-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
492 lines (421 loc) · 19.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
# -*- coding: utf-8 -*-
# BFit is a Python library for fitting a convex sum of Gaussian
# functions to any probability distribution
#
# Copyright (C) 2020- The QC-Devs Community
#
# This file is part of BFit.
#
# BFit is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 3
# of the License, or (at your option) any later version.
#
# BFit is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see <http://www.gnu.org/licenses/>
#
# ---
r"""Models used for fitting."""
from numbers import Integral
import numpy as np
__all__ = ["AtomicGaussianDensity", "MolecularGaussianDensity"]
class AtomicGaussianDensity:
r"""
Gaussian density model for modeling the electronic density of a single atom.
Atomic Gaussian density is a linear combination of Gaussian functions of S-type
and p-type functions:
.. math::
f(x) := \sum_i c_i e^{-\alpha_i |x - c|^2} + \sum_j d_j |x - c|^2 e^{-\beta_j |x - c|^2}
where
:math:`c_i, d_i` are the coefficients of s-type and p-type Gaussian functions,
:math:`\alpha_i, \beta_j` are teh exponents of the s-type and p-type Gaussian functions,
:math:`c` is the center of all Gaussian functions.
:math:`x` is the real coordinates, can be multi-dimensional.
"""
def __init__(self, points, center=None, num_s=1, num_p=0, normalize=False):
r"""
Construct class representing atomic density modeled as Gaussian functions.
Parameters
----------
points : ndarray, (N, D)
Grid points where N is the number of points and D is the number of dimensions.
center : ndarray (D,), optional
The D-dimensional coordinates of the single center.
If `None`, then the center is the origin of all zeros.
num_s : int, optional
Number of s-type Gaussian basis functions.
num_p : int, optional
Number of p-type Gaussian basis functions.
normalize : bool, optional
Whether to normalize Gaussian basis functions.
"""
if not isinstance(points, np.ndarray):
raise TypeError("Argument points should be a numpy array.")
if not isinstance(num_s, Integral) or num_s < 0:
raise TypeError("Argument num_s should be a positive integer.")
if not isinstance(num_p, Integral) or num_p < 0:
raise TypeError("Argument num_p should be a positive integer.")
if num_s + num_p == 0:
raise ValueError("Arguments num_s & num_p cannot both be zero!")
# check & assign coordinates.
if center is not None:
if not isinstance(center, np.ndarray) or center.ndim != 1:
raise ValueError("Argument center should be a 1D numpy array.")
if points.ndim > 1 and points.shape[1] != center.size:
raise ValueError("Points & center should have the same number of columns.")
elif points.ndim > 1:
center = np.array([0.] * points.shape[1])
else:
center = np.array([0.])
self.coord = center
# compute radii (distance of points from center center)
if points.ndim > 1:
radii = np.linalg.norm(points - self.coord, axis=1)
else:
radii = np.abs(points - self.coord)
self._radii = np.ravel(radii)
self._points = points
self.ns = num_s
self.np = num_p
self.normalized = normalize
@property
def points(self):
"""Return the grid points."""
return self._points
@property
def radii(self):
"""Return the distance of grid points from center of Gaussian(s)."""
return self._radii
@property
def num_s(self):
"""Return the number of s-type Gaussian basis functions."""
return self.ns
@property
def num_p(self):
"""Return the number of p-type Gaussian basis functions."""
return self.np
@property
def nbasis(self):
"""Return the total number of Gaussian basis functions."""
return self.ns + self.np
@property
def natoms(self):
"""Return the number of basis functions centers."""
return 1
@property
def prefactor(self):
r"""Obtain list of exponents for the prefactors."""
return np.array([1.5] * self.ns + [2.5] * self.np)
def change_numb_s_and_numb_p(self, new_s, new_p):
r"""
Change the number of s-type and p-type Gaussians.
Parameters
----------
new_s : int
New number of s-type Gaussians.
new_p : int
New number of p-type Gaussians.
"""
if not isinstance(new_s, int):
raise TypeError(f"New number of s-type {new_s} should be of type int.")
if not isinstance(new_p, int):
raise TypeError(f"New number of p-type {new_p} should be of type int.")
self.ns = new_s
self.np = new_p
def evaluate(self, coeffs, expons, deriv=False):
r"""
Compute linear combination of Gaussian basis & its derivatives on the grid points.
.. math::
f(x):= \sum_i c_i e^{-\alpha_i |x - c|^2} + \sum_j d_j |x - c|^2 e^{-\beta_j |x - c|^2}
where
:math:`c_i, d_i` are the coefficients of s-type and p-type Gaussian functions,
:math:`\alpha_i, \beta_j` are teh exponents of the s-type and p-type Gaussian functions,
:math:`c` is the center of all Gaussian functions.
:math:`x` is the real coordinates, can be multi-dimensional.
Parameters
----------
coeffs : ndarray(`nbasis`,)
The coefficients :math:`c_i` of `num_s` s-type Gaussian basis functions
followed by the coefficients :math:`d_j` of `num_p` p-type Gaussian basis functions.
expons : ndarray(`nbasis`,)
The exponents :math:`\alpha_i` of `num_s` s-type Gaussian basis functions
followed by the exponents :math:`\beta_j` of `num_p` p-type Gaussian basis functions.
deriv : bool, optional
Whether to compute derivative of Gaussian basis functions w.r.t. coefficients &
exponents.
Returns
-------
g : ndarray, (N,)
The linear combination of Gaussian basis functions evaluated on the grid points.
dg : ndarray, (N, 2 * `nbasis`)
The derivative of a linear combination of Gaussian basis functions w.r.t. coefficients
& exponents, respectively, evaluated on the grid points. Only returned if `deriv=True`.
"""
if coeffs.ndim != 1 or expons.ndim != 1:
raise ValueError("Arguments coeffs and expons should be 1D arrays.")
if coeffs.size != expons.size:
raise ValueError("Arguments coeffs and expons should have the same length.")
if coeffs.size != self.nbasis:
raise ValueError(f"Argument coeffs should have size {self.nbasis}.")
# evaluate all Gaussian basis on the grid, i.e., exp(-a * r**2)
matrix = np.exp(-expons[None, :] * np.power(self.radii, 2)[:, None])
# compute linear combination of Gaussian basis
if self.np == 0:
# only s-type Gaussian basis functions
return self._eval_s(matrix, coeffs, expons, deriv)
elif self.ns == 0:
# only p-type Gaussian basis functions
return self._eval_p(matrix, coeffs, expons, deriv)
else:
# both s-type & p-type Gaussian basis functions
gs = self._eval_s(matrix[:, :self.ns], coeffs[:self.ns], expons[:self.ns], deriv)
gp = self._eval_p(matrix[:, self.ns:], coeffs[self.ns:], expons[self.ns:], deriv)
if deriv:
# split derivatives w.r.t. coeffs & expons
d_coeffs = np.concatenate((gs[1][:, :self.ns], gp[1][:, :self.np]), axis=1)
d_expons = np.concatenate((gs[1][:, self.ns:], gp[1][:, self.np:]), axis=1)
return gs[0] + gp[0], np.concatenate((d_coeffs, d_expons), axis=1)
return gs + gp
def _eval_s(self, matrix, coeffs, expons, deriv):
r"""
Compute linear combination of s-type Gaussian basis & its derivative on the grid points.
Parameters
----------
matrix : ndarray, (N, M)
The exp(-\alpha_i * r**2) array evaluated on grid points for each exponent.
coeffs : ndarray, (M,)
The coefficients of Gaussian basis functions.
expons : ndarray, (M,)
The exponents of Gaussian basis functions.
deriv : bool, optional
Whether to compute derivative of Gaussian basis functions w.r.t. coefficients &
exponents.
Returns
-------
g : ndarray, (N,)
The linear combination of s-type Gaussian basis functions evaluated on the grid points.
dg : ndarray, (N, 2*M)
The derivative of linear combination of s-type Gaussian basis functions w.r.t.
coefficients (the 1st M columns) & exponents (the 2nd M columns) evaluated on the
grid points. Only returned if `deriv=True`.
"""
# normalize Gaussian basis
if self.normalized:
matrix = matrix * (expons[None, :] / np.pi) ** 1.5
# make linear combination of Gaussian basis on the grid
g = np.dot(matrix, coeffs)
# compute derivatives
if deriv:
dg = np.zeros((len(self.radii), 2 * coeffs.size))
# derivative w.r.t. coefficients
dg[:, :coeffs.size] = matrix
# derivative w.r.t. exponents
dg[:, coeffs.size:] = - matrix * np.power(self.radii, 2)[:, None] * coeffs[None, :]
if self.normalized:
matrix = np.exp(-expons[None, :] * np.power(self.radii, 2)[:, None])
dg[:, coeffs.size:] += 1.5 * matrix * (coeffs * expons**0.5)[None, :] / np.pi**1.5
return g, dg
return g
def _eval_p(self, matrix, coeffs, expons, deriv):
"""Compute linear combination of p-type Gaussian basis & its derivative on the grid points.
Parameters
----------
matrix : ndarray, (N, M)
The exp(-beta_i * r**2) array evaluated on grid points for each exponent.
coeffs : ndarray, (M,)
The coefficients of Gaussian basis functions.
expons : ndarray, (M,)
The exponents of Gaussian basis functions.
deriv : bool, optional
Whether to compute derivative of Gaussian basis functions w.r.t. coefficients &
exponents.
Returns
-------
g : ndarray, (N,)
The linear combination of p-type Gaussian basis functions evaluated on the grid points.
dg : ndarray, (N, 2*M)
The derivative of linear combination of p-type Gaussian basis functions w.r.t.
coefficients (the 1st M columns) & exponents (the 2nd M columns) evaluated on the
grid points. Only returned if `deriv=True`.
"""
# multiply r**2 with the evaluated Gaussian basis, i.e., r**2 * exp(-a * r**2)
matrix = matrix * np.power(self.radii, 2)[:, None]
if not self.normalized:
# linear combination of p-basis is the same as s-basis with an extra r**2
return self._eval_s(matrix, coeffs, expons, deriv)
# normalize Gaussian basis
matrix = matrix * (expons[None, :]**2.5 / np.pi**1.5) / 1.5
# make linear combination of Gaussian basis on the grid
g = np.dot(matrix, coeffs)
if deriv:
dg = np.zeros((len(self.radii), 2 * coeffs.size))
# derivative w.r.t. coefficients
dg[:, :coeffs.size] = matrix
# derivative w.r.t. exponents
dg[:, coeffs.size:] = - matrix * np.power(self.radii, 2)[:, None] * coeffs[None, :]
matrix = np.exp(-expons[None, :] * np.power(self.radii, 2)[:, None])
matrix = matrix * np.power(self.radii, 2)[:, None]
dg[:, coeffs.size:] += 5 * matrix * (coeffs * expons**1.5)[None, :] / (3 * np.pi**1.5)
return g, dg
return g
class MolecularGaussianDensity:
r"""
Molecular Atom-Centered Gaussian Density Model.
The Molecular Gaussian Density model is based on multiple centers each associated with a
Gaussian density model (s or p-type) of any dimension.
.. math::
f(x) := \sum_j \bigg[ \sum_{i =1}^{M^s_j} c_{ji} e^{-\alpha_{ji} |x - m_j|^2} +
\sum_{i=1}^{M_j^p}d_{ji} |x - m_j|^2 e^{-\beta_{ji} |x - m_j|^2} \bigg]
where
:math:`c_{ji}, d_{ji}` are the ith coefficients of s-type and p-type functions of the
jth center, :math:`\alpha_{ji}, \beta_{ji}` are the ith exponents of S-type and P-type
functions of the jth center, :math:`M_j^s, M_j^p` is the total number of s-type or p-type
Gaussians functions of the jth center respectively,
:math:`m_j` is the coordinate of the jth center, and
:math:`x` is the real coordinates of the point. It can be of any dimension.
"""
def __init__(self, points, coords, basis, normalize=False):
"""
Construct the MolecularGaussianDensity class.
Parameters
----------
points : ndarray, (N, D)
The grid points, where N is the number of grid points and D is the dimension.
coords : ndarray, (M, D)
The atomic coordinates (M centers) on which Gaussian basis are centered.
basis : ndarray, (M, 2)
The number of S-type & P-type Gaussian basis functions placed on each center.
normalize : bool, optional
Whether to normalize Gaussian basis functions.
"""
# check arguments
if not isinstance(coords, np.ndarray) or coords.ndim != 2:
raise ValueError("Argument coords should be a 2D numpy array.")
if basis.ndim != 2 or basis.shape[1] != 2:
raise ValueError("Argument basis should be a 2D array with 2 columns.")
if len(coords) != len(basis):
raise ValueError("Argument coords & basis should represent the same number of atoms.")
if points.ndim > 1 and points.shape[1] != coords.shape[1]:
raise ValueError("Arguments points & coords should have the same number of columns.")
self._points = points
self._basis = basis
# place a GaussianModel on each center
self.center = []
self._radii = []
for i, b in enumerate(basis):
# get the center of Gaussian basis functions
self.center.append(AtomicGaussianDensity(points, coords[i], b[0], b[1], normalize))
self._radii.append(self.center[-1].radii)
self._radii = np.array(self._radii)
@property
def points(self):
"""Get grid points."""
return self._points
@property
def nbasis(self):
"""Get the total number of Gaussian basis functions."""
return np.sum(self._basis)
@property
def radii(self):
"""Get the distance of grid points from center of each basis function."""
return self._radii
@property
def natoms(self):
"""Get number of basis functions centers."""
return len(self._basis)
@property
def prefactor(self):
"""
Get the pre-factor of Gaussian basis functions to make it normalized.
Only used if attribute `normalize` is true.
"""
return np.concatenate([center.prefactor for center in self.center])
def assign_basis_to_center(self, index):
"""Assign the Gaussian basis function to the atomic center.
Parameters
----------
index : int
The index of Gaussian basis function.
Returns
-------
index : int
The index of atomic center.
"""
if index >= self.nbasis:
raise ValueError(f"The {index} is invalid for {self.nbasis} basis.")
# compute the number of basis on each center
nbasis = np.sum(self._basis, axis=1)
# get the center to which the basis function belongs
index = np.where(np.cumsum(nbasis) >= index + 1)[0][0]
return index
def evaluate(self, coeffs, expons, deriv=False):
r"""
Compute linear combination of Gaussian basis & its derivatives on the grid points.
The Molecular Gaussian is defined to be:
.. math::
f(x) := \sum_j \bigg[ \sum_{i =1}^{M^s_j} c_{ji} e^{-\alpha_{ji} |x - m_j|^2} +
\sum_{i=1}^{M_j^p}d_{ji} |x - m_j|^2 e^{-\beta_{ji} |x - m_j|^2} \bigg]
where
:math:`c_{ji}, d_{ji}` are the ith coefficients of s-type and p-type functions of the
jth center, :math:`\alpha_{ji}, \beta_{ji}` are the ith exponents of S-type and P-type
functions of the jth center, :math:`M_j^s, M_j^p` is the total number of s-type or p-type
Gaussians functions of the jth center respectively,
:math:`m_j` is the coordinate of the jth center, and
:math:`x` is the real coordinates of the point. It can be of any dimension.
Parameters
----------
coeffs : ndarray, (`nbasis`,)
The coefficients of `num_s` s-type Gaussian basis functions followed by the
coefficients of `num_p` p-type Gaussian basis functions for an atom, then repeat
for the next atom.
expons : ndarray, (`nbasis`,)
The exponents of `num_s` s-type Gaussian basis functions followed by the
exponents of `num_p` p-type Gaussian basis functions for an atom, then repeat
for the next atom.
deriv : bool, optional
Whether to compute derivative of Gaussian basis functions w.r.t. coefficients &
exponents.
Returns
-------
g : ndarray, (N,)
The linear combination of Gaussian basis functions evaluated on the grid points.
dg : ndarray, (N, `nbasis`)
The derivative of linear combination of Gaussian basis functions w.r.t. coefficients
& exponents, respectively, evaluated on the grid points. Only returned if `deriv=True`.
"""
if coeffs.ndim != 1 or expons.ndim != 1:
raise ValueError("Arguments coeffs & expons should be 1D arrays.")
if coeffs.size != self.nbasis or expons.size != self.nbasis:
raise ValueError(f"Arguments coeffs & expons shape != ({self.nbasis},)")
# assign arrays
total_g = np.zeros(len(self.points))
if deriv:
total_dg = np.zeros((len(self.points), 2 * self.nbasis))
# compute contribution of each center
count = 0
for center in self.center:
# get coeffs & expons of center
cs = coeffs[count: count + center.nbasis]
es = expons[count: count + center.nbasis]
if deriv:
# compute linear combination of gaussian placed on center & its derivatives
g, dg = center.evaluate(cs, es, deriv)
# split derivatives w.r.t. coeffs & expons
dg_c = dg[:, :center.nbasis]
dg_e = dg[:, center.nbasis:]
# add contributions to the total array
total_g += g
total_dg[:, count: count + center.nbasis] = dg_c
total_dg[:, self.nbasis + count: self.nbasis + count + center.nbasis] = dg_e
else:
# compute linear combination of gaussian placed on center
total_g += center.evaluate(cs, es, deriv)
count += center.nbasis
if deriv:
return total_g, total_dg
return total_g