 'train.csv'),
header=None
).head(NUM_EPOCHS)
valid_df = pd.read_csv(
os.path.join(PATH, 'scalars', 'loss', 'validation.csv'),
header=None
).head(NUM_EPOCHS)
sns.lineplot(train_df, x=0, y=1, label='Train Loss')
ax = sns.lineplot(valid_df, x=0, y=1, label='Validation Loss')
ax.set(xlabel='Epoch', ylabel='Loss', title='Training and Validation Losses')
plt.subplots_adjust(bottom=0.15)
plt.savefig(os.path.join(PATH, 'losses.png'))
plt.show()
def plot_lr():
lr_df = pd.read_csv(
os.path.join(PATH, 'scalars', 'lr.csv'),
header=None
).head(NUM_EPOCHS)
ax = sns.lineplot(lr_df, x=0, y=1)
ax.set(xlabel='Epoch', ylabel='Learning Rate',
title='Learning Rate Schedule')
plt.subplots_adjust(bottom=0.15)
plt.savefig(os.path.join(PATH, 'lr.png'))
plt.show()
def plot_bleu():
bleu_df = pd.read_csv(
os.path.join(PATH, 'scalars', 'bleu.csv'),
header=None
).head(NUM_EPOCHS)
bleu_df[1] *= 100
ax = sns.lineplot(bleu_df, x=0, y=1)
ax.set(xlabel='Epoch', ylabel='BLEU Score',
title='Validation BLEU Score')
plt.subplots_adjust(bottom=0.15)
plt.savefig(os.path.join(PATH, 'bleu.png'))
plt.show()
def plot_positional_encoding():
embedding = Embedding(512, 1000, 0)
data = torch.zeros((1, 50))
pos_encoding = embedding.positional_encoding(data)
ax = sns.heatmap(pos_encoding)
ax.set(xlabel='Embedding Dimension', ylabel='Token Position', title='Positional Encoding')
plt.subplots_adjust(bottom=0.175, right=0.95)
plt.savefig(os.path.join('docs', 'positional_encoding.png'))
plt.show()
if __name__ == '__main__':
plot_losses()
plot_lr()
plot_bleu()
plot_positional_encoding()