-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathloop_inference_config_and_repl.py
551 lines (471 loc) · 25.8 KB
/
loop_inference_config_and_repl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
from typing import Optional
import os
try:
import readline
except:
print("unable to import readline, CLI history won't be available")
import importlib
import numpy as np
import loop_inference_intervention_func
class LoopInferenceSettings:
def __init__(self):
self.JUST_VIEW_GT: bool = False
"""
specify True to override all other inference options and just view the
ground truth data item with index specified in TEST_DATA_ITEM below.
Overrides all the other options except for TEST_DATA_ITEM which is used.
"""
self.JUST_VIEW_THIS_SEQUENCE_DATA: Optional[np.ndarray] = None
"""
specify an np.array of shape (n_loops, n_features) describing a single loop
in order to view it in isolation, with no reconstruction etc. Overrides
all the other options, but lower priority and overridden by JUST_VIEW_GT
if that's set to True.
"""
# inference options;
self.DOING_RECO_TEST: bool = False
"""
Set to True in order to run reconstruction tests; if this is True, must
provide values for RECO_TEST_AUTOREGRESSIVE and TEST_DATA_ITEM.
(TEST_DATA_ITEM must be in the range of the dataset class when assuming
a batch size of 1). Reconstruction involves passing
dataset[TEST_DATA_ITEM] into the encoder, sampling a latent vector using
these predictions (as opposed to sampling directly from the Normal(0,1)
prior, which is what would happen with DOING_RECO_TEST = False), then
running the decoder using this latent vector. if
RECO_TEST_AUTOREGRESSIVE is True, the decoder must predict all time
steps using its own outputs from previous time steps; else, predictions
for time step i are made using the ground-truth timestep i-1.
If set to True this will disregard all the latent decoding options
(including DOING_LERP_SAMPLING_TEST, LERP_SAMPLING_START_Z,
LERP_SAMPLING_END_Z, DECODE_CUSTOM_LATENT)
"""
# reconstruction options
self.RECO_WITH_NO_SAMPLING_USING_SIGMA: bool = True
"""
if RECO_WITH_NO_SAMPLING_USING_SIGMA is True, then only the encoder's
predicted mu will be returned as the latent vector for use by the
decoder. This is to check whether the sigma (sampling variance) is
what's messing up reconstruction each new run.
"""
self.RECO_TEST_AUTOREGRESSIVE: bool = True
"""
If this is False, the model will only ever predict 1 step ahead; each
previous step is provided by ground truth. Only meaningful if
DOING_RECO_TEST is True.
"""
# non-reco/sampling options
self.DOING_LERP_SAMPLING_TEST: bool = False
"""
Set to True in order to see how the model decodes a set of latents that
lerps from one random vector to another in Normal(0,1). Only works if
DOING_RECO_TEST is False.
"""
# these are only relevant if DOING_LERP_SAMPLING_TEST is True.
self.LERP_SAMPLING_START_Z: Optional[np.ndarray] = None
self.LERP_SAMPLING_END_Z: Optional[np.ndarray] = None
self.DECODE_CUSTOM_LATENT: Optional[np.ndarray] = None
"""
If this is not None, the latent z specified here (of shape latent_size)
will be input as a custom latent code for the model to decode.
"""
self.N_SAMPLES: int = 25
"""
For when DOING_RECO_TEST is False; number of samples to draw from prior
or interpolate between two random latent codes
"""
#151 #50 is the nice connected handle vase.. # let's use 67
self.TEST_DATA_ITEM: int = 0
"""
Dataset index for the test item to reconstruct. (Index with respect to a
dataset with batch size of 1.)
"""
self.DO_LOOP_INTERVENTION_EXPERIMENT: bool = False
"""
Specify True in order to apply the 'loop generation intervention
function' (during autoregressive generation. (see
loop_models_inference docs for more on this)
(this is an 'optional keyword argument' in the 'submit' command.)
"""
self.SAVE_CONTOUR_AND_OBJ_FILE: bool = False
""" save as .contour file and meshlab poisson-reconstructed .obj file
"""
# this is not a config option used by run_inference_and_viz,
# only used by InferenceREPL for recordkeeping in the queue
self.invoking_command: str = ""
def __str__(self):
r = ""
if self.JUST_VIEW_GT:
r += f"[ground-truth viewing] of data item {self.TEST_DATA_ITEM} from the dataset. "
elif self.DOING_RECO_TEST:
r += "[reconstruction], "\
f"{'autoregressive' if self.RECO_TEST_AUTOREGRESSIVE else 'teacher-forced'}, "\
f"of data item {self.TEST_DATA_ITEM} of the dataset; invoked from `{self.invoking_command}`. "
else:
r += f"[decoding] invoked from `{self.invoking_command}`. "
if self.DO_LOOP_INTERVENTION_EXPERIMENT:
r += "Loop intervention function will be applied. "
if self.SAVE_CONTOUR_AND_OBJ_FILE:
r += "Output .obj, latent.txt, .contour will be saved. "
return r
class InferenceREPL:
def __init__(self, opt):
# REPL state:
self.__repl_variable_binds = dict()
self.__inference_and_viz_queue = []
# since we'll be dealing with latents a lot in this class
self.latent_size = opt.latent_size
self.save_dir = opt.save_dir
# this function is intended to be hot reloadable, so we save a reference
# to the currently-loaded function
self.loop_generation_intervention = \
loop_inference_intervention_func.loop_generation_intervention
# \001 and \002 are for readline to know how long the visible prompt is
self.prompt = '\001\033[96m' + '\033[4m\002' + 'inference' + '\001\033[0m\002' + '> '
def repl_print(self, msg, is_error=False):
OKBLUE = '\033[94m'
WARNING = '\033[93m'
ENDC = '\033[0m'
print((OKBLUE if not is_error else WARNING) + str(msg) + ENDC)
def variable_bind(self, var_name, var_value):
self.__repl_variable_binds[var_name] = var_value
def variable_get(self, var_name):
return self.__repl_variable_binds.get(var_name)
def pop_inference_and_viz_queue(self):
""" Binds the latest pred_seq and latent_z to the variable names
"last_pred_seq" and "last_z"
"""
if not self.__inference_and_viz_queue:
self.repl_print("The task queue is currently empty.")
return
cfg, action = self.__inference_and_viz_queue.pop(0)
if cfg.DO_LOOP_INTERVENTION_EXPERIMENT:
# hot-reload the intervention function from its file
self.repl_print("Hot-reloading the intervention function!")
try:
__reloaded_module = importlib.reload(loop_inference_intervention_func)
# update our saved reference to the reloaded function. This will
# be used inside inference.py for its needs.
self.loop_generation_intervention = \
__reloaded_module.loop_generation_intervention
except Exception as e:
self.repl_print("Hot-reload failed!! Still using last/currently successfully loaded function.", is_error=True)
self.repl_print(repr(e))
pred_seq, latent_z = action()
if latent_z is not None:
self.variable_bind("last_z", latent_z)
else:
self.repl_print("no latent_z reported by latest run, won't be saved into $last_z")
self.variable_bind("last_pred_seq", pred_seq)
def queue_up_inference_and_viz_action(self, inference_cfg: LoopInferenceSettings, planned_function):
self.__inference_and_viz_queue.append((inference_cfg, planned_function))
def parse_inference_repr_line(self, line: str):
"""
Guide to the interactive inference REPL :-)
Synopsis:
- use a "submit" command first to submit a job to the queue.
- use a "run" command to execute items on the queue.
Commands: submit, run, print, queue, assign, variables, quit
"submit": submit an inference run to be queued. Usage:
submit gt <data-item-index-in-dataset>
submit auto-reco <data-item-index-to-reconstruct>
submit tf-reco <data-item-index-to-reconstruct>
submit sample <number of samples to draw>
submit interp <number of samples to interp> <start z> <end z>
submit decode <z>
submit seq-viz <pred-sequence> [start-index] [end-index]
Latent vector arguments (the <z>s) in the above can be specified in
4 ways, indicated by 4 different prefix sequences:
- $<variable_name> : get the latent vector stored under variable_name
- ? : draw a random latent code from standard Normal
- |<filepath> : read the latent code from a text file.
The format is one array entry per line, like
1D arrays saved with np.savetxt. This path is
relative to the current working directory.
- ||<filepath> : like single-pipe |<filename> but here the path
is relative to the model's save directory, as
specified in the --save_dir option.
(you can't hand-write or paste a latent vector directly into the
REPL command line.)
The <pred-sequence> argument can take values from the $last_pred_seq
variable (i.e. of shape (max_n_timesteps, n_features)).
The seq-viz subcommand if [start-index] AND [end-index] are
specified will only use pred_sequence[start_index:end_index] for
reconstruction and visualization (useful for saving out a portion
of the generated loops for transplanting into other generation runs
via the loop gen intervention function!)
Note that the submit command can take additional arguments prefixed
with -- (argparse/GNU-style). Right now the following such arguments
are available:
--intervene: enables application of the 'loop intervention
function' (see docs in loop_models_inference for more on that;
the actual intervention function is defined in
loop_inference_intervention_func.py, which is hot-reloaded every
time an --intervene run is triggered.)
--save: save the resulting files (.obj, latent.txt, .contour) to
disk (to the save_dir of the model and inside an 'inference'
subdirectory.)
--use_enc_sigma: by default, the autoregressive reco
test does NOT use the sigma value predicted by the encoder, only
using the mean (mu) as the resulting latent vector.
This option enables sampling using that predicted sigma too.
(however, this is irrelevant/unused when the model is a "NoKL"
model, i.e. --enc_kl_weight 0. The mu is always the only encoder
output used when testing auto-reco with those models.)
"run": pops queued inference tasks and runs them, including viz. Usage:
run: runs 1 queued task and removes it from the queue.
run all: go through the entire queue.
run <number>: runs <number> items from the top of the queue
"print": print a bound variable. Usage:
print varname [filename]
The optional [filename] argument if present will be where the
variable contents are saved to. [filename] can be a path relative to
the current directory, or if prefixed with ||, a path relative to
the model's checkpoint dir.
** Tip: Here is a list of built-in/automatically populated variables
for you to print/assign:
- last_z: stores the latent code used in the most recent
sample/interp/decode job
- last_pred_seq: stores the predicted sequence from the most
recent sample/interp/decode job
- diversity_stats: after each sample/interp/decode job, this
variable updates with information on how diverse the meshes
generated so far have been, measured as "how many unique
dataset meshes are represented in these sampled ones". This
variable is reset and reflects the most recently run
batch of sample/interp/decode jobs.
"queue": manage the queue. Usage:
queue : see an overview of tasks in the queue
queue pop : remove a task from the queue without running it
queue clear : clear the queue
"assign": set a variable's value to a latent vector. Usage:
assign var_name_destination <z>
This <z> format is as in the "submit" command: either $<var_name>,
or ?, or |<relative_filepath>, or ||<save_dir_relative_filepath>.
"quit": quit the REPL
"""
# Returns: the configuration object for the desired run submitted, so
# that the caller can use it to execute run_inference_and_viz. May also
# return None, in which case the caller shouldn't do anything.
if not line:
return None
tokens = [tok for tok in line.split(" ") if tok]
command = tokens[0]
def __read_nparray_option_token(tok: str, should_be_latent_size=True):
if tok.startswith("$"):
arr = self.variable_get(tok[1:])
if arr is None:
self.repl_print(f"!! Unknown variable '{tok[1:]}'", is_error=True)
elif (not isinstance(arr, np.ndarray)) \
or (isinstance(arr, np.ndarray) and \
(should_be_latent_size and arr.shape[0] != self.latent_size)):
self.repl_print(f"!! Value stored as ${tok[1:]} is not a valid latent vector.\n"
"(It might be a special builtin variable; see help text)", is_error=True)
arr = None
elif tok == "?":
arr = np.random.normal(0.0, 1.0, self.latent_size)
elif tok.startswith("|"):
fname = os.path.join(self.save_dir, tok[2:]) \
if tok.startswith("||") else tok[1:]
try:
arr = np.loadtxt(fname)
if should_be_latent_size and (arr.shape[0] != self.latent_size):
self.repl_print(f"!! Array loaded from {fname} has "
f"the wrong size {arr.shape} while the model's latent size is {self.latent_size}. "
"(this might be a special builtin variable; see help text)", is_error=True)
except FileNotFoundError:
self.repl_print(f"!! File '{fname}' not found.", is_error=True)
arr = None
else:
arr = None
if arr is None:
self.repl_print(f"!! Unable to parse latent code/ array from argument '{tok}'", is_error=True)
return arr
if command == "submit":
# subcommands: gt <idx>, auto-reco <idx>, tf-reco <idx>,
# sample <count>, interp <count> <latent0-path-or-varname> <latent1-path-or-varname>,
# decode <latent-path-or-varname>
if len(tokens) > 1:
subcommand = tokens[1]
else:
self.repl_print(f"!! subcommand needed for command `submit`.", is_error=True)
return None
settings_obj = LoopInferenceSettings()
settings_obj.invoking_command = line
optional_dashdash_args_start_at = None
if subcommand == "gt":
optional_dashdash_args_start_at = 3
settings_obj.N_SAMPLES = 1
settings_obj.JUST_VIEW_GT = True
try:
settings_obj.TEST_DATA_ITEM = int(tokens[2])
except:
self.repl_print("!! Unable to parse integer at 2nd argument. Using a default, which is 0", is_error=True)
settings_obj.TEST_DATA_ITEM = 0
elif subcommand == "auto-reco" or subcommand == "tf-reco":
optional_dashdash_args_start_at = 3
settings_obj.DOING_RECO_TEST = True
settings_obj.N_SAMPLES = 1
settings_obj.RECO_TEST_AUTOREGRESSIVE = (subcommand == "auto-reco")
try:
settings_obj.TEST_DATA_ITEM = int(tokens[2])
except:
self.repl_print("!! Unable to parse integer at 2nd argument. Using a default, which is 0", is_error=True)
settings_obj.TEST_DATA_ITEM = 0
elif subcommand == "sample":
optional_dashdash_args_start_at = 3
settings_obj.DOING_RECO_TEST = False
settings_obj.DOING_LERP_SAMPLING_TEST = False
settings_obj.RECO_TEST_AUTOREGRESSIVE = True
try:
settings_obj.N_SAMPLES = int(tokens[2])
except:
self.repl_print("!! Unable to parse integer at 2nd argument. Using a default, which is 25", is_error=True)
settings_obj.N_SAMPLES = 25
elif subcommand == "interp":
optional_dashdash_args_start_at = 5
settings_obj.DOING_RECO_TEST = False
settings_obj.DOING_LERP_SAMPLING_TEST = True
try:
settings_obj.N_SAMPLES = int(tokens[2])
except:
self.repl_print("!! Unable to parse integer at 2nd argument. Using a default, which is 25", is_error=True)
settings_obj.N_SAMPLES = 25
settings_obj.LERP_SAMPLING_START_Z = __read_nparray_option_token(tokens[3])
settings_obj.LERP_SAMPLING_END_Z = __read_nparray_option_token(tokens[4])
if (settings_obj.LERP_SAMPLING_START_Z is None or settings_obj.LERP_SAMPLING_END_Z is None):
settings_obj = None
elif subcommand == "decode":
optional_dashdash_args_start_at = 3
settings_obj.DOING_RECO_TEST = False
settings_obj.DOING_LERP_SAMPLING_TEST = True
settings_obj.N_SAMPLES = 1
the_custom_latent = __read_nparray_option_token(tokens[2])
settings_obj.LERP_SAMPLING_START_Z = the_custom_latent
settings_obj.LERP_SAMPLING_END_Z = the_custom_latent
if settings_obj.LERP_SAMPLING_START_Z is None:
settings_obj = None
elif subcommand == "seq-viz":
optional_dashdash_args_start_at = 3
settings_obj.RECO_TEST_AUTOREGRESSIVE = False
seq_data_to_view = __read_nparray_option_token(tokens[2], should_be_latent_size=False)
if seq_data_to_view is None:
settings_obj = None
return None
if len(tokens) > 3:
try:
loop_seq_data_indices = (int(tokens[3]), int(tokens[4]))
except:
self.repl_print("!! Unable to parse integers at 3rd and 4th arguments. "
"This argument pair is optional, so assuming that it is unspecified.", is_error=True)
loop_seq_data_indices = None
if loop_seq_data_indices is not None:
# shape (1, n_features)
start_i, end_i = loop_seq_data_indices
seq_data_to_view = seq_data_to_view[start_i : end_i]
settings_obj.JUST_VIEW_THIS_SEQUENCE_DATA = seq_data_to_view
settings_obj.N_SAMPLES = 1
else:
self.repl_print("unknown subcommand", is_error=True)
settings_obj = None
if settings_obj is not None:
if settings_obj.N_SAMPLES > 1:
self.repl_print(f"{settings_obj.N_SAMPLES} tasks have been queued")
else:
self.repl_print("One new task has been queued")
# now parse the --arg arguments
if optional_dashdash_args_start_at is not None and \
(len(tokens) > optional_dashdash_args_start_at):
remaining_tokens = tokens[optional_dashdash_args_start_at:]
if "--intervene" in remaining_tokens:
settings_obj.DO_LOOP_INTERVENTION_EXPERIMENT = True
if "--save" in remaining_tokens:
settings_obj.SAVE_CONTOUR_AND_OBJ_FILE = True
if "--use_enc_sigma" in remaining_tokens:
settings_obj.RECO_WITH_NO_SAMPLING_USING_SIGMA = False
return settings_obj
elif command == "run":
if len(tokens) > 1:
# handle subcommands 'all' and <number>
if tokens[1] == "all":
n_remaining = len(self.__inference_and_viz_queue)
else: # tokens[1] is a number possibly
try:
n_remaining = int(tokens[1])
except:
self.repl_print("!! Unable to parse integer at argument 1. Using a default, which is 1", is_error=True)
n_remaining = 1
while n_remaining > 0:
self.pop_inference_and_viz_queue()
n_remaining -= 1
else:
self.pop_inference_and_viz_queue()
elif command == "print":
var_value = self.variable_get(tokens[1])
if var_value is not None:
self.repl_print(var_value)
if len(tokens) > 2:
fname = tokens[2]
if fname.startswith("||"):
fname = os.path.join(self.save_dir, fname[2:])
try:
# if np array then we use np.savetxt, else just use python builtin writes
if isinstance(var_value, np.ndarray):
np.savetxt(fname, var_value)
self.repl_print(f"Saved this array to {fname}")
else:
with open(fname, "w") as f:
f.write(str(var_value))
self.repl_print(f"Saved this non-ndarray value to {fname}")
except FileNotFoundError:
self.repl_print(f"!!directory of {fname} does not exist, file can't be written", is_error=True)
else:
self.repl_print(f"!! Unknown variable '{tokens[1]}'", is_error=True)
elif command == "assign":
if len(tokens) < 3:
self.repl_print(f"!! need latent vector at argument 2")
else:
value_to_store = __read_nparray_option_token(tokens[2], should_be_latent_size=False)
# the should_be_latent_size = False because we can store whatever
# size np array; the enforcement to be latent_size is up to those
# who read the values of stored variables, not the assign function.
if value_to_store is None:
self.repl_print(f"!! could not read value '{tokens[2]}' to store as ${tokens[1]}", is_error=True)
else:
self.variable_bind(tokens[1], value_to_store)
elif command == "variables":
if not self.__repl_variable_binds:
self.repl_print("No bound variables.")
else:
self.repl_print("Current bound variables:")
for key_name in self.__repl_variable_binds.keys():
self.repl_print(f"- {key_name}")
elif command == "queue":
if len(tokens) > 1:
subcommand = tokens[1]
if subcommand == "pop":
# pop and don't run
if len(self.__inference_and_viz_queue) > 0:
self.__inference_and_viz_queue.pop(0)
self.repl_print("Popped one task off the queue.")
else:
self.repl_print("The queue is already empty.")
elif subcommand == "clear":
self.__inference_and_viz_queue = []
self.repl_print("Cleared queue.")
else:
self.repl_print(f"Unknown subcommand {subcommand}", is_error=True)
else:
# print the str() of the config of all the queued tasks
self.repl_print(f"Tasks on the queue:")
for i, (cfg, _) in enumerate(self.__inference_and_viz_queue):
self.repl_print(f"{i+1}:" + str(cfg))
# how many tasks
n_tasks = len(self.__inference_and_viz_queue)
self.repl_print(f"The queue has {n_tasks} task{'s' if n_tasks != 1 else ''}.")
elif command == "quit":
raise EOFError()
elif command == "help":
self.repl_print(self.parse_inference_repr_line.__doc__)
else:
self.repl_print(f"!! Unknown command '{command}'", is_error=True)