-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmachFX16.py
353 lines (273 loc) · 11.9 KB
/
machFX16.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
'''
'''
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
import matplotlib.dates as mdates
import numpy as np
from numpy import loadtxt
import time
totalStart = time.time()
date,bid,ask = np.loadtxt('GBPUSD1d.txt', unpack=True,
delimiter=',',
converters={0:mdates.strpdate2num('%Y%m%d%H%M%S')})
def percentChange(startPoint,currentPoint):
try:
x = ((float(currentPoint)-startPoint)/abs(startPoint))*100.00
if x == 0.0:
return 0.000000001
else:
return x
except:
return 0.0001
def patternStorage():
'''
The goal of patternFinder is to begin collection of %change patterns
in the tick data. From there, we also collect the short-term outcome
of this pattern. Later on, the length of the pattern, how far out we
look to compare to, and the length of the compared range be changed,
and even THAT can be machine learned to find the best of all 3 by
comparing success rates.'''
startTime = time.time()
x = len(avgLine)-30
y = 31
currentStance = 'none'
while y < x:
pattern = []
p1 = percentChange(avgLine[y-30], avgLine[y-29])
p2 = percentChange(avgLine[y-30], avgLine[y-28])
p3 = percentChange(avgLine[y-30], avgLine[y-27])
p4 = percentChange(avgLine[y-30], avgLine[y-26])
p5 = percentChange(avgLine[y-30], avgLine[y-25])
p6 = percentChange(avgLine[y-30], avgLine[y-24])
p7 = percentChange(avgLine[y-30], avgLine[y-23])
p8 = percentChange(avgLine[y-30], avgLine[y-22])
p9 = percentChange(avgLine[y-30], avgLine[y-21])
p10= percentChange(avgLine[y-30], avgLine[y-20])
p11 = percentChange(avgLine[y-30], avgLine[y-19])
p12 = percentChange(avgLine[y-30], avgLine[y-18])
p13 = percentChange(avgLine[y-30], avgLine[y-17])
p14 = percentChange(avgLine[y-30], avgLine[y-16])
p15 = percentChange(avgLine[y-30], avgLine[y-15])
p16 = percentChange(avgLine[y-30], avgLine[y-14])
p17 = percentChange(avgLine[y-30], avgLine[y-13])
p18 = percentChange(avgLine[y-30], avgLine[y-12])
p19 = percentChange(avgLine[y-30], avgLine[y-11])
p20= percentChange(avgLine[y-30], avgLine[y-10])
p21 = percentChange(avgLine[y-30], avgLine[y-9])
p22 = percentChange(avgLine[y-30], avgLine[y-8])
p23 = percentChange(avgLine[y-30], avgLine[y-7])
p24 = percentChange(avgLine[y-30], avgLine[y-6])
p25 = percentChange(avgLine[y-30], avgLine[y-5])
p26 = percentChange(avgLine[y-30], avgLine[y-4])
p27 = percentChange(avgLine[y-30], avgLine[y-3])
p28 = percentChange(avgLine[y-30], avgLine[y-2])
p29 = percentChange(avgLine[y-30], avgLine[y-1])
p30= percentChange(avgLine[y-30], avgLine[y])
outcomeRange = avgLine[y+20:y+30]
currentPoint = avgLine[y]
try:
avgOutcome = reduce(lambda x, y: x + y, outcomeRange) / len(outcomeRange)
except Exception, e:
print str(e)
avgOutcome = 0
futureOutcome = percentChange(currentPoint, avgOutcome)
'''
print 'where we are historically:',currentPoint
print 'soft outcome of the horizon:',avgOutcome
print 'This pattern brings a future change of:',futureOutcome
print '_______'
print p1, p2, p3, p4, p5, p6, p7, p8, p9, p10
'''
pattern.append(p1)
pattern.append(p2)
pattern.append(p3)
pattern.append(p4)
pattern.append(p5)
pattern.append(p6)
pattern.append(p7)
pattern.append(p8)
pattern.append(p9)
pattern.append(p10)
pattern.append(p11)
pattern.append(p12)
pattern.append(p13)
pattern.append(p14)
pattern.append(p15)
pattern.append(p16)
pattern.append(p17)
pattern.append(p18)
pattern.append(p19)
pattern.append(p20)
pattern.append(p21)
pattern.append(p22)
pattern.append(p23)
pattern.append(p24)
pattern.append(p25)
pattern.append(p26)
pattern.append(p27)
pattern.append(p28)
pattern.append(p29)
pattern.append(p30)
patternAr.append(pattern)
performanceAr.append(futureOutcome)
y+=1
endTime = time.time()
print len(patternAr)
print len(performanceAr)
print 'Pattern storing took:', endTime-startTime
def currentPattern():
mostRecentPoint = avgLine[-1]
cp1 = percentChange(avgLine[-31],avgLine[-30])
cp2 = percentChange(avgLine[-31],avgLine[-29])
cp3 = percentChange(avgLine[-31],avgLine[-28])
cp4 = percentChange(avgLine[-31],avgLine[-27])
cp5 = percentChange(avgLine[-31],avgLine[-26])
cp6 = percentChange(avgLine[-31],avgLine[-25])
cp7 = percentChange(avgLine[-31],avgLine[-24])
cp8 = percentChange(avgLine[-31],avgLine[-23])
cp9 = percentChange(avgLine[-31],avgLine[-22])
cp10= percentChange(avgLine[-31],avgLine[-21])
cp11 = percentChange(avgLine[-31],avgLine[-20])
cp12 = percentChange(avgLine[-31],avgLine[-19])
cp13 = percentChange(avgLine[-31],avgLine[-18])
cp14 = percentChange(avgLine[-31],avgLine[-17])
cp15 = percentChange(avgLine[-31],avgLine[-16])
cp16 = percentChange(avgLine[-31],avgLine[-15])
cp17 = percentChange(avgLine[-31],avgLine[-14])
cp18 = percentChange(avgLine[-31],avgLine[-13])
cp19 = percentChange(avgLine[-31],avgLine[-12])
cp20= percentChange(avgLine[-31],avgLine[-11])
cp21 = percentChange(avgLine[-31],avgLine[-10])
cp22 = percentChange(avgLine[-31],avgLine[-9])
cp23 = percentChange(avgLine[-31],avgLine[-8])
cp24 = percentChange(avgLine[-31],avgLine[-7])
cp25 = percentChange(avgLine[-31],avgLine[-6])
cp26 = percentChange(avgLine[-31],avgLine[-5])
cp27 = percentChange(avgLine[-31],avgLine[-4])
cp28 = percentChange(avgLine[-31],avgLine[-3])
cp29 = percentChange(avgLine[-31],avgLine[-2])
cp30= percentChange(avgLine[-31],avgLine[-1])
patForRec.append(cp1)
patForRec.append(cp2)
patForRec.append(cp3)
patForRec.append(cp4)
patForRec.append(cp5)
patForRec.append(cp6)
patForRec.append(cp7)
patForRec.append(cp8)
patForRec.append(cp9)
patForRec.append(cp10)
patForRec.append(cp11)
patForRec.append(cp12)
patForRec.append(cp13)
patForRec.append(cp14)
patForRec.append(cp15)
patForRec.append(cp16)
patForRec.append(cp17)
patForRec.append(cp18)
patForRec.append(cp19)
patForRec.append(cp20)
patForRec.append(cp21)
patForRec.append(cp22)
patForRec.append(cp23)
patForRec.append(cp24)
patForRec.append(cp25)
patForRec.append(cp26)
patForRec.append(cp27)
patForRec.append(cp28)
patForRec.append(cp29)
patForRec.append(cp30)
def graphRawFX():
fig=plt.figure(figsize=(10,7))
ax1 = plt.subplot2grid((40,40), (0,0), rowspan=40, colspan=40)
ax1.plot(date,bid)
ax1.plot(date,ask)
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d %H:%M:%S'))
plt.grid(True)
for label in ax1.xaxis.get_ticklabels():
label.set_rotation(45)
plt.gca().get_yaxis().get_major_formatter().set_useOffset(False)
ax1_2 = ax1.twinx()
ax1_2.fill_between(date, 0, (ask-bid), facecolor='g',alpha=.3)
plt.subplots_adjust(bottom=.23)
plt.show()
def patternRecognition():
plotPatAr = []
patFound = 0
for eachPattern in patternAr:
sim1 = 100.00 - abs(percentChange(eachPattern[0], patForRec[0]))
sim2 = 100.00 - abs(percentChange(eachPattern[1], patForRec[1]))
sim3 = 100.00 - abs(percentChange(eachPattern[2], patForRec[2]))
sim4 = 100.00 - abs(percentChange(eachPattern[3], patForRec[3]))
sim5 = 100.00 - abs(percentChange(eachPattern[4], patForRec[4]))
sim6 = 100.00 - abs(percentChange(eachPattern[5], patForRec[5]))
sim7 = 100.00 - abs(percentChange(eachPattern[6], patForRec[6]))
sim8 = 100.00 - abs(percentChange(eachPattern[7], patForRec[7]))
sim9 = 100.00 - abs(percentChange(eachPattern[8], patForRec[8]))
sim10 = 100.00 - abs(percentChange(eachPattern[9], patForRec[9]))
sim11 = 100.00 - abs(percentChange(eachPattern[10], patForRec[10]))
sim12 = 100.00 - abs(percentChange(eachPattern[11], patForRec[11]))
sim13 = 100.00 - abs(percentChange(eachPattern[12], patForRec[12]))
sim14 = 100.00 - abs(percentChange(eachPattern[13], patForRec[13]))
sim15 = 100.00 - abs(percentChange(eachPattern[14], patForRec[14]))
sim16 = 100.00 - abs(percentChange(eachPattern[15], patForRec[15]))
sim17 = 100.00 - abs(percentChange(eachPattern[16], patForRec[16]))
sim18 = 100.00 - abs(percentChange(eachPattern[17], patForRec[17]))
sim19 = 100.00 - abs(percentChange(eachPattern[18], patForRec[18]))
sim20 = 100.00 - abs(percentChange(eachPattern[19], patForRec[19]))
sim21 = 100.00 - abs(percentChange(eachPattern[20], patForRec[20]))
sim22 = 100.00 - abs(percentChange(eachPattern[21], patForRec[21]))
sim23 = 100.00 - abs(percentChange(eachPattern[22], patForRec[22]))
sim24 = 100.00 - abs(percentChange(eachPattern[23], patForRec[23]))
sim25 = 100.00 - abs(percentChange(eachPattern[24], patForRec[24]))
sim26 = 100.00 - abs(percentChange(eachPattern[25], patForRec[25]))
sim27 = 100.00 - abs(percentChange(eachPattern[26], patForRec[26]))
sim28 = 100.00 - abs(percentChange(eachPattern[27], patForRec[27]))
sim29 = 100.00 - abs(percentChange(eachPattern[28], patForRec[28]))
sim30 = 100.00 - abs(percentChange(eachPattern[29], patForRec[29]))
howSim = (sim1+sim2+sim3+sim4+sim5+sim6+sim7+sim8+sim9+sim10
+sim11+sim12+sim13+sim14+sim15+sim16+sim17+sim18+sim19+sim20
+sim21+sim22+sim23+sim24+sim25+sim26+sim27+sim28+sim29+sim30)/30.00
if howSim > 65:
patdex = patternAr.index(eachPattern)
patFound = 1
xp = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30]
#############
plotPatAr.append(eachPattern)
if patFound == 1:
fig = plt.figure(figsize=(10,6))
for eachPatt in plotPatAr:
futurePoints = patternAr.index(eachPatt)
if performanceAr[futurePoints] > patForRec[9]:
pcolor = '#24bc00'
else:
pcolor = '#d40000'
plt.plot(xp, eachPatt)
####################
plt.scatter(35, performanceAr[futurePoints],c=pcolor,alpha=.4)
realOutcomeRange = allData[toWhat+20:toWhat+30]
realAvgOutcome = reduce(lambda x, y: x + y, realOutcomeRange) / len(realOutcomeRange)
realMovement = percentChange(allData[toWhat],realAvgOutcome)
plt.scatter(40, realMovement, c='#54fff7',s=25)
plt.plot(xp, patForRec, '#54fff7', linewidth = 3)
plt.grid(True)
plt.title('Pattern Recognition.\nCyan line is the current pattern. Other lines are similar patterns from the past.\nPredicted outcomes are color-coded to reflect a positive or negative prediction.\nThe Cyan dot marks where the pattern went.\nOnly data in the past is used to generate patterns and predictions.')
plt.show()
dataLength = int(bid.shape[0])
print 'data length is', dataLength
allData = ((bid+ask)/2)
toWhat = 53500
while toWhat < dataLength:
avgLine = ((bid+ask)/2)
avgLine = avgLine[:toWhat]
patternAr = []
performanceAr = []
patForRec = []
#avgOutcome = reduce(lambda x, y: x + y, outcomeRange) / len(outcomeRange)
patternStorage()
currentPattern()
patternRecognition()
totalEnd = time.time()-totalStart
print 'Entire processing took:',totalEnd,'seconds'
toWhat += 1