-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathlouvain.py
97 lines (89 loc) · 3.33 KB
/
louvain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# -*- coding: utf-8 -*-
#
# Copyright (C) 2018 by
# Thomas Bonald <[email protected]>
# Bertrand Charpentier <[email protected]>
# All rights reserved.
# BSD license.
import networkx as nx
def maximize(G,resolution,eps):
# node weights
node_weight = {u: 0. for u in G.nodes()}
for (u,v) in G.edges():
node_weight[u] += G[u][v]['weight']
node_weight[v] += G[u][v]['weight']
# total weight
wtot = sum(list(node_weight.values()))
# clusters
cluster = {u:u for u in G.nodes()}
# total weight of each cluster
cluster_weight = {u:node_weight[u] for u in G.nodes()}
# weights in each community to which the nodes are linked
w = {u: {v: G[u][v]['weight'] for v in G.neighbors(u) if v != u} for u in G.nodes()}
increase = True
while increase:
increase = False
for u in G.nodes():
# Compute delta for every neighbor
delta = {}
for k in w[u]:
delta[k] = w[u][k] - resolution * node_weight[u] * cluster_weight[k] / wtot
# Compute delta for u itself (if not already done)
k = cluster[u]
if k not in w[u]:
delta[k] = - resolution * node_weight[u] * cluster_weight[k] / wtot
# Compare the greatest delta to epsilon
l = max(delta,key=delta.get)
if delta[l] - delta[k] > resolution * (node_weight[u] * node_weight[u] / wtot) + eps / wtot:
increase = True
cluster[u] = l
# Update information about neighbors and the community change of u
cluster_weight[k] -= node_weight[u]
cluster_weight[l] += node_weight[u]
for v in G.neighbors(u):
if v != u:
w[v][k] -= G[u][v]['weight']
if w[v][k] == 0:
w[v].pop(k)
if l not in w[v].keys():
w[v][l] = 0
w[v][l] += G[u][v]['weight']
return cluster
def aggregate(G, cluster):
H = nx.Graph()
H.add_nodes_from(list(cluster.values()))
for (u,v) in G.edges():
if H.has_edge(cluster[u],cluster[v]):
H[cluster[u]][cluster[v]]['weight'] += G[u][v]['weight']
else:
H.add_edge(cluster[u],cluster[v])
H[cluster[u]][cluster[v]]['weight'] = G[u][v]['weight']
return H
def get_clustering(cluster_dict):
cluster_index = []
cluster_list = []
for u,k in cluster_dict.items():
if k not in cluster_index:
cluster_index.append(k)
cluster_list.append([u])
else:
cluster_list[cluster_index.index(k)].append(u)
return cluster_list
def louvain(G, resolution = 1, eps = 0.001, unit_weights = True, copy_graph = False):
if copy_graph:
F = G.copy()
else:
F = G
if unit_weights:
for (u,v) in F.edges():
F[u][v]['weight'] = 1
cluster = maximize(F,resolution,eps)
n = len(cluster)
k = len(set(cluster.values()))
while k < n:
H = aggregate(F,cluster)
new_cluster = maximize(F,resolution,eps)
cluster = {u: new_cluster[cluster[u]] for u in F.nodes()}
n = k
k = len(set(cluster.values()))
return get_clustering(cluster)