-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathutils.py
107 lines (85 loc) · 3.08 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
import h5py
import numpy as np
from os.path import splitext, basename, exists
from keras import backend as K
global categorical_functions
categorical_functions = ["categorical_crossentropy"]
def from_categorical(cat, img):
out = np.zeros(img.shape)
for i, cat0 in zip(np.unique(img), cat) :
out = out + cat0 * i
return(out)
def set_model_name(filename, target_dir, ext='.hdf5'):
'''function to set default model name'''
return target_dir+os.sep+splitext(basename(filename))[0]+ext
def safe_h5py_open(filename, mode):
'''open hdf5 file, exit elegantly on failure'''
#meera
# At the moment, this function returns a complicated object "f" that contains
# the image array somewhere inside of it.
# You can modify this function so that it uses nibabel to load in images instead
# of h5py. In this case, this function should return the actual 3D/4D array.
#
try :
#meera
#not sure if this is right, but could try something like :
#f = nibabel.Load(filename)
#image_array = np.asarray(f.dataobj)
#return image_array
f = h5py.File(filename, mode)
return f
except OSError :
print('Error: Could not open', filename)
exit(1)
def normalize(A):
'''performs a simple normalization from 0 to 1 of a numpy array. checks that the image is not a uniform value first
args
A -- numpy array
returns
numpy array (either A or normalized version of A)
'''
std_factor=1
if np.std(A) > 0 : std_factor=np.std(A)
A = (A - np.mean(A)) / std_factor
scale_factor=np.max(A) - A.min()
if scale_factor == 0: scale_factor = 1
A = (A - A.min()) /scale_factor
return A
def dice_coef(y_true, y_pred):
y_true_f = np.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
def dice_coef_loss(y_true, y_pred):
return -dice_coef(y_true, y_pred)
def dice_loss(y_true, y_pred):
"""
Computes approximate DICE coefficient as a loss by using the negative, computed with the Keras backend. The overlap\
and total are offset to prevent 0/0, and the values are not rounded in order to keep the gradient information.
Args:
:arg y_true: Ground truth
:arg y_pred: Predicted value for some input
Returns
:return: Approximate DICE coefficient.
"""
ytf = K.flatten(y_true)
ypf = K.flatten(y_pred)
overlap = K.sum(ytf*ypf)
total = K.sum(ytf*ytf) + K.sum(ypf * ypf)
return -(2*overlap +1e-10) / (total + 1e-10)
def dice_metric(y_true, y_pred):
"""
Computes DICE coefficient, computed with the Keras backend.
Args:
:arg y_true: Ground truth
:arg y_pred: Predicted value for some input
Returns
:return: DICE coefficient
"""
#ytf = K.round(K.flatten(y_true))
#ypf = K.round(K.flatten(y_pred))
#overlap = 2*K.sum(ytf*ypf)
#total = K.sum(ytf*ytf) + K.sum(ypf * ypf)
#return overlap / total
return -1 * dice_loss(y_true, y_pred)