-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathprepare_data.py
160 lines (135 loc) · 7.06 KB
/
prepare_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import numpy as np
import scipy as sp
import pandas as pd
import h5py
#from pyminc.volumes.factory import *
import os
from re import sub
from sys import argv, exit
from os.path import basename, exists, splitext
from os import makedirs
from set_images import *
from utils import *
def adjust_batch_size(n1, n2, batch_size):
#This little bit of code changes the batch_size so that it divides the first dimension
#of the data tensor without remainder. This way the data tensor can be divided into
#equally sized batche
n = n1
if n > n2:n=n2
if n1 % batch_size != 0 and n2 % batch_size != 0:
for b in range(n, 0, -1):
if n1 % b == 0 and n2 % b == 0:
return b
else: return batch_size
def pad(x, n):
while (x % 2**n) != 0 :
x += (x % 2**n)
return x
def feature_extraction(images, temp_image_dim, pad_image_dim, x_output_file, y_output_file,data_dir, clobber, pad_base=0):
nSubjects= images.shape[0] #total number f subjects
total_valid_slices = images.valid_samples.values.sum()
#Set up the number of valid slices for each subject
if pad_base % 1 != 0 or pad_base < 0 :
print("Error: <pad_base> must be a integer great than or equal to 0.")
exit(1)
f = h5py.File(data_dir+os.sep+'temp.hdf5', "w")
X_f = f.create_dataset("image", [total_valid_slices,pad_image_dim[1],pad_image_dim[2],1], dtype='float16')
Y_f = f.create_dataset("label", [total_valid_slices,pad_image_dim[1],pad_image_dim[2],1], dtype='float16')
total_index=0
for index, row in images.iterrows():
if index % 10 == 0: print("Saving",images["category"][0],"images:",index, '/', images.shape[0] , end='\r')
#meera
#these 4 lines need to be changed
#i think you would just need to use
#pet=safe_h5py_open(row.pet, 'r')
#label=safe_h5py_open(row.label, 'r')
minc_pet_f = safe_h5py_open(row.pet, 'r')
minc_label_f = safe_h5py_open(row.label, 'r')
pet=np.array(minc_pet_f['minc-2.0/']['image']['0']['image'])
label=np.array(minc_label_f['minc-2.0/']['image']['0']['image'])
#meera
#sum pet image if it is a 4d volume
#as mentioned in the set_images.py script
#we need to figure out which dimension refers to time when you load
#an array with nibabel. i think it's the last (ie., 3), but I'm not 100% sure
#in that case we would use
#time_dimension=3
time_dimension=0
if len(pet.shape) == 4: pet = np.sum(pet, axis=time_dimension)
pet = normalize(pet)
offset1=pad_image_dim[1]-temp_image_dim[1]
offset2=pad_image_dim[2]-temp_image_dim[2]
pet = np.pad(pet, ((0,0),(0,offset1 ),(0, offset2)), "constant")
label = np.pad(label, ((0,0),(0, offset1),(0, offset2)), "constant")
pet=pet.reshape(list(pet.shape)+[1])
for i,j in zip(np.unique(label), range(len(np.unique(label)))):
label[ label == i ] = j
label=label.reshape(list(label.shape)+[1])
for j in range(row.total_samples):
if pet[j].sum() != 0 :
f['image'][(total_index)] = pet[j,:,:]
f['label'][(total_index)] = label[j,:,:]
total_index += 1
clean_X = f['image']
clean_Y = f['label']
np.save(x_output_file,clean_X)
np.save(y_output_file,clean_Y)
f.close()
print("")
return( 0 )
def set_onehot(images, filename):
onehot = np.array([])
for i, nsamples in zip(images.onehot, images.valid_samples):
onehot=np.concatenate([onehot, np.repeat(i, nsamples)] )
np.save(filename, onehot)
return(0)
def get_image_dim(fn):
'''get spatial dimensions for input images
fn -- filename
'''
minc_label_f = safe_h5py_open(fn, 'r')
label_img = np.array(minc_label_f['minc-2.0/']['image']['0']['image'])
image_dim = list(label_img.shape) #load label file and get its dimensions
del label_img
return image_dim
# Go to the source directory and grab the relevant data. Convert it to numpy arrays named validate- and train-
def prepare_data(source_dir, data_dir, report_dir, input_str, label_str, ratios=[0.75,0.15], batch_size=2, feature_dim=2, images_fn=None, clobber=False, pad_base=0):
data={}
### 0) Setup file names and output directories
data["train_x_fn"] = data_dir + os.sep + 'train_x'
data["train_y_fn"] = data_dir + os.sep + 'train_y'
data["validate_x_fn"] = data_dir + os.sep + 'validate_x'
data["validate_y_fn"] = data_dir + os.sep + 'validate_y'
data["test_x_fn"] = data_dir + os.sep + 'test_x'
data["test_y_fn"] = data_dir + os.sep + 'test_y'
if images_fn==None :images_fn= report_dir+os.sep+'images.csv'
### 1) Organize inputs into a data frame, match each PET image with label image
if not exists(images_fn) or clobber:
### set_images is a very important function that will find all the PET images and their
### corresponding labelled images from source_dir. This function uses <input_str> and <label_str>
### to identify which files are inputs and labeles, respectively. The images use the BIDS file format
### where subject, session, task, radiotracer are specificied in the filename. These variables are parsed
### from the filenames and also stored in the data frame
images = set_images(source_dir, ratios,images_fn, input_str, label_str )
else:
images = pd.read_csv(images_fn)
## 2) Split images into training and validate data frames
train_images = images[images['category']=='train'].reset_index()
validate_images = images[images['category']=='validate'].reset_index()
test_images = images[images['category']=='test'].reset_index()
train_valid_samples = train_images.valid_samples.values.sum()
validate_valid_samples = validate_images.valid_samples.values.sum()
### 3) Get spatial dimensions of images
temp_image_dim = get_image_dim(images.iloc[0].label)
data["image_dim"] = [ temp_image_dim[0], pad( temp_image_dim[1], pad_base), pad(temp_image_dim[2], pad_base) ]
print("1",temp_image_dim)
print("2",data["image_dim"])
### 4) Set up dimensions of data tensors to be used for training and validateing. all of the
if not exists(data["train_x_fn"] + '.npy') or not exists( data["train_y_fn"] + '.npy') or clobber:
feature_extraction(train_images,temp_image_dim, data["image_dim"], data["train_x_fn"], data["train_y_fn"], data_dir, clobber, pad_base=pad_base)
if not exists(data["validate_x_fn"] + '.npy') or not exists(data["validate_y_fn"] + '.npy') or clobber:
feature_extraction(validate_images,temp_image_dim, data["image_dim"], data["validate_x_fn"], data["validate_y_fn"], data_dir, clobber, pad_base=pad_base)
if not exists(data["test_x_fn"] + '.npy') or not exists(data["test_y_fn"] + '.npy') or clobber:
feature_extraction(test_images, temp_image_dim, data["image_dim"], data["test_x_fn"], data["test_y_fn"], data_dir, clobber)
data["batch_size"] = adjust_batch_size(train_valid_samples, validate_valid_samples, batch_size)
return [ images, data ]