-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
236 lines (208 loc) · 14.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from concurrent.futures import ProcessPoolExecutor, as_completed
import os
from argparse import ArgumentParser, RawTextHelpFormatter
from collections import deque
from typing import Dict, List, Tuple, Union
from common import check_are_identical
from data import open_problem_instance, store_results, write_solution_for_graph
from evaluation import calculate_area
from FIGA.figa import FIGA
from FIGA.figaSolution import FIGASolution
from MMOEASA.auxiliaries import is_nondominated as mmoeasa_is_nondominated
from MMOEASA.mmoeasa import MMOEASA
from MMOEASA.mmoeasaSolution import MMOEASASolution
from Ombuki.auxiliaries import is_nondominated as ombuki_is_nondominated
from Ombuki.ombuki import Ombuki
from Ombuki.ombukiSolution import OmbukiSolution
from problemInstance import ProblemInstance
def execute_MMOEASA(problem_instance: ProblemInstance) -> Tuple[List[Union[MMOEASASolution, OmbukiSolution]], Dict[str, int]]:
from MMOEASA.parameters import (CROSSOVER_PROBABILITY, MULTI_STARTS,
MUTATION_PROBABILITY, NUM_PROGRESS_OUTPUTS,
POPULATION_SIZE, TEMPERATURE_MAX,
TEMPERATURE_MIN, TEMPERATURE_STOP,
TERMINATION_CONDITION_ITERATIONS,
TERMINATION_CONDITION_SECONDS,
TERMINATION_CONDITION_TYPE)
return MMOEASA(problem_instance, POPULATION_SIZE, MULTI_STARTS, TERMINATION_CONDITION_SECONDS if TERMINATION_CONDITION_TYPE == "seconds" else TERMINATION_CONDITION_ITERATIONS, TERMINATION_CONDITION_TYPE, CROSSOVER_PROBABILITY, MUTATION_PROBABILITY, TEMPERATURE_MAX, TEMPERATURE_MIN, TEMPERATURE_STOP, deque([(TERMINATION_CONDITION_SECONDS / 10) * step if TERMINATION_CONDITION_TYPE == "seconds" else (TERMINATION_CONDITION_ITERATIONS / 10) * step for step in range(NUM_PROGRESS_OUTPUTS)]))
def execute_Ombuki(problem_instance: ProblemInstance, use_original: bool) -> Tuple[List[Union[OmbukiSolution, MMOEASASolution]], Dict[str, int]]:
from Ombuki.parameters import (CROSSOVER_PROBABILITY, MUTATION_PROBABILITY,
NUM_PROGRESS_OUTPUTS, POPULATION_SIZE,
TERMINATION_CONDITION_ITERATIONS,
TERMINATION_CONDITION_SECONDS,
TERMINATION_CONDITION_TYPE)
return Ombuki(problem_instance, POPULATION_SIZE, TERMINATION_CONDITION_SECONDS if TERMINATION_CONDITION_TYPE == "seconds" else TERMINATION_CONDITION_ITERATIONS, TERMINATION_CONDITION_TYPE, CROSSOVER_PROBABILITY, MUTATION_PROBABILITY, use_original, deque([(TERMINATION_CONDITION_SECONDS / 10) * step if TERMINATION_CONDITION_TYPE == "seconds" else (TERMINATION_CONDITION_ITERATIONS / 10) * step for step in range(NUM_PROGRESS_OUTPUTS)]))
def execute_FIGA(problem_instance: ProblemInstance) -> Tuple[List[FIGASolution], Dict[str, int]]:
from FIGA.parameters import (CROSSOVER_PROBABILITY, MUTATION_PROBABILITY,
NUM_PROGRESS_OUTPUTS, POPULATION_SIZE,
TEMPERATURE_MAX, TEMPERATURE_MIN,
TEMPERATURE_STOP,
TERMINATION_CONDITION_ITERATIONS,
TERMINATION_CONDITION_SECONDS,
TERMINATION_CONDITION_TYPE)
return FIGA(problem_instance, POPULATION_SIZE, TERMINATION_CONDITION_SECONDS if TERMINATION_CONDITION_TYPE == "seconds" else TERMINATION_CONDITION_ITERATIONS, TERMINATION_CONDITION_TYPE, CROSSOVER_PROBABILITY, MUTATION_PROBABILITY, TEMPERATURE_MAX, TEMPERATURE_MIN, TEMPERATURE_STOP, deque([(TERMINATION_CONDITION_SECONDS / 10) * step if TERMINATION_CONDITION_TYPE == "seconds" else (TERMINATION_CONDITION_ITERATIONS / 10) * step for step in range(NUM_PROGRESS_OUTPUTS)]))
if __name__ == '__main__':
parser = ArgumentParser(
formatter_class=RawTextHelpFormatter,
description=
f"Example commands are:{os.linesep}"
f" - \"main.py MMOEASA solomon_100/C101.txt -ac MMOEASA\"{os.linesep}"
f" - \"main.py FIGA solomon_100/RC102.txt\"{os.linesep}"
f" - \"main.py Ombuki solomon_100/R201.txt -ac MMOEASA\""
)
parser.add_argument("-a", "--algorithm",
type=str,
choices=["FIGA", "MMOEASA", "Ombuki", "Ombuki-Original"],
dest="algorithm",
help=f"The algorithms available are:{os.linesep}"
f" - MMOEASA,{os.linesep}"
f" - Ombuki,{os.linesep}"
f" - Ombuki-Original - contains features that seem to be anomalous from the original research paper,{os.linesep}"
f" - FIGA.{os.linesep}{os.linesep}"
)
parser.add_argument("-pi", "--problem_instance",
type=str,
dest="problem_instance",
help=f"There's multiple types of problems in Solomon's instances. Here's what they are:{os.linesep}"
f" - Number of customers:{os.linesep}"
f" - 100 - 100 customers,{os.linesep}"
f" - Archived (and, therefore, out of order):{os.linesep}"
f" - 25 - 25 customers,{os.linesep}"
f" - 50 - 50 customers.{os.linesep}"
f" - Customers' location:{os.linesep}"
f" - C - clustered customers,{os.linesep}"
f" - R - uniformly distributed customers,{os.linesep}"
f" - RC - a mix of R and C.{os.linesep}"
f" - Width of customers' time windows:{os.linesep}"
f" - 1 - destinations with narrow time windows,{os.linesep}"
f" - 2 - destinations with wide time windows.{os.linesep}{os.linesep}"
f"To execute a problem set, please enter a problem's filename. The details required, and the argument format, are:{os.linesep}"
f" - solomon_[ number of customers ]/[ customers' location ][ width of time windows ]XX.txt,{os.linesep}"
f" - Where XX is the instance number; see the folder \"solomon_[ number of customers ]\" for available instances.{os.linesep}{os.linesep}"
)
parser.add_argument("-ac", "--acceptance_criterion",
type=str,
choices=["MMOEASA", "Ombuki"],
dest="acceptance_criterion",
help=f"The acceptance criteria available are:{os.linesep}"
f" - MMOEASA,{os.linesep}"
f" - Ombuki.{os.linesep}{os.linesep}"
f"FIGA should not be used as and does not accept an alternative acceptance criterion. It uses Ombuki's criterion by default.{os.linesep}{os.linesep}"
)
parser.add_argument("-r", "--runs",
type=int,
default=1,
dest="runs",
help="Number of runs you wish your given configuration to complete. Giving a value > 1 will cause your selected algorithm to run multiple times on your selected problem instance and acceptance criteria."
)
parser.add_argument("-v", "--validate",
type=str,
dest="validate",
help="Follow up with a CSV file containing the solution you wish to validate. Validation is used to prove a solution; whether it is feasible or not."
)
args = parser.parse_args()
if args.validate:
assert args.algorithm is not None
if args.algorithm != "FIGA":
exc = ValueError(f"Validation for algorithm {args.algorithm} has not been implemented yet. Currently, only validation for FIGA is available.")
match args.algorithm:
case "FIGA":
solution = FIGASolution.is_valid(args.validate)
print(
f"feasibility: {solution.feasible}{os.linesep}"
f"front: {solution.total_distance}, {solution.num_vehicles}{os.linesep}{os.linesep}"
"Vehicles:"
)
for i, vehicle in enumerate(solution.vehicles):
print(f" - {i}: {vehicle.current_capacity}, {vehicle.route_distance}, {vehicle.get_num_of_customers_visited()}")
case "Ombuki":
solution = OmbukiSolution.is_valid(args.validate)
print(
f"feasibility: {solution.feasible}{os.linesep}"
f"front: {solution.total_distance}, {solution.num_vehicles}{os.linesep}{os.linesep}"
"Vehicles:"
)
for i, vehicle in enumerate(solution.vehicles):
print(f" - {i}: {vehicle.current_capacity}, {vehicle.route_distance}, {vehicle.get_num_of_customers_visited()}")
case "MMOEASA":
solution = MMOEASASolution.is_valid(args.validate)
print(
f"feasibility: {solution.feasible}{os.linesep}"
f"front: {solution.total_distance}, {solution.distance_unbalance}, {solution.cargo_unbalance}{os.linesep}{os.linesep}"
"Vehicles:"
)
for i, vehicle in enumerate(solution.vehicles):
print(f" - {i}: {vehicle.current_capacity}, {vehicle.route_distance}, {vehicle.get_num_of_customers_visited()}")
else:
assert args.algorithm is not None and args.problem_instance is not None
if args.algorithm == "FIGA":
assert args.acceptance_criterion is None
args.acceptance_criterion = "Ombuki"
else:
assert args.acceptance_criterion is not None
problem_instance = open_problem_instance(args.algorithm, args.problem_instance, args.acceptance_criterion)
if args.runs > 1:
all_nondominated_sets, all_hypervolumes = [], []
with ProcessPoolExecutor() as executor:
match args.algorithm:
case "MMOEASA":
function, alg_args = execute_MMOEASA, (problem_instance,)
case "Ombuki-Original":
function, alg_args = execute_Ombuki, (problem_instance, True)
case "Ombuki":
function, alg_args = execute_Ombuki, (problem_instance, False)
case "FIGA":
function, alg_args = execute_FIGA, (problem_instance,)
futures = []
for _ in range(args.runs):
futures.append(executor.submit(function, *alg_args))
print(f"Parallel runs started: {len(futures)} of {args.runs}")
for run, future in enumerate(as_completed(futures)):
print(f"Finished run {run + 1} of {args.runs}")
nondominated_set, statistics = future.result()
all_nondominated_sets.append(nondominated_set)
all_hypervolumes.append(calculate_area(problem_instance, nondominated_set, args.acceptance_criterion))
is_nondominated = ombuki_is_nondominated if args.acceptance_criterion == "Ombuki" else mmoeasa_is_nondominated
final_nondominated_set = [solution for nondominated_set in all_nondominated_sets for solution in nondominated_set]
solutions_to_remove = set()
for s, solution in enumerate(final_nondominated_set[:-1]): # len - 1 because in the next loop, s + 1 will do the comparison of the last non-dominated solution; we never need s and s_aux to equal the same value as there's no point comparing identical solutions
if s not in solutions_to_remove:
for s_aux, solution_auxiliary in enumerate(final_nondominated_set[s + 1:], s + 1): # s + 1 to len will perform the comparisons that have not been carried out yet; any solutions between indexes 0 and s + 1 have already been compared to the solution at index s, and + 1 is so that solution s is not compared to s
if s_aux not in solutions_to_remove:
if is_nondominated(solution, solution_auxiliary):
solutions_to_remove.add(s)
break
elif is_nondominated(solution_auxiliary, solution) \
or check_are_identical(solution, solution_auxiliary):
solutions_to_remove.add(s_aux)
if solutions_to_remove:
i = 0
for s in range(len(final_nondominated_set)):
if s not in solutions_to_remove:
final_nondominated_set[i] = final_nondominated_set[s]
i += 1
if i != len(final_nondominated_set):
del final_nondominated_set[i:]
store_results(args.problem_instance, args.algorithm, all_hypervolumes, all_nondominated_sets, calculate_area(problem_instance, final_nondominated_set, args.acceptance_criterion), final_nondominated_set)
else: # when only performing 1 run, it is generally a test run
# uncomment this code if you'd like a solution to be written to a CSV
# solutions can be plotted on a scatter graph in Excel as the x and y coordinates of each vehicle's destinations are outputted and in the order that they are serviced
# if nondominated_set:
# write_solution_for_graph(nondominated_set[0])
nondominated_set, statistics = None, None
match args.algorithm:
case "MMOEASA":
nondominated_set, statistics = execute_MMOEASA(problem_instance)
case "Ombuki-Original":
nondominated_set, statistics = execute_Ombuki(problem_instance, True)
case "Ombuki":
nondominated_set, statistics = execute_Ombuki(problem_instance, False)
case "FIGA":
nondominated_set, statistics = execute_FIGA(problem_instance)
calculate_area(problem_instance, nondominated_set, args.acceptance_criterion)
pareto_fronts = "Front(s):"
for solution in nondominated_set:
pareto_fronts += f"{os.linesep}\t{solution.total_distance},{solution.num_vehicles}{os.linesep}"
solution.vehicles = sorted(solution.vehicles, key=lambda v: v.destinations[1].node.number)
for vehicle in solution.vehicles:
pareto_fronts += '\t' + ','.join([str(d.node.number) for d in vehicle.get_customers_visited()]) + os.linesep
print(pareto_fronts)