-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathFaceDetect.py
99 lines (80 loc) · 3.07 KB
/
FaceDetect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import numpy as np
import face_recognition
import cv2
from PIL import ImageFont, ImageDraw, Image
import os
from datetime import datetime
import FindCloneAPI
path = 'KnownFaces'
images = []
classNames = []
cap = cv2.VideoCapture(0)
def face_detect():
myList = os.listdir(path)
print(myList)
for cls in myList:
curImg = cv2.imread(f'{path}/{cls}')
images.append(curImg)
classNames.append(os.path.splitext(cls)[0])
print(classNames)
def findEncodings(images):
encodeList = []
for img in images:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
encode = face_recognition.face_encodings(img)[0]
encodeList.append(encode)
return encodeList
def markAttendance(name):
with open("Attendance.csv", "r+") as f:
myDataList = f.readlines()
nameList = []
for line in myDataList:
entry = line.split(',')
nameList.append(entry[0])
if name not in nameList:
now = datetime.now()
dtString = now.strftime("%H:%M:%S")
f.writelines(f'\n{name}, {dtString}')
encodeListKnown = findEncodings(images)
print("Декодирование закончено")
while True:
success, img = cap.read()
imgS = cv2.resize(img, (0, 0), None, 0.25, 0.25)
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
facesCurFrame = face_recognition.face_locations(imgS)
encodeCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)
for encodeFace, faceLoc in zip(encodeCurFrame, facesCurFrame):
matches = face_recognition.compare_faces(encodeListKnown, encodeFace)
faceDis = face_recognition.face_distance(encodeListKnown, encodeFace)
#print(faceDis)
matchIndex = np.argmin(faceDis)
name = 'Unknown'
if matches[matchIndex]:
name = classNames[matchIndex]
y1, x2, y2, x1 = faceLoc
y1, x2, y2, x1 = y1*4, x2*4, y2*4, x1*4
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 0), 3)
cv2.rectangle(img, (x1, y2 - 35), (x2, y2), (0, 0, 0), cv2.FILLED)
font_path = 'Fonts/Roboto-Regular.ttf'
font = ImageFont.truetype(font_path, 32)
img_pil = Image.fromarray(img)
b, g, r, a = 255, 255, 255, 0
draw = ImageDraw.Draw(img_pil)
draw.text((x1 + 6, y2 - 35), str(name), font=font, fill=(b, g, r, a))
frame = np.array(img_pil)
markAttendance(name)
else:
filename = 'KnownFaces/face.jpg'
cv2.imwrite(filename, img)
print("Лицо сохранено")
find_clone(filename)
cv2.imshow("WebCam", frame)
cv2.waitKey(1)
def find_clone(img):
find = FindCloneAPI.FindCloneAPI()
find.login()
find.upload(img)
name = 'KnownFaces/' + str(find.out()) + '.jpg'
os.rename(img, name)
face_detect()
face_detect()