From 2937884fe157e3b32568945df32f385046003dec Mon Sep 17 00:00:00 2001 From: hfrick Date: Fri, 15 Dec 2023 14:08:55 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20gh-pages=20from=20@=20tidymode?= =?UTF-8?q?ls/censored@7b2613db2d0f9e8c88471ac8ae7827bd213bcf0f=20?= =?UTF-8?q?=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- dev/CODE_OF_CONDUCT.html | 2 +- dev/LICENSE-text.html | 2 +- dev/LICENSE.html | 2 +- dev/apple-touch-icon-120x120.png | Bin 17370 -> 17370 bytes dev/apple-touch-icon-152x152.png | Bin 23014 -> 23014 bytes dev/apple-touch-icon-180x180.png | Bin 27826 -> 27826 bytes dev/apple-touch-icon-60x60.png | Bin 6463 -> 6463 bytes dev/apple-touch-icon-76x76.png | Bin 9226 -> 9226 bytes dev/apple-touch-icon.png | Bin 27826 -> 27826 bytes dev/articles/examples.html | 40 +++++++++--------- dev/articles/index.html | 2 +- dev/authors.html | 2 +- ...xRpg3hIP6sJ7fM7PqPMcMnZFqUwX28DMyQhM0.woff | Bin 0 -> 56004 bytes dev/deps/Source_Code_Pro-0.4.8/font.css | 7 +++ .../6xK1dSBYKcSV-LCoeQqfX1RYOo3qPa7j.woff | Bin 0 -> 49156 bytes .../6xK3dSBYKcSV-LCoeQqfX1RYOo3aPA.woff | Bin 0 -> 74684 bytes .../6xKwdSBYKcSV-LCoeQqfX1RYOo3qPZY4lBdo.woff | Bin 0 -> 48912 bytes .../6xKydSBYKcSV-LCoeQqfX1RYOo3i54rAkw.woff | Bin 0 -> 74348 bytes dev/deps/Source_Sans_Pro-0.4.8/font.css | 28 ++++++++++++ dev/deps/data-deps.txt | 4 +- dev/favicon-16x16.png | Bin 1208 -> 1208 bytes dev/favicon-32x32.png | Bin 2431 -> 2431 bytes dev/index.html | 4 +- dev/news/index.html | 3 +- dev/pkgdown.yml | 2 +- dev/reference/aorsf_internal.html | 2 +- dev/reference/blackboost_train.html | 2 +- dev/reference/censored-package.html | 2 +- dev/reference/coxnet_train.html | 2 +- dev/reference/index.html | 2 +- dev/reference/survival_prob_coxnet.html | 2 +- dev/reference/survival_prob_coxph.html | 2 +- dev/reference/survival_prob_mboost.html | 2 +- dev/reference/survival_prob_partykit.html | 2 +- dev/reference/survival_prob_survbagg.html | 2 +- dev/reference/survival_prob_survreg.html | 2 +- dev/reference/survival_time_coxnet.html | 8 +++- dev/reference/survival_time_coxph.html | 2 +- dev/reference/survival_time_mboost.html | 2 +- dev/reference/survival_time_survbagg.html | 4 +- dev/reference/time_to_million.html | 2 +- dev/search.json | 2 +- 42 files changed, 90 insertions(+), 50 deletions(-) create mode 100644 dev/deps/Source_Code_Pro-0.4.8/HI_diYsKILxRpg3hIP6sJ7fM7PqPMcMnZFqUwX28DMyQhM0.woff create mode 100644 dev/deps/Source_Code_Pro-0.4.8/font.css create mode 100644 dev/deps/Source_Sans_Pro-0.4.8/6xK1dSBYKcSV-LCoeQqfX1RYOo3qPa7j.woff create mode 100644 dev/deps/Source_Sans_Pro-0.4.8/6xK3dSBYKcSV-LCoeQqfX1RYOo3aPA.woff create mode 100644 dev/deps/Source_Sans_Pro-0.4.8/6xKwdSBYKcSV-LCoeQqfX1RYOo3qPZY4lBdo.woff create mode 100644 dev/deps/Source_Sans_Pro-0.4.8/6xKydSBYKcSV-LCoeQqfX1RYOo3i54rAkw.woff create mode 100644 dev/deps/Source_Sans_Pro-0.4.8/font.css diff --git a/dev/CODE_OF_CONDUCT.html b/dev/CODE_OF_CONDUCT.html index a377845c..7c28f173 100644 --- a/dev/CODE_OF_CONDUCT.html +++ b/dev/CODE_OF_CONDUCT.html @@ -1,5 +1,5 @@ -Contributor Covenant Code of Conduct • censoredContributor Covenant Code of Conduct • censored diff --git a/dev/LICENSE-text.html b/dev/LICENSE-text.html index 8a61f2c6..856e72da 100644 --- a/dev/LICENSE-text.html +++ b/dev/LICENSE-text.html @@ -1,5 +1,5 @@ -License • censoredLicense • censored diff --git a/dev/LICENSE.html b/dev/LICENSE.html index 9adfffd6..cfbbb269 100644 --- a/dev/LICENSE.html +++ b/dev/LICENSE.html @@ -1,5 +1,5 @@ -MIT License • censoredMIT License • censored diff --git a/dev/apple-touch-icon-120x120.png b/dev/apple-touch-icon-120x120.png index 4e0cd5c0f02dd2702696cf53b98502199459469b..69030cd17d3a1aaf33fc1f5f055c9989f374f2b3 100644 GIT binary patch delta 73 zcmccB&UmYxaY7XbKOd`Ubxh*IjZKT4L=8xA0E3a+blA N$ztN!I62!n9{@2G6q5h| delta 73 zcmccB&UmYxaY7XbE0?yReA5%1jZKT4L=8+s3=OPIjIB&8wG9lc3=BGBJ%}>cpt7I@TFf!IPG}6V;z7@Alam|B^dX&V?=85nq`&tApAz@S>< l8c~vxSdwa$o1c=IR>@#wU}UUoXrzmw!NN*eY_fAsJ^+4m8vXzP delta 96 zcmdmVlX25c#tBs%tX$g0AA4FEHa1mfyBU~<7#dia7+aYdY8x0>85opFu$wS2FsPQe lMwFx^mZVzc=BH$)RWcYE7#Zst8tGzaV0Yc$G1)mM9{`M187@Alam|B^dYa19?85q15m>|c%z@S>< l8c~vxSdwa$o1c=IR>@#wU}UUoXrzmwVV - - + + @@ -120,7 +120,7 @@

## modeldata 1.2.0 workflows 1.1.3 ## parsnip 1.1.1 workflowsets 1.0.1 ## purrr 1.0.2 yardstick 1.2.0 - ## recipes 1.0.8 + ## recipes 1.0.9
  ## ── Conflicts ─────────────────────────────────── tidymodels_conflicts() ──
   ##  purrr::discard() masks scales::discard()
   ##  dplyr::filter()  masks stats::filter()
@@ -6175,14 +6175,14 @@ 

## attr(,"response") ## [1] 1 ## attr(,".Environment") - ## <environment: 0x56150c1b00f8> + ## <environment: 0x564c53e2b980> ## attr(,"Formula_with_dot") ## Surv(time, status) ~ . - ## <environment: 0x56150c1b00f8> + ## <environment: 0x564c53e2b980> ## attr(,"Formula_without_dot") ## Surv(time, status) ~ inst + age + sex + ph.ecog + ph.karno + ## pat.karno + meal.cal + wt.loss - ## <environment: 0x56150c1b00f8> + ## <environment: 0x564c53e2b980> ## attr(,"dot") ## [1] "sequential" ## @@ -6254,7 +6254,7 @@

## X <- as.list(X) ## .Internal(lapply(X, FUN)) ## } - ## <bytecode: 0x5614fc172b20> + ## <bytecode: 0x564c442b9b20> ## <environment: namespace:base> ## ## $info$control$saveinfo @@ -6274,8 +6274,8 @@

## .select(model, trafo, data, subset, weights, whichvar, ctrl, ## FUN = .ctree_test) ## } - ## <bytecode: 0x56150e997e70> - ## <environment: 0x56150c185a98> + ## <bytecode: 0x564c56ace4f0> + ## <environment: 0x564c53dfd270> ## ## $info$control$splitfun ## function (model, trafo, data, subset, weights, whichvar, ctrl) @@ -6285,8 +6285,8 @@

## .split(model, trafo, data, subset, weights, whichvar, ctrl, ## FUN = .ctree_test) ## } - ## <bytecode: 0x56150e996388> - ## <environment: 0x56150c185b78> + ## <bytecode: 0x564c56ad0838> + ## <environment: 0x564c53dfd350> ## ## $info$control$svselectfun ## function (model, trafo, data, subset, weights, whichvar, ctrl) @@ -6296,8 +6296,8 @@

## .select(model, trafo, data, subset, weights, whichvar, ctrl, ## FUN = .ctree_test) ## } - ## <bytecode: 0x56150e997e70> - ## <environment: 0x56150c185c58> + ## <bytecode: 0x564c56ace4f0> + ## <environment: 0x564c53dfd430> ## ## $info$control$svsplitfun ## function (model, trafo, data, subset, weights, whichvar, ctrl) @@ -6307,8 +6307,8 @@

## .split(model, trafo, data, subset, weights, whichvar, ctrl, ## FUN = .ctree_test) ## } - ## <bytecode: 0x56150e996388> - ## <environment: 0x56150c185da8> + ## <bytecode: 0x564c56ad0838> + ## <environment: 0x564c53dfd580> ## ## $info$control$teststat ## [1] "quadratic" @@ -6352,8 +6352,8 @@

## $trafo ## function (subset, weights, info, estfun, object, ...) ## list(estfun = Y, unweighted = TRUE) - ## <bytecode: 0x56150c248058> - ## <environment: 0x56150c1838a8> + ## <bytecode: 0x564c543a0e78> + ## <environment: 0x564c53dfb190> ## ## $predictf ## ~inst + age + sex + ph.ecog + ph.karno + pat.karno + meal.cal + @@ -6381,14 +6381,14 @@

## attr(,"response") ## [1] 0 ## attr(,".Environment") - ## <environment: 0x56150c1b00f8> + ## <environment: 0x564c53e2b980> ## attr(,"Formula_with_dot") ## Surv(time, status) ~ . - ## <environment: 0x56150c1b00f8> + ## <environment: 0x564c53e2b980> ## attr(,"Formula_without_dot") ## Surv(time, status) ~ inst + age + sex + ph.ecog + ph.karno + ## pat.karno + meal.cal + wt.loss - ## <environment: 0x56150c1b00f8> + ## <environment: 0x564c53e2b980> ## attr(,"dot") ## [1] "sequential" ## diff --git a/dev/articles/index.html b/dev/articles/index.html index 07b1fbf7..41751a52 100644 --- a/dev/articles/index.html +++ b/dev/articles/index.html @@ -1,5 +1,5 @@ -Articles • censoredArticles • censored diff --git a/dev/authors.html b/dev/authors.html index e8639a64..5e564e6b 100644 --- a/dev/authors.html +++ b/dev/authors.html @@ -1,5 +1,5 @@ -Authors and Citation • censoredAuthors and Citation • censored diff --git a/dev/deps/Source_Code_Pro-0.4.8/HI_diYsKILxRpg3hIP6sJ7fM7PqPMcMnZFqUwX28DMyQhM0.woff b/dev/deps/Source_Code_Pro-0.4.8/HI_diYsKILxRpg3hIP6sJ7fM7PqPMcMnZFqUwX28DMyQhM0.woff new file mode 100644 index 0000000000000000000000000000000000000000..281a0134453ffd71e521a6515885d573816be3ac GIT binary patch literal 56004 zcmZs>18`+c)Ha$-G_f_|#I`54F|lo16Wg|J+Y=inwlg`gPOO{v`~JH1->Tbn);`@& zt?s>gY4`5k?h4}KVBlb1Wqk+?eNikzvLx(Rc9t;di01S+o_hpbV$lTER3!|9(;`#o6 z2*upS)9efTx<{cO7&u=c>AMt+g{h$l7}&VR7Z1mOgh#Ue)8Y&K!oJ1>Bl;pTXjZUr z3tJbDFRcDczO^qo`R~&2@onslzxZaN!NB0k|HB+kNv3QKJ-+U{#`e_@|BHyB=D%6m z8QPkDVTxZm_;21b+Wi4u4))G2U-~Ql;=%fl@3S3@)xpX1tM7XER~zO(vVe{b@mMDS zKvZkMV~7GW?k*)_>RW9$T5HnT1K0nnTyT_cjnKGf=4diYq^jgfWqi_vd`O9t%N&|$ zHe$_^nco=QqV169nTBXJ!8Ot(sHRl^Fj=Cgg3{btB=AmT_pgpHnWnUc(9|AZmsv(_ zj7@M2t3EdAAvuH5>;q}L?L&Uv`K7N{Fy|~7s+kWDFhq;#V#su{wL0RR?;@>^`Z&bH z>@gt^G7|?{0V_QV;7LK$^-nko`?yqbNJrk+P#rSV;Un9E8n7uaU z-h&Bg?}RHT?SN%F9M9vI-NBYew88;qZ;ZWDq;ep(1O;hAT*|;`mxF>6(lgGp2DKm9 z_kIV3=t!W6>8rMhLnmm`vWg&(C?rSVQbexlu@X3^XN;FS7$HndO-(tV zv4)ICJEb42z1U|wcQ3T<)K%8*kkSZ&VF=+o4z@+Mo<%nIBX4@L&ewK11LY*UJa@O+ zNDv9ZjF>OKg#;1tKBaD;;<_FG?H}tk-Ob@Fn5XC5GNRN-u%HX(3P!Q_HayeEfSvLv zY83fBk($gs?w!;{DUmpX0XIy9n3C+wBGPFl5$PfV7sm61sdlTnJV zth*>kUMy5x>qh<>&l$flPGR!vR^(RvJKCGbhtg-T-$dMX(HluEhYN}%LcKJ>o%o75~54eptSLKs<; zN{}SE=eIzy`88mCc&6VvgnrX#r@+JYoHNQ}=6(7h97vb1yvsGrZl1lCIG$kvs?WK} zC9+qXQ%`?4*W9|Dzw*&Kce{e~jENw>r=`kmZZrS4wgoAob?0(}m2{P+9F*MBz8^5t zstlcNi%akq(|}i0%Ut|JE8i^Svr=y>(5@& zGh*X}9Y82`j5nj8i(FqXq2V?=wr$hG^EV+!56Pp|>I~V~g;SAbIOzCQpBTNmvCJjG z4K2m&L0+3jkV9jJ40RmI?YsCegJ3b6W~dEbmEF1EPH3-ib>NNR3wVR7_*~ey4ok+p z>&fc^<9A+3DM|tJJi;j?(?eJ%cv^u1BAhI%>d6TzT5Be~xLzZ{KjQjPQ$`P7FDkdt z;w&duWL5DwV}(=vvO7$~9P?Lu1S3pY(_`o+63aR!-HfEDELjPapc4~y7FiAwy!iX^ zsxdS08w4MLM)dSIW=_)rv@QX59#gQha<) z-H<#vR2^{yb(zfKf`-LJEen#ZV!X@=LELb&+hE>+e=O4C1tHN1%ofy1rYu_HzcnM5 z8?_&P(uA==*)|848aAsfPIw4eTgi1-b7uxMtP5)!WdE~b7_nx&2!Z_&`Xr_(MDYLk zY$N}jrk}zku%rO-CfkQ{n)cd4b-MB@M|IiuQbYAV+K167`UAI&7##PvM5PpzRLXuL z@iQ9QuEhB03RV1{joDos-=Q$B$afF;je78^ddNFER)}X0C}ZYXnvwN8XPg+yhW^dL zcI>tT@$>F`CBWxyKm_b(wWn;e40+KU^WYTKHuP}?kQ)YsD{U?)aS>a@4q)_CFXeEk2`h+!; zMW9qf$yLNvRYc?#g>4sw_!cD~ib>%S0fbczSZU;Po#Rxvq!LFE&yxHJ@LEFx-=P$P zWr`X8;x?}`J|}r9L6yWD#T$T7emy5~?*$85z`TP5mc!IKoa5VJYCb%uc6!c`ez
    xf)%-Uk&{Cn@FD@UMHYrXd)#H_tu z#@$tiUA?~~)C{umc;AhoKjfUgYg*IYEf8RG!}|_EZ1Z(LU8$|YYTw++vB7Y0tneDy zUX_FgrTdmkxc2pyY`6sB8RUeW(dZW5xrBCnOS4mW?w9fr8$H!Hn_GHwcH>NnU8cO> z+vWGFbM4$>;XFmTsN-visxt0eyHu3h$S7Q=YwxKV(L;3}WZ#%sTG7%Po=JvJ%_@Nk z2&~(_;vY};U+!vl10>HOY(#0m{9D>kXPJF_QtZ`9y;=$b#=y3QcJ1Ak=s0k0RN!XX zDwLg*nd$>xpH-{>%?Fu3FD}12X*^6YROw-6f+vjJCN+>~k`kLG<+08u*(f}aTA#8R zYqAJ08}Y`Ri<+I5jhw#pHpK9o%9ivcu9*kX`NHmV&5p%X$IbT{ZA`J(uU-2P|` zeZ!y1_*%~hXmzo!I^t_}|_$P{x^%KJf%eoZ6S?HJ5>%Pkz+KYP- z^ZX!g!lS8w45RttAXr@%m-scLiF+gcT2{5WN^|`ZiXf{phqKF?e~|9p0x zUF{^yewMx0rAg}MU@7|Uf3hJzOZodPDF})6t=S97^$ik<*!r#O3u1f|R6-IXZrx`f z`Y^>RJL2feNt)egBKbhp#nMU}_N8rnXXt}pd1`y#7&EQ2KG2Kwh9&q3rto1Ya6HrA z#32O#zGsW%FRA~%GJtZ|1~W_&4=g&pvJkHF0B%vN^*o`cQGYwd*hxozjGCMDxLA;3 z4f094H|6Tk`&r0WsoWwvluZxbnwh?Uyrnty$a}cFJ^DL~Eww*}u~cw+5ttVb18E=9 zx8XX)ZL)F;G!+i0$0|!312k&J)T67W>o)a6OwVD9zN(R}#?f~D2fVm3)Pt_u+?#fM z&fFB|5qPJ54PvN~*(2Hm#@i@n3TDacjOdV-dS=a}81feU!`a?#F(dZ_T<86^cTfBr zqbQu654BzWM!uwfAWyD zQT$@9YW4Ou1QRtby7?O#qwO}d2)-~9Cwlht047H8KH;4rR-6zNX1i6OiiP&88A$y7 z?c)~-7y=!>QvldNHl+?>I?~0Nxs;nnSR?vJZ185V(|{-<4wDrfG!j0a8HN`!;f_7n zdK^Bh0htyJhe~yghAXI8=|D*@=O%JQ0lZos#uRMAmn1R1P&Uv&G&M{cB?hP1JI-UY zCuUoRk*AS0af;|Ev}^E^1; zeUw8VX{WbibfNK`VcadAfC)0uPpZrmx#V>*QzC-ggt;Ugg2|zSd$F4}&o;Ya6_9>Dshw8@+Ia*%WG`}H~tf-aD&S~iv5J9zi0g?$o~0wLw$Ayc*U)97r>RCHM_DnQ;-zB zw1}HM?WyxuOlQDUXGT?L&~aqFpZj0p#2FB=Fp(wN^sCmZ^g;BR`vDa%D@4qQaTxVaVAkM=sq&7Vz?CSV_JE`zUyJbzzd&eGyIrY#dAQHxpbf*>&d0v}up`azmq&$b*s6=Ta(EN zm3AZb*-DyCsc+q$w%4|agSs%zYsYF+It}-3YWv_fZw4Gcs}gbaalPKr6`Mv)nNb>R zX3a~V-Bnp5AP7-V6=Ud+{`3+0y!S$g-tH9=${8x)h9l)*laaa*6|z=Xzk1Kv{HVSB z3*<(5cU(>8K>rkLl4bXC_?yghU=V~p9%O-lX|LcSu6?qD(xQZUWEgx!`UWmV|Fh#@ zN;Kzhro0YBl*RDAPBE7Plgt@i4SEUI;`+jR63<&+XGea6LMZq5BKIy5m!unFbH`f0 zzQw!kK_A1samC{+KQIwhA;$lChcY%Wj5Nsp`*-5+-^F2!{=a{B5esk+aH4UJ{0ldy zvZv^#WM%2#5M*~UaOl!;^Zx>d$Mg2Uf(AZ6r#L@)%nb~b40%)k{^cSf8}*2@gp2=e zU;qu~bcF2xm3N@}`w;~NF`)i><^_Fgg`_D!r6h~ZvJer9WFPuZl6-ZweBPFw->qWIC>4mbT>1DR1`1#A0 z;X`R%SQus<4MGtgVwkfaXo#~cXqdA^gzT{Rfc%dLWq4nxJceJgJeps)JeHroJgQ&1 zJmyZKJo-+meA-;l49ZU23`Sr044Qt>Olo}A461(C45onpOwwG^Oq!xULwtM;!w?Cp zKsH0_TmnOaVlV^dPAmiZPCP@}TwE=RKy)oeUwSQ?ep2m-)&r+Y&eIvt%Vvar6>Vu~ z8OU!FML6PiE~$r6G9xo$FOO>^4qqz3 zEyN$AdiXw#ks@x^AYqwWj?fs%C*LG?6t8>EoJmR(m2IRjr=#R~h-EE%Cz_I=UX3}8 ztsC@aRAU(c)WX297J(OADXQ1d)*|af5*yZZJvaz=IYSw*9cQLEOVWgzS(7Q3)&1E*z6Idf%HkDRrroRac6 zy%w!i;JQ(fMNT>9X=F_CePL=jBS$Pp_C{Lu;A$o&&k&eS_ag*M1xT z)yU_>qanmam<|7Khym~nAhAg<#@QlO%estdG|pRvcku%eBZW`r!xZszk-0?@#+vPg zui|>KWd<1=nV;NPFvy4J6j2s=a*?~`=EnXzC|rdA{Z_%xi@Yz)6LY;TS(SZJUBniM zaxLi-UApO7^#;Y2^L=1ciG4;k?%6lIo(L#0ztOfPeqi_5q+(!g$VY|a$wft8lnf8~ zNZMnz#Vuod$BSR0_(*P2zcA&R5S1zvz`i2bhCZCbHwU%XSyDRg%*_A?K62f}h#nZ5 ziJ%)l3xb#-kp{1MdG!Xm#-bB&LWFVfFh{u@%T8eSdkcy7Ngvuk#*P9Du<79>>G(&Z zDzYNrQ`mi(3>bZ>3}}5J4CsAH4A^~HwefS=wF6de@SRv^t2IDqSX-dlxtV+6tE2x` zDq-4ORBrrST5j@OR&L^4UT*4KPHw_nSZ>N(ZZ39ToE}PFt{z5TiXK{DlpatXqgx#v{rs;Tmb0#*l29!jNs6!H{m6e9tFS zd*FMf#6TEZU2vQwKP8y}w#&eYjdb<~cct26ht2-k#f&y-jAw zUK5#l&fZ)bY}lL|9Mjwz9MK#Qe9>GGEZ5u-Jl$LpOy7*n1uwBQIyz>ay z3hJejQhiAz(>H_p3 z^HOwjO&Q9FSz&YO#@HFOyp)*~6TTcue!LvUap+FLKW?3hi7_q-PxvksWLZF#8}1Wn zDUJozeP_V^t}CTBQ2eIjg#X49=quF$7bvgEyzy-5d|}=N-&lC`-lRLFd5P4=qm7UO zvis8W=SB+i`1>?-U)dI*vrjX>X%u5Y=$K+5)WFaj-)`01tYNPuuA{4^X9HG4T>G@$_(yoObv{ zKK*bBkvDBaPIF5;$k?8;HKi4sGm)RZHIAS3l5}0nM&N?x(wIl|9G*vI6OKprT!u$y zQ~ITPRUO3bSOvT@+L^;1swuFKe3#roOY=Rqk9rr{LH(*+MZQZ(gv$s#BpCStl=j^K zfc^PbUU3~S1pzdf&smQK5WXBr8h;)7@H{KKl+Me!JeJJt3Wj6HiAn>gS`Iype_>&G z-kDQGM~_FD&S%FgVp769s^r))w*AeeR>O!;urvVnlGlqCXc zi&I{N%ub?h zKY{=H%^IDw=ns_~pQ$&1cKp!Oa$9zW=RaS=xMp-J*s0&?^B1+GycS#&K_zG8xbmEm zx4c`V%jCLFNJyFvj0sF?m$p#CZ^O?&<)X*A(6u1k}EaIm91a zIbGL_=^5oJL$#PjDjL%;_-;tX>3*z!oU%l6H zrdR#u)Q3JLcAy22gK1pI#2f5Oitz&|$?Y(iBt8k`*KW zB`OB|OHj=Hm$GXCexpA}g7%G`rhqI)*jGzhm|sgwSkJ2@*a)Nsdj!lua{^$YInAY_ zvCMN=O#XAV>C|VbM9(f*Kq>CjxrN8mJes_T%2U&#&zh6~OmD z7Ai(DjG)!-$fX(KuAI#sY4qQFpGd>DEi7pa)=I1d*5!Tpb`s*XZ~NN~QPc`Za>}#^ z*`+8ZUB)|LZ&4ReZ;=27YY2`SLzJa}46}5Jj!NAs#V?1yA4IUHK*M={gJ0_y2zQ?kq6- zBml3F{z`uJsp&DXNd)ydJCKCc=x6XR^;eT@>t=0BrP}BZO?W&5kxiz@O7F=S2lUO) z@odDhd)+Si49_C>rwz#G_32Dx=Qy%$*yQd^hjkzjXwZGCvwZ%&NzWO;euSHoD^+pu!rx;IyLNe-- zC@VnP1&wrwu0ion+vA4$Mc0G&E3(91JDoG4b|wFrBi4&Y1(+ygkm{K6&Fpfba5iB zc8Su73WKT^yAnO`Zp2vw-@NAG)32&*f|;Mk;m#A>XFBe=?KhjEcD`-(+Kaa59M0OE z7u~Sksy)*^3ak{KL9&O9gu4K`Pi6{ zD8!Jx?sdfZ(qN+A^3Fc|?Amj)!j+j&)OWpj{f|kea52(Yl$B4VlPoEo0bfScwt%@P zYI2DnoJ02#Ap+@8^QlYCE+OPZ(HTV!1&V!rHO9bD6|)8WZpMZf7UerOziL(3XuDW> zxcYRy$+*{{n5jIzb@1g=kNoBAPWU&-bKtW>P_OVI7#9)+>N#Yc^vo0kKfgL0&%BI^!-PMvIRXq{Z%)Vhk;yHiz7rx;+B zAy$>XRXdw%m8w?pT9wO{!&a?URgJegS}AaUyrSYwJaB-T!*P*VVW3D{HY6F2TpOOf8b1N;S6S`551(1d8Lnxq!0f~?=Q89x#A5SJ`XQB z4#mveZn$?W+P?W+?7DUrx!=fdPj7gd+ZP_JR}m8|!(Q$6^yDF53-J$yJyQ`K z9Q-L%c&OkXqed)KsfM5<41%0=BA-<#IHIj^EQufb`rVRv!Ed2|1G<$`|Y#)9F73gf~Q$__us zjzP~33fl~o*o+wc{Y5ZV%{OBy5Fm0Wj9UoSEIQTyIm7u8wW)LEt7SrdF(iu_V(Pq>rh zEnU_{`H)UHNa|^UsmiQ+y_qX9tU7S##h;==&3OLY<1bwmjSUi}sdCaAit?nN{kNsM z9pwd82W0PwPJ0D!za~WdI+g_n{`m=p?6DrL2BmSZiZvrA9ECwmzDO>oTVR>_&2=!0 zqkR?$VUX!1{eJ7Jri=M?bL)S~s-`;;%T=-13N5Fl*VXf^-(eqi)c_h!=-Ks(5u{oW zb-h{i0F#;&?M3s#_}Edm^7JjQ@kk0RNZk>!V4DfIV|Rj9K)BWXayr``>SH~oC})L` zM@2{AuB0Q1q0^S&9edET7$0?(watX7zHUTDPjB&au$$$Wbf>krJ*_>W0EB1 zIT8K#v_2x`5-6|?aE!)Q_+-k0vd8)h4Z)F|j$}-hx2kAOyF`+td=wS^b5$`I{uhpT zhilXI(RqKYg}MT>W8u}nc*1snz*S?UOjt3IH8&n)2!5F8Em!~ePf$c7_;AX}#Ufm(-{90x={%*y3 zd1%AMn+1AI4~i8NGkA;K-{XY6Fq<)u(x*bu&vs<07Jvlcz);v3{Ekxk#p~~nKK1oU z?)czJue~6?@1uKf`y)irqM#33|E$mX`P%yNC=nY0{@6Vrt;(PTw|X(7SK>-E?io#MzwnkbMF44Ql%1W8jl{`Y51iaCIA%tvs?=LfYoM0Wg^p}_g~t-pvZZ=xa#hTpiEyB50ACh|A zv-=RqKd(#8CY`TgdJ&>UNXtDk$twzIks4 zZNKF{x*UiW)HeVSlj`R?M(5t2EUP=tdy*KvC#fxC)r38i;QNda@m>f*5LWe_rfCNV zs%JO!g{z>L2?TJ0rtraLo%~f}sA+l|!o@J;t}7u(A+0j7?Zs^c4D-N{`~1CzL3MLC z(HfA4XNEbb%c{04g|*m2nSSSL2KhRBU zNZy_QPAIPw4)$T-IQV-*lL%JNN=qvV0e%7?W6@nqDGa}+t*Dh1CiPWnWc2sJT~)VT z3!4hSPBbj1D`C1jBa2p1D(lsZPYFv- zO6MlSx5G1Sxe~Qk8sqYvi%aAbiID5kB3gSYtetu%kesmnOJc$ve9}04m;{5Av3~<( z5bm1_Z`md8k=rPPPv4^kuW$G9;$FjE0$}hd)2EnH-~@ZNFjuxWYn165Z_aQ}RxY&O zwt9;SEXAKDB7aytn6mS5$WNo^x-@+WLH;$2|Xv9dX*o%t=Z3eyuBmIP8rN~9*mi? zrN6VEkn^5|#>}yt3ZOzi_*@aPvuBRWl|l;EgJr_Ydydik#(Ghv@3Xki@N*t+V9+8= zvt}FPE~uDL2cv%-gfq}`>6dNo;2Q9TLc0f1ZejhneYHg;oqm~S$Qf8VoNW$~5ZMib zX@~O9!XE@q_li6bIo`&35P>$2OXQ&yO61k-X~8=phEiQR6I;=? zR8?>eqM*LE)2P)O*QB{YW{w^8IGlm>jQP)#-jE|`)o>mS3Ey4d93RxtX{TSzewU~d z626l!UTyqBb{l{pSmlB}vohS`2YPv%=D?~q&1vvfZFfV!|LU5)8SdaHj1ZdFUA zp*U<|XF;QsBw=dt<0e;EK~-&8qJC>`FMouw!d|E^7Y0gJN4)F=wLl<}-pe##ODptg%k-RSJ7;4!-06iQ+Y?R^ckn zVA+-J)9;(==9S!-QXR}oiUP@ZIV}sdAH|njy?|m}=6xaC7RW4dP2}r6a~hckB+IvD!`ivt#Ph;Fz?L>?A%K7yu~m+c9ycr!uM% zGi3i4P&18zA9G78l$F}l;V*~qkY^qs2XB^gZl7hIgWp9PxnWT5`0;kwk7VDLK^&5u z&4h$!%bh8&#q0U#zuzenDo<{)u&B;aNZll0-v%DC>)`SS+~d$c49R0Px6IE;vYq#h zm&d0E8xyWh8XJoX9~-$4(~9bh2qAccq}OiUBujNjJ|$G`fI#LMTGv*ZkK-R+1f@i` z7EK{I4VT;ZP=pWd>WacmZ*oZ~2VOb8eS*pL+vtfQt@#|k9)gqWk=pTxml07BxmxQ3 za8Ryjic91fw|PJ5uIKkjgTamMyUj~@9Q7uQrivm(Oj8CrL22ah}8zcSKMsuc$~+BHLW;U|4dbPiCo_RJSVnI*pojj zBRpdWYD{tltL@YiDwESTj#W)k42|1&RF##@6@MV?1^elv_)MUfRaXPXv@+_2x`%fc zSbij`bWn%spAKqAeT9{HHg6F*}~aIZz(V+kW}xnPYE3iFN9>a9c9wRF1J5aXbxUi$b&x% zHpOtUr%B$R?#eHUCf+YVDHT^IF+bmTUOqF+&u;plmK+vqgFv#zuom!j_8GFpf2o^t zBTE%>Yh^PBsoz}KvV!Z8)oG`7WfH``pMekOP#^fR_d~ADw{~UeVdrL# zGY#~U-p%7{I#cu;9%ni>fxc!O-PR6Zf`3`g#6!x+$(*m)Ukv88Z>7+3)-tv-4D;+J zD^5RpCJI?tW26;^E~UH3KJWbPhwDa~v(}DrkT_J~hRoVDwm0dSIJdOYys!J0CF3Jb zGf(uOeqm}WsPx>|taWuWClzw2RlEx+zLfzwRg$bKoLgVSJ1QO(qTvT^Hj~_8HMuSG z6zMJ{z;EoIt2x7^3+)yMgAlQdtYGjQE(;#By-^;T_L5>=yc+dZ9Grj>7P{TD%Y#gO z9E&8UWFRXI&EOPJE;@SlA2*xxY!Nl}V0ljhDK&Pr(cqa=v&7`3v0pH$>V+&J(ZTkR zV9Pa@p;FqjxivZo@{2iud&qBmovi+8-+0+~Ey3g5FL_eNmVR+nF#4Ey)o(8fF5{hf zj|w~-QFB4DCB&4D?5}ypmh)m9*>b;KA5d0+i9IjQKi9nLptuLB@(nq3QF!<&Q2n^J z&P?|*z4*j!L$2qDZ3h3VZ6aFt?LL&OSXD&Qzn&^JhF%txAs^&)Vt3NR`ykSA$Ayn0 z8T8h}`7UsxetqwoChjGv&^~g1$#x-N`pm|%e}4AJvYwNXvz3!^rEM!krl)(eH+ONg z45ymW0Q$RIwN%rU3a6qirt1B7{FChtM!RkSV0}Ev|LQ|^GTIYN$-@qO;=U^&HYFC8MJM& zNZZmP^`lBv*}NhAS5+;tpO?W_E5c`3y#!nsxx%U?3vk-3rytT)PFVMt8!}t270zNj z$m%3;O^Hog2Bwm=_hOGhv;|AluM1FA5l~s8D2AtHn1B~*#Hx<8v@JRuDg8SrD(lH;D z2(fq8QYZ{Crrw=uNBg3J2*j}kcZ_G&V2-mjeo<29_c;wPxbRhW@WeV_yMYj*o~c>49s#koJK*xRWtP|H zrrMk<>NY@Tcbab#PkoHKUr0Pa^2Jao#mDH3I(1@?3Il%WV^CR7gMgkkNx$^C<@=MkZ}7HLnaC!3{=j5 z9hfP+wNpKw@xhl7X#w!JJ-!htlkK^5@g_X9o;~WZ_qLp+@(oPq(GOqABJRweoIHdW zt*7sG6KK~(lV1rq0QYpCHccoKL8{eVl?Z(d$0l!))8@h22W4KI^jvsC3C z5D&`b^%z?-g}s^^SX+3o$$9uPEBgf$0nB}byMOOk^7QFszW5FQoO(v%C&Wu9rWLe$ z0l0q1!s(;W(=glz)D|vl$1kVaRo6jnI`4mMV|`BF|Wh( z*a;yLXJX`JLto8bBjH@E`LNzZ<82CS3Kubp*|en2PYgt&^=RJZ;az#aLp+27)-C8Z zo5kqrtzs@`DL6JE(o8#HxqwFeSx{zxXLpe-E<2+9xUG?4egrs;+QhQ2uz!? zU9tfvK(->DIpgToAbI95lT#}El`*A_z*|jUgGLu{IF#im{CME;KEk$?-Mi9d@U~5n z@92}0`+cO9+`njObZPIk?c=bm8Cy=bcNbWi!SkgEgA!Euc?I(3JQoedG$jOxI#RT$($R;>R$}DTb{g zK~_Ltfqt=*Z^LSF^snmdAJ&UKVsmQW$%OYg;@latKIe7ANyrsi$fnv_qqBU)gejU! zry3S3r7i_n7)dA-Fy?EW%$k*KVR8y-WVlYhWsXQ2lOKM^1brWV1`&$?XQGF|SmhLY zE@+6(zu7eeF4EMr%%%lqPG1h*FyD?)p-En&smC{9@y#U}pf~3zE|S0SKUVen4l)#f z6{N(GLksB;_)QzZu+~B0#5r$k=C+a8fwyvTeWUx~*5`OFNQ=0s<0YT(c=2^iI@n>Z z=k#O_O9wPZ{z|mnbiDU&{Q0jkLObO(g>&?ZHw@Zwrh`@9nr4qjNNz#){r@k~=qg2Y z7)@pRqmMHV82Qs4Ou6Vv@C*}>zmw-$UY&0I>{BV<*3xNxUPC0&8xV^X&TAUbvZ@7H z4c^RN{^E0!@P;3~OnwO)5BJ6w-}LGU1Nh`O{ilV`#L8f8*a^LmD-rvectXdCE7+fV zN}xU~2WY|Mm0JKSC@9IVgZ{wJFvy`qTJo0w-m(o&bF!(I{QLkTz%A*Q z+ouL;jXat5H-oc{Ej0bDrWGLS^LxFaD>2p_R!+C)JTWl~10vMxUt@&%-2YKeEW~ z7v^46&Dgpdu#fu8-^^Vx(ny9JEBCLJc52r7RKwWtJh<4=b5%_ z=}bKRDXq0nbpyLo|1pdD^+~Tt!(yz2ZKehb##+qdsU=1VNSMB9|L)6$wV`}?>lmnL zjx4kQDzOav39!uCnCg{NccP{f&XZ7owqUrtCc}&?Yp0y0QPfi{G17Dvc-o^@&i*&a zec6Ha$G03a6&SB*0RJ4UxILIpJU}ELnKhFPu1T<14Xxn8%sk-iV9}y0NcV2t)E=GF88aKNPogvU+`CwC3a=G=QK(2pWSi*U^=Mhh zb%=<3L+5tzHh!tJ)R|r5AC5*LMg0nZtqF$D_acj)?Li>_oaTRz_=5Lxx%}pL{$lWX zTCK`&YK;#+%@_LDmjBNrLj}tk=BfC&1Hogv{!boagPb62BXEhVq}$5|`#%yD^@tYC zT9|=VWF#zC|Gz$g^Yvi*okE`N2$soEnmGXw+l;V&Rng&|4i&yh>wdO>;`6fe6PO8< z!6(;rkdvc=xAV%3Yr(wk48To5)R^7i_3#-@#gkEXR>w}p7<$Lv1OPlopDQ-HY(l3w zEN3@A-s2GVSWD+{b%D`H{}7?fNeUJuZPUQYx~kUI^|V#g?QTzXwtRK1i@huqbY;S7 z&Tcu9+49vM?bjDQ&U$I>5KekVWFwez7QJ0=Uaxp~`v~sm5pP4@W)&GDq%m6HNEob< z2k=5a)Xr$?=m2T#z_4fn56<@;I8Iw-Otx3RXD>(hLXf%9hLXLvRIhf*{7!kIO>{x% z*h2tw6CX| zWr&0=QPzZPt7g0`tcj-DKbENzl4k@cHHRKO6G&+4f(zm*A`0No7s5`cT#b9F$c1-e zW)Lc3+1LEHvS@=*)xiE|`({X!Z09_-xlJO|xWO!Et5)O_OOLjX=j|lRJRy-Z+?J5~ zM+&cPtyfRK9VhUtAf;+rR_!cNF} zd!!{ed!5F(ptkZRrUk2)$fh~CWI|q>$-c-XM=hzLdQP`uuVrl{AytxV2UaWbU!(dB z1`t6OeRW*TTJ%gxq0X^GB+6#I~IO8Iu=2nx0BhI5R+xB{@TnH7o1^Y%p99 zwaU1iAr+1L5Hh+UyowOYlr3AW9l_gIRWBhyk#5)o#y?-HV{ZFX8*#Qtl`6)F^|dsY zvCb3G*il#7H}Y)yj^jnx_Ehv))+?*8l{UCOfLsb~ww#J9}IXYobS$Tak`yfUv1&zUi19eZus#Ox6YYB5FT}eQ48KlV|IiX;o4@?&ut}1 zFG>WDHk@H?gbLiNhNI0Vjjj!xVSYgXnxH%i)6R<+g`32+@4b93RkJe}s+lvi*SAmq9V1NKn)5G7mob1ZsZ3uK5E?V>_FFAHMFZYSn``0789q-`n5KV9$3r2 zQ;&$rgdMKCov~hbP_uR9I|XN0t4rOFXdgu$)q<&((1aa?953>fhqwQ?@Lp&j$f7Tm z;p#&3#g4GYElN8tH=&~!Mn1CH$_waJQ2U+YuqCu0`%58U=D%QpKEkn?eM7&=|Aves+O0Zy^o@gir{f}xHf(Xq)xN}nCe$X#e zMOFFE{~KzsE(ld`c-i`tu_UhXYb)h{7*+z_6o!xk6wpT%7-5e&e~5M(SW(oD`J$+PhCN=lvU1O46 zT;U0GsiEjk7QbmXd}pD)LaI3lizbAAkE;L1Bb@T5t?_Fzrk}*wkbK}TxlHh0$=sJT zKz!A;2|rAIb0JR_k+o(AxQQ7mQ}WE`aqfuHf^%v^+zCSDpTs;NEO{K%&#$U~Mq&Q2 zell+1LQMZuU4PqeD1i(dQ(bR0Kbm;SB;G^D6n^$4s6 zEI3;gN-w0SN;#U&syIv)?{EIDgZW!3=NF49JofsOTv#>Ea;w4dDz&<1T~h3Xd2;JN znZC01Z<9m+D>wUV1Nz$fHol^Duld5(gXYY?C|R=2O(i9rE zkJaIeZ|=Vx*NJ2RlYa5ie&O=z;j9WPpd*YffsQeH67&S4v!F*A{Rs3SMpr@SIGV9+ z6-*?%I-Eapc81W|c3;eE=-$^s^O$|fh$rBztuYj#)l`&8X?{Nta(C8>@$36(VsrP! zTk5Lgu!_<(4!6-H=eFTSI&;Idg1V-e7Muc|$*NcdxcV(&nY}f=LB2TuWqV;L zfc8r*RbH*s=E#IMOdwZk*+||)lxuPJzxax&%7*OR5rXCumw}{RgP0R3szb zaps(OwVT)G=Eaj1HU<-JcVafk|6edCIeuFx6>U2w6gsCZnhFhj`BPq86LL<{mV0Rn z$w)6z)}dwG7LJR;c}cb!)GF`F6UINC=ei>W1t-luoz7=&ibVWPgMr{+QzTJSRh4WG z#qo;sPj6O8K7ZTxW`k5?(RMnVTY@FkH9c*OsJ6q6*QAE7*-l&0mrV9$*P54Ja_J>x zrD@w1N$$igA^Gs+xe;JiWmn4rS`E;Qud)#M0Cq=4K zPT6!3o;#d}$~FrxbFHU+AE0V!CQ%C|Tn7UbuURZAvM)O0P1x+FX0y+44mJnPMyJv5 zZH?~@UD(yq+kpO`IT#6=J-wy6+L)%M(Q0-ZQMOjSqsbq#x|#<1GMfZ-=fx4vc8{yo z=QZf;dZV-1J2}KNPM36-n9OUh_}$R`e%8*ijZac zRRkGzA^NQPB%dD6s;~k&!srs{7^5daPcS+QdX&*+(Bq7L1o}W;eTdOj(78|O7avx^ zh-SC$b$gyUUw`BzmwlCNaN-X@+TeST)<$Jh6EB_3A$MiU8_oGTq*fO*E3e;d@0p=C z&oX^F0Qy}EpXy*3!=w0Dl7f0mteg4A#E~Z2C zxWafzsU?{CW$wo?{C91t8jl^n7At*PPm3+%TK{>BEYq`+x5X1MZr1DFSrtx!&M>+J zI`#*u5^fDBZFvN#i}XhmGoK(|+K{murf18mhqEfIfQ~SF67&RC`t1ujLNh(CDxV(C zs;~k&!stoR6O29sI;m&?e`%wr8nx~3ITe&X1*K=0V=RG=VWnTwkh-42uosir`c-2~+;KAo`4{XcJC0pHezbtc?+D7@#9qG!l;}kxM zEyZ)CJ2Q7?&YUv`{>Q=aY>eZTZE)jl1(uOoCYIxD78!D8kK~j4^WkkuWNJ8~qZap= zCsH=rtA~r$(zPq$#Gy}V(WI6aKQLO{8;f{jL5H*A1y`ZaVq)RnR>uut{mik~t=6t9 zqG!VI3wEOY;9MuAEQT_yt9Ze1zd9)BXF+l7%j`{?> zP@okbNe4_m5w1Fbys>`Z6`k0&j$INf5`ghOW*yb2lyP++A_1j>*gN%I(O`ODP?vI` z|12~IJ>w*>78dl@M(~JFf~3g@?U=iz6WCxW+-!mDHh&$f+m$AhQfV}PN@^Yu^vMRy z^134BXK54dPU+vcu|l4-A&Idbi60_AiSuxxt+2~(b4^w zPBuiNaxp3f*8IX=PA^bo&M&x&lr=8o9rsYyIMSz2$E12iar%v5eAD^WV1?s>oeep` zcxXtw>$8K#w*5^neY)4+*Q<>JtC2y+_v6@9Q%qr+SXymEr{;RVk?`)E+dvJ^@-5SVg28O@W+D2)O`+T;YVRPLGP1~o^ zihxKYF!7^7g2ghjMTK`-;G3znNhh&!GHoOzph#f#x#`cI?>G0!jJ4_cD zSvJ^W2%|HiB$(=HZ)STWyC?20fjMbLqUjTH1%3MFZ%sv=epu%y+N&Qnrk#7VuH=bn z+NNZ3_&CfgyXV(k0m?1Tu#5N>tN`C;YtTlieM`gE!1gOMd*Uvz3K8mrTd3|AaQVFk zB}QgYnTmQtPVXq#*O3`wo?#Ok!abNl=Y=m^g3*wLzKCFUEL-|@NNnI%vhl2q1{2%N z8sn%dIvaFWJf4zWf)0Ywg-9GIs1ew_Qf+NYJlC) zdit(N@a{<Mj6^_GlZTP35MC1I~OUkhc{$Gl%$EKOI>O zYq6_k68p{2>u%F>cU1O8mzAg$6ZXGWT0<|Bkk9T zMHUUWdBZ?|!Do$YEjhb2rqme50-2rB;4&|^Bk`EfY8&ihyLtsehxwg~a@tu9Ol)(> zhGH^R`s&8$(P64j%g`qo^vSgm(PDGRQ79zYpshfe!v1*P@9;-=q|>W5gK0dND~?qn zg=)QC4a}I$-UB>i-WQGyummx)JE1nJqjHtSYPRMq4wpxzkJ@!G7a3?B!C9I^d>d<0 z((SpBb<0Pc2+Nj>t8HUwCA}g>s@Ik)CyUYfpv$2RXv5pH>HJ94qzWgJfzY&nH!psC zX7)rvo$#0wgDj3NVDjdTd5_a>%h`=qi+47?vV%cTvI7wY*?~oA(MjrnjJ6OVu7Be1 z%~xy|BfgU2d~}O<982R+VtNXTH1#U7W2>a z3U4huy^4El!_=r}c%Q$wWa!ck%6+@+T1(wr9w!J2t$`xcy-C-Y9tid19!#VLN69() zU8OQ9myE3U3OG}fyK)d2p)Wcm?n~PXda#>1GsI=W-XyRpXGX6XagObb4$o>G%CtW? z8}ik|hJ^Ueujp2Ji7V@=?Rk?^9hMnAjdXI>BNiS@p3`8zu+T+)8_PgVY4csAKgxcTOn8pj7^d=_8EKUVvkpG=F5;)cX1N|Q3FVu(E?ms!!Ln}0WwM)*a2 z&0O=Dd{`OEI-S{&GMtZtvr^J%Ov@F(Mi_Ztm^ss4VC)9LB&PYoK3 z{{7_Saxv+4*KM}C+nvNZ1B}ptC24kqyi{2Lh#a>0M9Yj>a@Nm%@Pxgi3vj#9%!P># z{t1?DHtV3cTVTs{NihK?ht-WU(t)oV}3qoU87gXuavBTMFlkN_;hwjdo;Q-RIG@)lPhxs9cw!Vh3l~mWk zyg`gPxJsb&o6!O1&YVGKKKQ``+F2+x--2~-v5Oq^Gkm|k3o}OzbMptdA7kdQg(hS| zPz@6nE_ws2`ODqt*82Ic&3@n(Pr(GhP8TR@)Xt z8ASo~sREX~ExgVJn3o(de$^Na+00&fpUGq$5Sh&vv)!;e$eZ$7{TjDNz>_(I{2_6! z`Poa6c*ZVPaLa;CI6gFt511-lj*vv3Ji9nY{CnYoGwhebt=L1{MkEOeN5Z`MEYjiL zA__W#X^Xa4=~Vs6@tt~ya*VX5E#-_tEi^vf{4u)wYrLr=vD7Z&^A}>@^=rd&tEJ${ zl({`_L=@c3-%18O+mq#8A?WREVfe-9{5odhYwO4hN1AN~+Fq)KPx%Zxv4GBh8lDfX zh43{~7tW1sot!W=b(7UsIV@4YY4-HDp@x(O5kL(o%|rEbXZBdySVL%~`Mz1J1?_CU z&*`H6Z&6#~Vg;ib`8Lr3O$M7!+p;b~ct~V|fMIFBerO%tsJ;>RND)2D1Ex(aLS`+acHv7 zK@c5eq>*7b`M)Yqva~7xNJp<=-CCnSFIU3viORzXSH7iDm?P(>X}SHZr4&F}TysaK z@NipNr$%-s<*R_sxBZ4Oe}L8~+QnEPu)HKYryk{-1uQ0e68^C8;SX3Bzn3OuzGd4N zn@S{-CGejNCcW3cSo@WYf`4)6*7Eta-0+cn{>ZSu;&4>_`2BXYhZjFFGkZLdI6gab zB0lVyO{V6&-nkTTxp(JsIPweH8;ADfl+S~#n~isZzuI!PumjNehuF3l{K`F=KY#MU z2S5L;+AHLn1n?UfGbVV66EltD306<>&fMuDmtE*#p&e}Q%8p#a4$tR?HSflH3lqcE z^?Y0!-cm-k&+azb9!xF$q4a@V?m(JpAGTVD?IhEYvs!ZwCcb)0tv7jmdiq#m*i%m? z8*Vf_jNFZ6vhEp99Gjj#o_vD&y5|l74Z;ZqeHPQ8r$dAI8uVwVdo6YpzHg?mpOj`b zxsO^GOzTlz8~q7gybuE{s8$UXq6cc#(-=&ckm;&$UF!n!#{x+uQ(g^7Tr!bVCszdA zLv^inP{$kMd(T?S!K;07+=49ZMuBF3#NW%#aCsC`6|@2}aHo|^(W<%tpC(48O`EZ+ zC_@LS5*kL&2A5Ol8(lzFPt&%J&4^eXdB5fPERnoAdt%aFR*ED>qsTuK`q%VYqOWg+ z+rzZa7JtQPV;UQr^XcK z0eP>0XI^??V6L6cMlBaUpJ;esG&*gt7-sr}@&ZjY zKH6-ay=-$o0&`fi@;q(AyhJbVAw+lvd>wi!!K`#6k_kH|xb6jdPr2Lv7FP@zYIs?` z3LD>=YwIhLU=XlFjbUk1aT!!H?8W@|>S*2Vw68nA#^y2Ia zk&dMXUki3-DFD}OAQh`9q}L45Edh4{Z3TWN3RS~HhJm48X}>=;q@sYzv;quNMmYTw z9yS|r%2M8JQ-KEbVH_%Ezw?CUs{|UG74D&qo}d)rFWqGy}E?K5ZB+^ z{Ny{JXPBxF!@Y8PH#KxH&eoZ=&l{CDUyI5hpgqw1II2iHtUB*DxAD(*&@7s&^W{Xj zy+e2D73rGSb%`+W`!YlEajz|8DutVGM8)P$(S6PT9>1Yrv5NRIzw@fTL#IXq4s+bl zZUzx%sZba>*^0HY5qxN;r6HqXnl}oZsC$<6@kUl*mxl5#Fx<>d>&+`xQdWKWnveu7pHV((HDql_u!gN66zAhzAX? zK8MV26%Hu+{RNY!O1aETUYXS@w|(S7ETMukpy5v{Eogk__B8)sRD?zHvGHt)+Y^2U zp5?rn#fmIOORJO&tpFNH!0r*b9G)R|p4hOLcN`{0=k~fP)xOeGPigY;Oj)OK2i@vw z%92y*rB0>Bq;>~fYTrSgtC9XI-e#V5kqWUz0h(#G!Ea0?6*9kYNUN6Wl^Sc@3A)f0 z(u0jyhJ97m>eI#zjb4!5QtTzF8V*7esnPNN(ocV?wGHY9_+syv#5^GEl@A!DnoLln z1?`Ne&#qD?cuS*bptS}5#U1Pc*57}Qwuc-EjM%Zj8}eMZA1os+BtX;zD#ke7v_DBF zJ_(CXf6UiylOypdrCXYs3T5}F1G6L|t(l@bJsQwQ6mFGgF`t+%o14FC-Qr}p`>I2xk?vMLLoB6}#@7B(e_Qk<2I*(nuhZ^h-Rcw6rZi$wu1-sC%PJ^A*TnYW+3 z^_`Q&f0x1u4>ozd znAeT1UsFWh*~7{+IT05Pt=|Q=etOIEwhO+7D z?o!Ei6q9&Cptq6NCiPl}#TyhuMb3qSH*Y9pf(Q3Fp4nfQ2}NpCSdBhkXmVmpAze`G zAsyRl9V|kOMMp4bdDMiO0Ig!dD@bg=@V4LxvP6!>V#gvK{4(4chiaY1Lx-|z9b*fB-b>@G zU~HNfeS!>0E}KOl@L68t!GkUMnS&2DDuwIn(wUO4IO7B^ zgZ^m~3jPKZPuEvh0S8~G9%2otg$FPa=k68`e)Ekq1`@7ka2>DJu*-SXq3A0c5v~$wQ_c#{{qA?syD>gg@@rD zoZ|tvE5!GVLs?8`?+`JeIfIO8kc|KAN9f(n$G>n6?Fb?j8VZ!3ZT@qFM$5qWOV%UV zaaoCWP!{b#NY z=T0{2S7kC+)f*>s!@=crYToakPomT<+fo&{qcyr^N8#3GrP++t$ z%A@!%jtL*b6>GQDCMMhy6SZ5`(v81db^V9WEX>a@ocZweSN(+=GzN|J59`l?HJFi2 z&fOH_jAV!n87(B%>r^2_`ozTK@w6eRzV2&=kk&dDjgDEhVSSOMnm&+UIaRNpTFD=n zRu#;cgnj zt#xM??i`148(vv*yxKqdV)p^6Z)hdCEfm_8Os#~&D=7=9(~%Z4_5LepkT?C{k+u6L zChlK5db(Cgom^hJIv&4zY58OdjnYqUhqoo%rf3VxD%<)SbH>zTi?OvmEd` zcb@@msXA)2Mm0lb<2lg)+6iPOAknx9hmmDR>vOT2kchBV-+p&kp z1fj?0xCrH~b%|LNE25x_Bz+9w+B$L~^b35q+)Ks4d^8#kjyZtqdAC`a1bV=lvXn=Z z@`1>(I_Hk%5kltrL&V$i`%{*QWVEhjaYIv~{IcKRNMDoroiXc9OmedQ{;WPuE-oyb znfK@z2zJ{E9Jfi~U}uQ7?;3$u1B?P?sJe&gGaR$cj!5)OiM9$* zS{v7(>)6TTD-rv6s5YT|M5Q;2`66Lok0xAC`d7Ej!50XkP%!N}aWxq)n0ooHpp-h4 z;B`sBNT{Lp470W1+I9xpy7nD?2r&_I2erYFwob6exlG4GYO?fD>c$(c4wuqHZb$P` zw5rKlcf^Ab38kQRwNV&j0hX*W?)KKZ8l|snfiW<#e!RS&B=?s`_L1a1h-|k?ZBe~G zYLi;?FGp(|#p(DR$ES{u8VsZG-yLxzN+#R+BnCjrl&tHtLK~usUl}dv-}NuVB>Y~H zTP9JYc($oHoYbRN9rcF;eSK*jpV~q8T>K|7jCJiew*)m7ly!hg>LUY+pfs%PHkGU~ zxpg*+Wj}gTrq@=Vp0WtV$f2v0l%#5M$q9opsuyMSr%NZM_>+CEOg*F=^C@~v%X@>7 z$cZCftaXIe957N+%9~0AB+;c~k^y@(y=w6%Jpz+QE7lB1gf4xk994XF@l~vz9`t9K zFRAY16npwy%Oe;5gyBY)dBEaCNYFADp`qcrr>-Ug);^Xo?c&VvV$+eG?|WTFV%xQLESkCd-r>fZ-Z&4n ztN=yufg)1f6hU+mDM`~smkWUe(`?rUg1(hkN~N(#Y-ikEar(0ki^}EEp%1;%oUuA` z2AM%Bv&cO4u(uW@i@G+=hy{H-M>Xf4B6%$FXxNbzVY*RAY^JCVu|`=4ykh(jb#I@- zZjhF#wUVQJf?q;rk3+-5hjOiVZ_#2Ydhz@7W%fV}6||9F*H=Yw0yi;UB-CM=-XZ8! z{tv59f(V43+C9wP{ihOZU$3w%6%+KbE(Q8V#C*`(#LbDUmAI~N%rdwq0}o7y{u zxSQE^0v4>pJ3=giQ)3exOUCRfScS5hM3y|j^KL8KCT*~dDq?!;US}YsaxIoZhqI#O z$@KhnSq8SsO@Q>j_W#u?_dcfKxgX3D&2OmH!5w+2PZ}yI%{n?e*N_} zu(dO=R;Ehupl`O#{GV3#Z`#%#&MQ@Xzt=ULvpOm(p-e;P)TSK4n%6fSOk@?>k0}jq zsX#97?KO}yspL{tZ`DRrO7~PGUNZOdG%llJg7%QsV+~@A&Y`!ZvtE}Du>BWY7lSgF zKo!SK$>mup`x|5`5}9x&RaNG=CPtSdGT zInoP0f-}KlB16om0|~-09*UIIBR8!MExl|ZEQ>BhXO6}V=?2d|pSAg9y&9_w$W2{5 zxqR@pL?&X$`38iE!2xHgpd;&^##^u6e`>*g@ghxspy8OqS^|95VCo1fk;lG0w_+S^ zEMMZQ<Z8x7PY@2d9vaugdm<5|)j67zV5{wY6x;^1M;=#gqlePa?zzBKp{Q=^m7#~lAd)FO~WU*N! zFfcX?Ob>dt*4N{nxv3VKzjMXk)BK1LmB#LUvk{fi*u4++`L}s?JoM(2Ia@GuJ2j!4S6lPpCO|8`9`UK$>cF%zZS~x!sTD$@|%eu`Z&`D<=<^8{~DKX0V@11M9I-O5U(Oa z=yOaCl)tpqm@!^MRMC@6E0n*?xI|YDFRUx?;8^0UBweaaI-QSk;vnm(0WRepm4EF@MaO3;G8hX zq&N);zXqYMmvHx1n%APtJ9`HQAe7T!k;(^DYCdmB(2wGeJ{1f;_2{FI5@WHYrFdm; zM#l=UJ-g?J4;(3jhI6w<9(seIJdZW*21W>LABFHk9kGP)!`yWC(gD$I;KE$u{F4 zeQqqeFgYIcP3b)5L+R}HXwV-Yhu8*hDDJXq6OL>ummtFtqXr!N?cl zlg1>BP+upbvk;n~b4Ew0l+ly5UV_MeZ>9Ag=ta+j4+ZWbMSO z3HZjpW4`fn7M+8+2+!7weHl9AF4{cC`)1zo$CW1zy}z=m^!T*BVlJOOz~;-*I zitPNO9L`52+QFe75npc`82riN^+A^J*zC9ERUVr?&SWW7CiM5_4_@{% zWWMmr)Cjg(K#ds~^#K@lU|g1#{Su$%y2u)HD{QSW-F)ADHxE&7GWGJ};xhFHK_RzY zd(F)^Uvuqkxm^o$+qcgx?0OUNo(l_GSSO}{wkNQqW^g^nIv4xvaHnRFaE4>OvX_Ei zB`Oz=J^JWK@F_ZTFbnRIP}XdG%50l8Iv%wjR;29Xhm&>Nc+{GZG?10WaqOIW!yCw9 z6^Df^I3Kee>z(QB?wucd_0{mxZWFf){j@?qYxuiE-QVu?)jD=3{PY_R)1B?=FhNlV zk?!o3*o1lMUipQGQ6E`2kdEywWkQovGt+JWK5zcjR?n4}oW*P@m4f*pF?w)!7Vj-; zLU5I=n)AEJ$gYA#J3cX4RiipQQuD8tnc-G#nMCu`*sz0h$i~~9d8Bgv z(Z<}|+>uRHQ8VeKWLV-2c-_#u(Uu`qSaU}d_B*}CsnF7aeLGy^YOn5!bp6Ki=#6hj z8D7v6HrejE`{uh0ny5Z7ar)@72PV+)2wtCVXeA7-aIvnT)myNl$hz$8o258+^s^U84e%AKnxNvbU^ zEVaL_k2P!zZIc)5!J$YyHme5EgfzPy|EH^ zcjb-9w{{-T^Xj+GK)oUTA==q^S!Mj+8maASud?9CZ4VvUnIcU4Qm+a;t zE*269a?53H>XYz<>|Pd6BI+F+Wd2lg7Xg~gK7;@3RcT@&7+6e;1jE@}VSvYEO(3SE zTsi!;gXQEkHTQ#OS$ibD1KZ@lzdib(#zB?r`B7S=3d`VK8q#-Nl>7VK*GW&)L7eYqKLH zcf5g=jpl{Pt}R>eWo)y=eu9r#dOibQ? zWbO2H`P3b=S7$O;&)#wB0@V_>dt)h3u`zq?1}AOiKfkt!eI5h~K~9_q^QHYl_CSwB z+5cLYg*UbQAAVlRW68l{xzJ<~nDV5|6ocIwML4MmMUfCJ*}KqlpjY8C^W*;*j`PiKd9RQ&!0PApNyYt``91p5 zL|O&`GHnsdv`lPmgEeJ)Ns?_(z1RH0!Y#EdKjaH0+!js3nP~~Q1`TQU*sEbI;5G`` zMIZEGAM~b*$56m9u8-j5#ZdwYS9+VK%L%2eLAktW%EYq50+xFR7`krB7dBe1Y;$wx zsz<&y{XvK_M4alA*%_JLsp=i#46^#+JfRp`Z-*lNr^SziB125(1c7))OGoTdpG&T& zeTuvzyDc2vmi3J4eAYeGw0zh*e@pGagY|$eqSm*v5n4?lPw-M78-gywS{KvkP@7y6 z4lW|s?|!hbTVxiq#8%OcxgY!hsN)BeXM&|_w^yx?foB5L6ouyqLrolpzKc#a)FoO^ z9gTh~+1}Iad*bZM%77f)rlq{4g|knr>>khvScA%eUG1emgVOJjx-}ZN^gYc_H9ztZ zIhDy@{t(PO)&ml9{4JG#YL+#;oCYI`wB zy0}D}O|(UMW*1fH7>EJ4zy#l_~WUO-^d58Pl$=Z0qa0IP#KPeq_J)Ge>i1AOdnU9U~!*Mygo zr*F&0$;{oS^4VhkUUXg&b=$){CRgn<`7;`%wiu1N=9{c`i>(zEgtdho4@XK*_+50q z(4f24_nNNhnpEz@-gG7zzL60>p9Oy^At(o;b-1q)d%T=FT044b?m)JdJrH&BbwW0m&0`CCZ7FH=_ajkR($*_r^H@D>fu4`l zU;JY87e9c1e?H-m5}=ZEre4+8_o|eW345WGLKLEL3K*^~3H-${A9?an*z8>JRO=I! z#%Q@z%!jL1qjPsIvpwo^2h+(bcsgg)sPZ@+)|}03v8dFf&PZVtkV4h~83Bj_XnhZK z;ptA?Ayt1XE?sD%Y}wfJZBLCuum&vyk5s8Y1}uY*pz~j}ZS%>JQY2|Azi8X;lcuE2 z-@r)Y+K6ug9efAV!M**|{<8*elx?oJC5_QzO}6+8E!C{m-}|}c*WLP`qmwd=Q#CX= z$nNEc)G~Db^Ua@q|NFlmJmv5Vae$pD@Th4(GXE3qcb632ty1A|#st~ouvLel?HP!epF!XF42%ZQB8_r}&chvHOfh<>F-CkI#wNhX zt;g%ryw^tYjtzErnS|L1_N3jZJ8S`Lhmc<=06gBg z-C)6w);vOC^M8ggJ~TD2GW;wdMhpL`LB!Dcjuxm}v$DPZ$9j+T>K-cK8b(uj=1d{{ z2?~J|hV3^k-yK6_km&GFyy#%+&}p&GsLXE*)=T3`r?UP8i$j>FhOfUq9p-R;+{CCy zl;T3$neom~qJDk#`g*%T+$i)h0eysPm(>6z>ep1SsSj9>(mn0!EkUhdYW6xBAh=@- z4bZ#(IhI)P`xg>p`AjmI$;0G7q%TCGMMK`@^*U+qXsD-ij@qgoHuS1IUW`t=-P6%x zDiMn%QYbo(&UaV#S9Bgf*G*6(r&Z(S>bq&?IDmu(7L&)X$feV{D>hcdAZYX`T3bNV z{uX=_AH*2(Jyw%?(z|#C@IQZ9ZPTyhN3I?zojipsJgYIJ)NS9Mn{{gCL5-a}F+Y1e z_N!d3qy2$)xG;*Qc5k^R$<}ATmV(Az-%IR9L}=RUoeo8)chVh=y1lU&>|&K~0!&O} z?sz<3O7t>`W9cRRN{>;bO?fOiXT8p5nrFh%x7Ji-&F!v{s-YxFCWmOg)7^j%P)F$86EG4LJQA3r<9YiYon?&X{&1D%{x|e@ z5Hqn%@bi{TfVDdNFE-Gh@h;r8A98IW?*97u`mdSw-p&^M@Wa&i9awL?M(esv5iGMw zOj|tLV-G%9KYO;Cpn??=)j}qf$`sJq!c|ulZtohlZr+NX#eA{cl2e{v_wuiY8ms;C zepa8P&kv1Lx)&C&MF~TIwu`fSO=p>9F9PzaCP zC_y*90|eawn0sN3yai-klM)bz>`4bL>uTa2Q(VB}#ls-$Li=mblQbSHLHEh~asny( z`_N)fGrqN0+Isx0gi|KYgIvb)E+9U2OT0{gW|y@_o*wuwj^F-)sejw?^wZ-%F2odo zTEOG8xNLz|*shuq$sQg&HEd(UaJsN>6qaAGY_O5i+t0JD{-=8VPbdLm3{B6tv#p)A zfp=EiM|Nv2tk0uC@iFUtN@{z(VJtPTb!c<8*qqNh8}p27E%x2iu(w=8otlVJ+j0pt zDZyUN8YDba7NN<3=k|5648*6;^0BbHU|IM4*gMuy{}X zR%=h~cuFbow``p<6MyTgt#64tdEfA^r(Bl`@VCC%`j&vkNLS!*0nSwCWcTXM-hM~_ zhWsAHk7)en&HHMH1H8J!0q$U}U;S6->isM_?yGdx5L3l)UAxu%}hWcMuj9t;NXr3=46uhG=h**%N?{|E$--ZV;* zBSzy0NsgMxNHh|Oz}wrSQ3k^JQp2EO&C$N785Z3+EkThBx8q8N4|`Z`)sc9xwDX6= zV!)BB-@nbIvGo;s9;5TnHCKgPBaYF8Jr9cWl*JO&x{R*lh02{V57@!56eona z7y!w@L9ZIzy%&s;9@!VW;oza`$^9dqqRm$HxT&liZYn}rX*TnwUVHGZ?|IK#559IP zA3wRgaurElwX%FN{y%1&&ScW*sQBnr?89?2V}OpbgEdKQ$*Yf?vL^iE^t+4bTM_o4 zu>Znmv2~|}Jy`C=Tmim&slA$uee^1aUpHAC@l5D^uHD7lw$Rue^V*c=Yk?iFx++4J z-3FgK0$zWq>+h;DnIljy_VnaHy)AsYjj*bbt*}98^&ZlZbHj3{ektuP*}eN3)fLA` z(lf1d+xMqaJ7N<_XT_Dhf~U00qgt;fVzS2dS$)Lli<&iIlgBz5PK=3Jy{^1FKJ8{8 zY?Cy=cnB!X03+5u0xmd;q<<$wAo#^oTMIuradlFhaq5CM6Q0ZUm42F4sa#ywMN){ryh^-Xxu6^XJgq>Fp4K~wXynV`X=Qw|F4LA{C8GZ41C z^YBP-iTm3X`$KnMOW-3XN-pSHBOJAjt&gy6HJDt45spO`3NR6?JexW!QHX6#fjxmj?v&tRlec+i; ztbT`a#niRClqO^%Rv|LT(M~5_1%1T2I3|#Mno#M802N;$7L1xbDYFh}V?#BUi24{U zLo4x*pqwb=f^wFiHZ9(SwP@K}n>M{gWZ`^>@mq-Dq$8J7APJG}L|T81mY{RUsc_(_ zo?5CR!YJ_ObHzrwg)`q|W|s#oDWr#Y*ts*_x>^-(i_J&y`~mP>z~fO&b&TA{hG@*P*!WrW@@?W^fiF;^;Go;iNNMZZceMmQitB$3e3kG|NH9kPp*n9j+50 zYJ#86AMXe1GpOI=dSsz!pbkC!40QkR2L=F60el`0PXHXx1Mmss170CM;O!Dtw@c7B z(A@x4K&rpO>UIUByqemMo4zw-b8+Px7XY4=G^UUm*3yT@-Bs`eNdY(q8lNd z9#WoUq>B6@VjD6fxY=wd*wL}ZI}ivAczHM684h=ni{#`c>O6E0+Q;PtzFORbn$JUx zrB8t3HPjjCQFJwgNcb?K?z{#${`KUOXCPbYkAY_)J@9oN@O3L`KPk@k$-X1_$ayqk zORob;Oq~H(-a(H-czq=X8*`m;FTS_*#%mkTpiy7xLE85`$H}SaB>|HxCRT}W;;@{G zdakFBaQsZKViIDcQm$(->MuRudG5LCX!E`Fy+a!}@La6~uJ#dJELjpoBi|9!bz~)C zX}a_}&(|nmyPCr$#BrtU$agQ=bT8WY+9>LSm=Df*o?yEeIJ<}EjAavS3^q2GUI$dC z9-*%v2OL3CyqQZ7Sa;@`cYDX4+r9hw zIo_G??%)3oq1LkX{rT$03NZ0%GhGVkG!AxGP?M8L1A2 za4GcV4!jviRDP$XtLv)N8YELylE7mp=iEowaO zs#7Ln@q_6RHlMR9?M$3;D9oJ&`$#&Za9Mo|L*aOXs38u<%YzoTf^fPL_;{1&132ZV z*BI&t53iv+wh>ar^F#plm9aR`b;jdPpc{|nmMl2N)q*7lL-76yjztBUp@lxHOA$(s z*bALzg#&oAE3LUaJCde2K9-@6@y|GkLNT-w4NNQDe}rEB43t+YKAMXKps#*cVJa@<=M!ccbYrq&&BLH~Is9mK#qhBnhJ5 zOsQN7)F8h6a&aGVX5g&2Uwq^UIOEUMq)-3}Y*gQIX9EfiKrn2VN>-p#SiO@Vb8@jIs>^xZK{9uDcST&zfVVhU^mqnZ z{6TMVTG3if)(z7M#|A#^5#@oJNx;AB^@ZJu;u&>bIDjX|Fry z__WRKvIi_CHtn%>IBZNpsbh6|htcfI1sw@z8%4C;P#*sctB4w@)>_L&G6kuseE+6m zetowuIrHt{vZ2u>p3ioW5cznR8ditN;FraLCu(ntb_*-i-Zfrl%O}?>;%BrH6&d zz}Mt^(qus>e^kTg*D8O3&#ztFAN>DuNt4r|(7PO$7RrCZvb4h>UW#jrPbpD*{N~P_ zr_U6&pPJ3ijj)NhO_XU8^`SZ?nT^4$>^)yL=!>&~4vX3E3V8Yh;X))3bG$h`{N}$s zHk*fBAi<}@4CM>5K8fB?wYB;dIG^DADr=|gGV;d3_l3sKB%v$7*~y0rXPPJAZG-oQ z#s|6g)oqY=Hwk69RpM`Ty?hFOWqe_XOADbph0p|q!ken=ln}mg+)rBPgVlFk)3LW5 z3$L^XQO6y3ls@zMgts2N*&sgm=DSXaUw!wv;I;zJ9_UyK(fL;(xIp`Dq~@>#Z3Tz> zZKQk|V0VQ|=W)Ejvyd-zEMEZJ7Ah^Ryor%|Le37NyGrMUsLERyLTht&Foe!6&Ej@k zlt0E9d?~jIEc>;rD^6{LhZ~%XoHa0T)(G!*pPEje+ReE`fkA(8$nS_KY;7i0pgrl= zJKId^MANJTtJhpPefpJaRv(z<9lT)fyz>SI&YL&)g25%B`T5LPP_G0tsYBVW5oN1a zsi#B}xb;(sujbb!tAx~A%|0Qg?rqMzgUz!Mm&@yOx=zgCdUTpL=J98Y+i!Gw92U~E zZb6;sJ^UQUTYw@1xv%0)7*UYVE)$rGpAwCp5|5n{gP*tC<$^g1QOuf$Eg_XG7_@tI zN{xaspw8&LY-WBmIzN-07iHbmdB~tU_kw|ynG^N3 zd+4Ec-v&9Cq7{JkcFIk40M^qCa7jJL48bS zlG@~qMx_iIE&A|X= zxtIvdDmZfMih*vU!8KcHNE_D9^M5D0>dIx`y#18?hMv;zG6t_D>yGt!8(YIO!rs~6 zn0?ySql`MBGa{SSyjz+K+T9d+pHUQ+;EM&DjKuo0B1YTcqJ{Yc8kmuo{&%?Mqiahu z(6#vD@g3wshccNL+uO+);8JuhdVw}#3B3=nbpYf?XdilmmI34v0dfUE9_8X(DnKrS zRF80w%LK@k5a%Tha(PXhCpbLc5g=CsegSeVq~haTQ4@!!^<4q7A0Ur$kShhq z2dD#GNG}1%RRZK?fNbC(2M7de@zQcPdVzY2pP!3QIzJEhyWRa^-t{GuKDZtUFYbm9 zj*&&h?#1EQ^wH6gkywKf|_B*s8xl`NgV{@#_?Tfj)AMx6( z29v{Tx4S(igH5NlnQhvz#U7N_N1cv@0rGt%y9S98dsY|@!n4w+gOFOlXdm* zyoH_aprS?nNP1bl#FX*5J8VRE12mqll*QCbpN=bS)IM!qcvjRIQRt;kjV*0Sg9g&? z(MPmc-C^zQb#y+mZsD|LVR?(csRhiO^!E83cE8dX)@b@tYzH^jzZS}ZN9U%kJrvFHNhH8Pxoh4>lRrNQqM1A5HA+N5?ntgfWO8!$&rHk1DmV;E)-GLh0{HV1X-kS!n;$s;U$ zlK89AuF#vzTBGH8mtJE~Hp|^QetqzM;O?=>5+yJ((aK`{SSdEKF}bb{3NU3!`|UxW zR~OM?CTr{LWjoza!ZRO{wFH`4SSY~$fZZNY8bey9H|6ZGuUj;@oEvj|P^Lf&X(Rm> z;yc-@8e*O^tX7Aefw;>RFH^qR3)AU^v;4aJ&aUFlPEI=sX*URIE4m2bGaU-XUCu<% z8B(i5WlGn%v)HvWuk+6$IA)U;d_9a???XAzV`yu?fgay4xH}!wJ949rPVT%`OEB2% z8jg*Qjg7{JUD5VzM>5%wZRhkU;4DWGqHD4ygdPFeW?4O|=%2mfw&v0=Nvu1;xe4fM z$QRA2`+@u71FYGobhf(G9gbw)nzHV7xI4mXgPBoSb@pUL9|OBOfa?y(!w&(M>#KT! znohuH>(N@I5xw3Xig?^QquebuDe|^ZR%fz0EvaUs)+N`fwOXCiz$h7cn^URvyA6&e ziOX#Cs!7S+0XcX8<@i3p3Znx~c?^BPX#4A1gUf&U>Z{YtuPA@&r34Odg)%XnxcygT zDd5TJEi%8^$U4jl6KoTBWM8A!9L-zPJWpnw!PMNO{9dxJITp5r^nm?tzz-vpu2q=^lBjr>Vu9^~VAx4P%n4 zymD2->*Mrs_knX8ijbBc<63@sXPj<#Q5Um+xkz?9<*-?jpJA}m5K%fZg*ff zvUzA|OT-#jna!*Wl2orkstrP_2^vR4b18z5cGwbJnaQpUSR-48hBot7WIjfVsRhS> zw^SJnD!7{T3}Y}b43VRMm-nGH5Ld}la83T&gX-iaI}+=~a3Yq;1RZGN3|BL2Oa<%e z)M`fOV*O<2?)6BC?!#pCaWybt0m!eA1ue(30CG@(+zF7IxHyLd$Q_XChaBXZD#U^w z;2__tiE}H5=UM@BH$d*>;(T9#+y|*{A0ad8e;s8=CJ1jq;QEol$F9U#{W zkXHe+frH#2K>mZ&XffIakRJ$;e^a-kH5}xJ0^|o!uaDwaa2@?qiXx*v@ITM_iA^6| z38!?Fqxxm8c3-PXb?m$h;S^nee*IR|YB3m6j26z2DRw4ASlc1fg*0OW4zwrgjb|EE zHl?!F*QV?5e9EcNM^uX0^{i3HaJ>{z{5`#bQcz}~D4gONumX; zP8y26p01cX?h3jCDi7MDQdrRM&P&U+^M{h7ou|%N8$`x_3N&8i&vQX1o9!+L z4f)_~8e2?mX|*Xsxok-5mgzNFw8u4^NDjHxZJuUnArUXgn>`AykNq}azL(?PLU316 zPjRvcDJ*5@u&3K;^r>(mA;!wMlyNITsp?7u(VlrT62oq#EOk!FqL8q1)5=x zvpd)*mxSf*5pBZbO6Xgf-EDG`tDm8L=u>(fCFQPZ_Sg;D7Ntrq)7U%gt=h(K&1#emBwKW?jm;Kwe<2^3mEm+$Znq;*VC`9{ zrco)6f39>H6l^Q5*D2d9&2)>`;D{S&ak$Z$?Mw*u-?OGBuk!S6!qXz5{h-ho?=;YZXXK=otD zVKbLQS&UyzDp5UBz=sFEaY_GaeI!?<=Z}2ziL1NkkQ7f7IfWD?KgS(;iN2AD&D?L) zH8E|?3Om}qhyWdy@h6@tCLgpYl&hqA?~B&aur$RMXkwC zTLR!%1He-;pf(%L8b@FHg(sc<(0_AIwa$QoQlM~Loh8IHlVWQstr(tIXF`9;&r{J! z=c(QSzkk5XyS_-o2Un#ZaStUE!>)KCo+yysgzE+C(C+~+^dkaqlXjh@D!55Ect>1J ztJB6}kEhG22{L$;^nyw+qjm$DpE(qK7busf*557t6c_C9#l6D@lQzw| zojSMLkYf7_j=aXC4Cq-~++s?z)6gEB!XsDe6m3drT?1p+yAx`uyQNJdSE?K98Hd^3 z4wQcglz&NwDTYv(J@ds4fESvW7PF%>VE>^hI85U<0UG}=?lz3`OV#pvHGJr>nkxi92UHa`O# zq*y2HZ%5)?UHN)xJ+5!9&*yiNBD|Z4Fz~y(^cYDQ2he{Yr3&hR=9OlGOWR%W@{?RT zzu;HW>To)$5~+OIxkFwxR{9B|A1_?^V{(-q`@zD6KOi{)=nH^L3%E|W?ECQM)jhs? zSv@Ujt9SOS-P{|hS2p5?wgw;Ccgvx!7JX~0zNPEP^}SM4ON&X`3wSR<82tk9>T5KB zfObMgTk+3YR1IK{q0Z=Rlw4fs1&oksNk{(tW_uK25gkP$hn_)&TU8-O9a7&~y44yt zQHaw|Jqy?y0DFR)j!R$*$g7Va=9SmcKI=zO_(4f=ZSCi<4%`Nw>KXI)6P_{e4fi=Q zLejssw);HUVpK=ob$Lf<$nWomH(p<`NnRJ0W}?|#wgcXDGP!#gUV_{%qbsP-p*CNH z+SF05$u%nBM?o)UdOdm9*8-^-@W;bBEpO(=&NS=XSTYw6xI8t*z)Li5-q4zjFMJu-_AVbZ@CR~JmB+PyD<s~(({AbvZ?=%bE-aQL{ALHnK!0G*GN%L< zuJ`Yws^l;)Q^mD zQ5xzw!P#isO&NL3LyTM#WUX?lEW$ti=})hJU~G}h1_uDyP0(By*+4pGkhvpbJdK1HKex`cFve}W)T!@z9>4)FOF=7imfBYU!ajhuPuMZN1gx;A!&`!sG<*a+)w=T5U{)DG*+(O7T$X(J;WQZ`LosrHS; zN0%5Bag%K|zH59Ir|UnAHTYVf!cMeN#UIjGr6+;ji6%L`Kp93vy#MqRS8QJ44r}ttsv!l_U!1~+VU-$BJAR4SA|#Q;W}2jI%{FaOekH}2Bo`z zo>Twj9rc_G)JJQi)&F(nReW-x&CW%t(v{$xTymENX}+3iDhOP-@oq9J5Oz%~m>5}i zLXJ&S$mlB3v*vtfMATN~+)IXFwO1WDcz5Z$KSwUqGJZbV^i1is(!bC$pE!IvT!7mP zxcdP&**~oV+_m5Ms`fb~1o=f*7U3)O>Ox<3c;?LE?Cq;y4!+wt*55PF_c00%^bO^I z7!#+tv);kU08SpGV9rr+X~MIF=6JqjWH`_$YWA=2H;bBm{e4^9aQ=?-wQ1-T;CbNu z^Wn6zE#Te{j4!+U?$QzDj@M-<5w(%C!gz>Ma`oaPlK+)QODf3Q4uOM|!waJ`{H}zC z7WZfBXiZ*Yi0gDg6D&2)U=$uL-H3K=TCp%S)2C6-J}~~Lpw^t#>A$B|m=m^KA37)E z7mvRliBKZ0>;|f3XFh4^iKi;UW$4lIx51fIj_cfY!L@MlXZ>A)Tk!{+^m|S!|D;co z5&MKO6}ixyq0@^!XU&Ms=h{GKrq4S)Wo>Ue{W0f~+0bnZ4IpR>>aC=E*;!y(Z|yDp z)4}4M=bbkWi&%krj@$orG2}FK%r1Feblmy{QKh44#WlTLcgKR5GvAwcrNW-1$!{Ia zC1(aWKt3B7v^q7pp3-mo(1DVp7hT=#9*T$i5`J&g;*6WEAvWml55f9pe<;OzQyxo7 z>r|ojr0*kwOJSjB_zUS7PFgON&TqvD``l9!C+KTe&~v}MmDB=R0NH|fbM4Pa)`JRl z%bB{U>=q_@rlJ4YFn!+g<@2Va>%Z>~7Pk&88%AT_d^z*Um)%`G#duFd-XH8;;Clda zQW`>yp3;jHq5|cAVh!Nu&Yu9iZ-QJg6^t6VD^FK-dad}#V)b_T&AFX<5`OGx(St?3 zV!D0J-ex58`4R&@Z}R8Y&GaoCfa?RK_T*gks#dv7-_p4xXQC=rIDwi3dK89?RXQ;v z#k?z6?>JL^B+Bjzsmbo1lfebn*{&KC;fPg1ywk^9Tma1% z`47Ci|CzqhE9a200w(WL+<~_U>xW_dMy`>_eb)WfnH97wt$+-~TF-7QXM;4B=y3$z4OjDG1k2NDn19Rr+iA z^g=jEe`s>}Nz-3DMf#J6U-K2=->%Id2;jiHT@D%h<9)8_P z!za@}Lc%FAHJeDj&|9dW_YQ#63*Q4(oS0WU%!%ZBmd&k-Zsetzd;ZmA5#E0T`J(vY z*+gzT;91)8Ve@gqDzws$<65a8D`fXDwHDLZPrj0{iDNb*P}9BlcHMjL+NbhQ!H+_f zof(xC=ws+ESEOa;I&t3i!DF8A? zJq~=of}J8nokrDxdld(r0~{2v3;Y!IJIcx3CB!Xz$XatMj6TF`DG9%8Km~gm(1)dc z=#0|KC=edck57LA?D7+gVe}>+FO`6Z39;%l6o5!)gh`C)<4{5vs8K*o1vziwPfR6I zRT7DcVW1pKv(R0?x#*(bDL(_y* zLVZdn)~Ez92(|hdy6fDd`9~kkA3Ya}4N;qs0sRGE$LURA9LsBqHXj-|G|&|hMYPF{+De>S&AA_dstvVvL&D8OZvY#Cm&Z{eR&<8Y39D19evn-aP~))WFyn?VPj0fcl`Z7XYM`jh;F zrY{Ng4p^_m&6t8(ZY8x0?p1a^-sET7)=> zUq-D(pWzIbQ(@?JOr@(*EsHPCW*5hcLxs-awf`wDPb8KX|MNHU=Kfo4yW()iWPrO1 zZCHz*F73)wbooo_0A7Ut!<|x{;>PzbyI}aBdb;H?4HOHbJZI%qSXEJ})#!=jbeE{r zldwB-tgFjojk~2H^Nd8G*X`~r9kIlf+PKl-3!zzoa3W;S8?E^RnVcqI^7Q%QLvBOB zkSO>^qUkxo*+Fl_7x1`~qMR?1kEC)@ZjBSV6WxaI{5m>mYrEavZnY8DX7hTC@$8Y*?mg$GifcMV7`$^vle^Cc@7fN?H)<$tK~Dm`Ht^VG6KTMt zN!5{&>ckBaS(8Uw+Co2Z3<>ah2zZ?XZ-};9UWLQTpOfk&jlh^!JEZQY@Il}BC!3%4Nl)j@4$waAHDKNwDZga>O*~r zeo^VyrC*BrAyphwIUtn;QVHi+$I;)%O81|MKN)YtcaG17qNt9Ob(D#+QDI^A>xn)U z)53t9KH-9-o3b-JU92T2v$Virx{)BOv9}tS#799uRANW_*wKcM;2@5Q7a%L~9<4`X_Q|cYp)`-?4dZDDIuVVqH4w?H(*W8V41G zEJmy!31?hfNzQbswJ|_ihf-y=sfgN|BN>CzvPQvdh|4J)tP5et-@bCl=NnqtPVS`@ zA~BtulUQnVy0`rbY3dra{Z99Qjutn^7wzin+qEc8?nsP9Z`L)4J94p(0koj*&E`g( z!K@dxh~KD#l8}}Ef!nc!ydT9Vff!<+fk9RxV7}+jy`^c-Nl}9cH3T2(d5DypwfsLg zg{544nC+q%lDK53@u8p)ON;J%&I`i%ckgqhL5Obz{Cxs`7cphvN+A_WkWenBOiC~Z z!CL%e>?lPR@uwJsyroZtNLnQG@?3dKf8*X`R!pHMNPHG4By>tFVG;Uu>AA*EF^$f_ zU^Y5wMaj}f;GxBxjU{exYE~ zt{_@RxTXgyiMo;>Bwyug>%$U@ZYj+p7hn)-t;z*xG@#x%4p_LL{yzK=>TdjZd>ScX zfYjmXC*pzBW(?}mCD?W&bt)t}Gx^OV)GJ_wIz5le7F=Zi=f5cyuR<@A^f06Z>0urQr9jx+dX(eXJi%z;bb+Fmo~@L`|dC;a2RMdhc~{ zHE0xzoVyNGiv@V#T%ez)mS7!D@@KWOUwKw*?}l7%Loe^fXN5wu;+(rAe_D61tx(VGX(}Qrenwqs3ecr-nc-RuGzO14jPR$EXQ4 z4WVY#RQedg^H5$oJnz`v?)-=N!*w+JprnK(xEfx&x7$jSNWfd)4}_S0w2;HK5eMN=oa-QkUyk^+55Zv>Jh7VuSL)b8+>iG^sP z(k*<<5me;(Q$g&lwYgQ%c>cJM2WU*?9n-Ltg^e)0L~^!#{iK^l&nhxOU+PL^{Q=C+QGY|Z7ij*M>2MMDby9sy1#;?rza2!gD zi~l68r{t7|XmwJ&p(Q4kr->?EBCcZi!qDqWvpJ@7Gm z=jKnj>j#&&M+ct#%LV7u&_U%d${*kr_ztcg3gQVg_A7%4OWM=Ji1ee&H)WF3zq7-s zOr5#}6!m+%=O4Z4icECyXCGa}+ctU+%kaINmbzxfAd8tW!+!!3R-cmL@ICsV!QCHJ z+9XkNi(VUuDpXDOdU3HMJgR}wjyYkKh_SX+u9jPJMW?HmY03CFmkte=(XL~}#g~=N z23iT3O>0U50F@-;AEXAI=);2@2T6V#V5Bu2KgXS$Y!A}HGMiX+n1_O*1>5q>?0jUJ zN~9VJ=VvqdZOzNCI%|D$#i~SicVg9wzFVb&xK=JD zO!Zkfm3LimAl&F|3=afLhqKe11((dmh^*EISGUL0?P{>tL>g#n1?OM~+po%~`rH!# zvazvceu?|~IX$6Hb3>EJlnTq(w8fHUW#N=b)YM?^4E4-mqfxeUZqsa7VI(2BMF|u` zD##!)7$HJzGukXd8%y66QPteM0=co*=Efzg3FiE?!1*z@-&FT`Qq%N>tz)87wiNW! zQl4Js7?YpHon3vwnTyVuJNKMLGlO7~DNd0Qp9?5$q@;o-pqCn<#=g3h(2rWY+nx=H#}P7TEN#XU?1phK4SfGiT3mpmWpU;O2aO^Wfm7PDD8jM!Vf;a8&LO z_vTuhEbDB^^?ocB{wS)BGE!Nb#q&9hf{RL!UFFB;wsv7=tmat)+2ZTK10+g(=)TtCM^Vm1*xrRrdHC}D5+~~yr!c$>bLVZ7YFC`z*ocgV z;7@!V2Cc3|E^pCk4IMraV{2$^Yin$`j}XC#A#ff;j$ zc3$20iQgScrGsw&FzkC&8qC&PjVf7VeUnJkRNo|18(ZLH`^M&m7D@!VvR1qZAD~#u zPi3fqV{3gmM>rIuy1|8W_!6;#kT62;!)2VQ__)j>|GJ9`{*WUVZfMqdBSG0^jZNX4 zBjhi9YkhvGuJpEK+5!WX$>j=UKvs*{dWQka;SU+WV{2s!*>I*=S4d_X8q_M287!D7 zT+Wd;S`1oH*_vp6NRk(qmj`}dqO_x%3hJu`bYc4kkTHtn=*=f)bCioOmwN%Zts!N}Pp4bDbe-9{(`!8O-=*(>P%tfm&?hmAQESkA0 z5Lh*H(T?<8-sJ3&k=aS_G;B2*tz0owpFV4DZm6qkXl~B*42B$UzUc@Jl6`W4@`Kn% z&jT%#m3&2IU@8$4a-xbcFkpab(uA!tbWC_2bGw7{XUv=zbh}Ic@+KQWBd!pc}nH2&2GIT6msa@&B(Do+ufZ7`W@xpU;}z`x2LjXEF1xJjvdjLJTi4aKF2}p+!1QZBM<+lkM4<&u{FBj0S^1oVdRXAH5q% zX`Gcbfc)u!!rs4u=JP0UQ@Ck#0*jh_w-0EH$pCy*t>VyTK`(Ff3^R; zJpBD09##Wj?cTloI*Ly~kN-VN%xflLHblE%RV??BgF$sS-86jDO>Pk!?^hsBBbtq7 zmF_Ct*?Zx)FZ$NEF5-5A0~!~HfqaRP0R}SH;}ArCH}JdC477gvEYYmxXf2ABUMwB# zKHT5`fqud46%@ z;x&t(UVOt1Xzr0CK=FArSBOO+2uCgmMT7$V#7QT9mQ8b>_KAAefR>o*4 z)kUx|ATpmbX{Lk`5(pY=o|k%U_UcN zWx2P}Quvm(liEXFK5+-#iAG**&9n7?3C^5=F7ma)#;-P|a#yQL)hbmfo&rDIm8F-2 z0JNM7Q7TF+TU4r+HkAq;lq!|dR<*LU>bN*BPC~Owh|#Q&lZDE1gFE0+-E5u zKtUYgzEKGQ5TvZ!H!0=ZpR$5uma z5cWRcytxLa)NyGDKj8glib9ps@2g>5?V&LoYW%a5LX}oT+PH$(^x1!6-!^NTeTN9A zEtgzk*-E7UAbtovPWRQudf2hsB47=@QyO&DUUwi+`rwKlEKLA!Hyc<|dr&YXkbJR3iQ{)--@m>Qg@>J7 zCb>dKr|D$C-~p868K>|wDudc)5oL;MJ%1MF*Gn*5gP%Z;($lzi zM%4ngfFPK+iK2BOpD$Dw71?t5347LFZ;wR4$=V_9Rgm^6x_8R7>4FgtV7u4rKm*uV zz)v``R*^jxvx}@*2Zbtq6V(K1C(PRnPNxAbJZv`_?c^d{{sTXc*3jAGV{2_TEnN6{ zvrcO^YjtE%Riz*0`Y}pzf_~}+joGY$>o(zzhph}_t-S!#b@&DJARRtAreCX#Mzz{t zIHEEdRgA%aU*NoI0StG@!Fy0s=itw#vQg07pf!8E;y}S>iQx`+om!!0a1yCKCL_yG zT-pcG+4R~Ir)}`(E#?@0&?!+W6lxU4a=XsRayv-(fsDOK2S7rM$IFOoLRqGI>~vV9 z58Lb^10AOAJtG-`DQ3Rm8R{3t{rj70wxoSTWmh104#3^&3>O6URn82X6bFfr!4zD4ax-{LfW zOm)z5DO|u%Wu!pjAs6?RMuKS4jmV9hhhX=JBC4!%1%2QRJ6%v}c;PTy#_Lj@Pf!FtHS z;mJ98Wqo?_8SC2@;m0nu98|%@_c&?jaehb1NW99X27dj`Q>2ec^1Y76Z?*WfI9<>7 z`Tc!Dr^ELak3(-UNJ(qcbA!ZRKo5}*hH{l213zBx$k^=}2k9_~C1>nG%kldsw#XdP zS$rY6#Uypqw>8QPI_z;d*n-^F>SPk0#s(GWa0mx)KpkwspG{>aWY`$9*a`u$$7|8x zyjaB=O&&E$Vg?#i9ZCBs@UT+gVJd6Rs6lQuN*xkeW1CU00DiE?CS`$qLnGu<3;cAJ z%axW4z4(5v7k{%XL3_(T<1~uG91zXkzCH2zKxp7GVh;qu&*Z}yVSf0l#P;o53Mwbr!#iV2T;ueZLg(AeVcLHBqh0jE^o zVv;)p1!^w*6n6XWfThp z!37%c9SDWE5o_6lHkEI|5;9`_^1sNKxEw}LmyZDCa)7)`M!n@`bWQme0J#z%FH?vg z*8s4lCzOxMpvB-OU9oCEICKOs&3OX zXk~%7f&p{P)2i!$-npgTCslE)iatTp%MWlPLKx1WhPq5$>653PB77c&9Nt{Mt0L#* zWTm5@gb%#^o$oAP&dsyRR`heO-VQ>&y-nsbWi5KPd_O?G4Uj)_5CuT)0m%0O@;aF# zL8?ELj{;;5K;9&ys`3~*TD}}07XoCQtX!n-M1SEdt5EFJr0ql>}>aC@B!h12UM zyuE}I=wkd1X_bnawYeWzayd&r&$&2ZYHv4XGMszd+>}D7shmRJDnCidc=<_86rOo* zwt$cvjyMA~xbnHMKh$h&Zj&M$5s_}K+*ux@wdKo++>jNhPtdR3p2+}wHJ*q6Nh8uK zXhBgeypGP-ochl0-S4idn6Ae2y!m1=@8wKa1D@;fFpSKGh1J6+9Gkfyx4%&8bV{XG zdxt`&Q^51t_E`};td|q8Twl4Lq1kQ&ya(|M@a}&0>)?Gx!1thl{~UH{0>8jLDg_YS zH|Tac0Pj8=hjEx0@Jc7+CDoCt@jsx@>lJV%BRxagg=ailqflwJDuqVQ;vu<4BbPJGqC%Hv zP^Qty6byrBGYYuDWqGFcId#QDO5(dv63@_1j^oftIG%DoIJs;BI@V|ayC1Zd_BgB0 z*n50=?UaHtTqAPFTa{9V5jm5`YQ^}Kr3bBnqYPB<6exdznvN%OLnu_OlYL)>l?AL5 z>I9z46ly-cPObF)b4nhPI>&oNvaLzLQ(2#x^>1A)i8O+c!ZY@<+<3Ob9DdVc1RmL@v1PG~q)Ffmx@R&SNe!I~ zwuV<#=xlMELDI~J+0C7k=}2nm>|9_UtI(OpE*0{F#%Tu9sB3wfFb=Gc+|d9{f(1(f zdY?d9Vy}}C{gwy8*Gr3>&nx;5eesm|ggIq}n=_geIvd;IO6t=BQ>}JU8>p_J3A9-l zr=7Fs1pNJ!wgW!nF?=c8gvHcC`>L?nZS*=6(pHgAWVM?-{3C4xj_1v@_4bo>og!CM z1%D!E3@CgLIDUk_9Vl39DNOa2uW;U@u^YhRnT!tLHk-cI0~wh+SJyR7s+4NfVx31L zRkm^uS_<>p7`gy&IMoz0WvC}!CleNFgH~HWM~7j)ly%LEPo5obFrMRvvJo^ZKY?CO zF6nWfwo1)6~{lK+p z3a)EK_&EOi8s$2hqu!M?v`@^&QoBedt%|e_s9Xy=Xn&N^z3@G)Vf7fU@U!%2NtF zvh*TX#;eKn%T28`9YmW-Ke%$!13t#9^xVBA%1jH zoG)4z4J@)Q7GZzJEDDN!@CVtkWccRVJE-?*>eV)zx?bbc15RGAN)HM84tUoQp#_cX z&6bOtL@T@2wK4+n1byqX6XSt?_MrJJ7tzr!a;^zOJYKIu2cTb8Ow>C`D%u;rpb0B( zGw%}ZGH=6=R8(N+USin3-EawDxe7lC+R*Qx42#NaR)NNlOBe}M3 zG%Z?W+Q{iHL+B~m8r68`EnKFRmV@<%&mld%NoigT|){To|HOQD3$3X5u%MpC8 z^%;_*ivi2Q6JP;u-am$Adtt~q8A}=lRs_po97PY%E|>+`C(n{6HUYcPFi^ieTgXUQ zi$;F;1mS0eCV`_8o7rSSE-Y{x}xa6@9)>9v5heut+J`L z#;@+Q#F!>6N@=^*@L-T_X#+r4*8+)OZIxP8P+>y(FhyG+T3Aa#K&mvz230<5sR#F<=N&uD1QNwMiy^&KTzizF&ok{L;AB}JY` zL`k(n!}y+@$Xopu!>gU->Vq%MxvyYZW@T-b6*)w4w90nQiyfIph|i;|c+ro$)lcRR ztCFwC;G=@^S&i?WgfDXWiegHpPqR<211)~VctI&EdF_B_m7hRc zirO5@n=Y0!VKngY?oRape_)@#3^OX2nR#Y+4wF4VfYB0X{a=poa?@rUyqq2N>EU5@ zfY+VFLuN+>v$K%hKE|$X&5)(u(jf`kly5dtpH&B%GD^xVbrd;7W)R&FQIyx>C!{N8 zHB53ELjw?AgGY!4(~G9(pn;`>RT}E*fHJ0yw3BBi$+vUJvj#uQs|k(4hdi5+gHMTB zCGkB(&=>!9HT5V_N9C5}AS!A^H$)Wi6Xi7%q1VthV$L`vmaZiOo`2rSg)IIvc39gV zuzng=yVTQMbTzVTwU&27d6BE_2>i^-V*l;lD#S0eBsPo3P5AO2IRd>SIey?s(TE@Wn|Dbi4&+((B*L{J0u-3LQZF}ePAbf3e)OHjT%_*Bap1r`xt8M z&RSdKWzAp6qWtkEI2JknbRjx_?dkmYUk%zVp0O8(|s_Az4*L46q~bz{rwJKHtdp)zl^ z!w>cX>Qx7#Fg=FsLZ8z}J=wchW$KZrZ_~1LO#W#9CLG73`~#{}<7kZjXAh$}9tt+0 z@mvpqYj{YBUm*kRQRREoleOgfAS(Qt>o^>zZWqXuE5gtaE4z-z?p6naEmEWPnn#L< z$88tV2y;A?t?EP%QvsPGrvj=bg*d0vChmOgT&Jief`n`N9Nz@yeZwk0?JMW@4up#` zi<^rxq{C+z-A6E_=;Hdqc)!x-dn5rb7z4TxF)YrQXJeV8Sn~{Cw^<6exUepeE#2T? zA0LFVq%b5L--DjxcchNk!LDTNxSc7Tv4b_(Z^Vd_F$R0iGCP=ds5x zmf=PF$}@alEslprD!NFCTE;x=W?{N=y?X7sok|TRDj1VlOt*n4?2M}@nSMw^^%wMn z^E=%%yLb76d1qu)Ffyx=?OD6|7KiWCH7A+!J>HdvTIb^1UbRDGj@Q{; z;}?tX<78uAe$E~H9ocjbW?i%1_R9VE9BU-jXplpLBnBGjn$f7~R>7i?nOts;z0Wxu66{sgyjOJr)*r z{55_^6|6@1AgDw%v&ThsL7M@dvHLn_mG)mKYsF+?avrd8}JE@uyUkiy#53qPIOZl9JX>_Asz z--#%-(bUv|e0rzryo%#4wa$N&;%LcgKn$(u>0?m@+4j*;=F=WV<+Jba9c*6AH+}Rw z^4soOlnmbg_$|JGzx?*|+jBt*IB+%RB3Lm)^ZJ`MxP{Q)i6^>jH?sn0$YUF&<$opHgcBqCuaGChDjc zt7$b|Cz3a!^=eAQXey_d6e+q?PUVgNSw|k+08+-TYs7Z!rcZY46&JT|=K z?+3xM_Y}dMA~!;w+uM=my&(+YUd1xHu)`F0*GNOpff=#l&qJ~%+^K}wsZPQ6r_Mf3 zrz|sCWOasma2D#+C!x$9gwkk66F){1E6VH3jEGp$Q=2xvR%^Az?a)&{mv0ye+uNKz zCldL+?bXhW8}9#q^9;7~LG^7di9QJ>YPtLy64o3_LM!w~D2cZoj%tbeDwHfeJNdJg z#IH0Yzf8_U(ul_H>yRu5lI2iBH@$>zHY8U9$(4qr7f5=cBszqIOLqtXB-g#g(b){n zwr$&Y-F;nKt4Z%nG|{D#l;8iq23>ev5H`8op|TV7a19$?j-~)VvKLC)wu;DwpUBpEL^WS0cqAei6#@tC=1T)RP zzGmi5>LU2klX8ZfFoR=st|c$mxpoHLEgm3Ry{j~!Xkow6VtNi^VDNBhJ3EQjUizdi zf|cAn{f`YfPs#~1IEG{Mg^gUb6b9Zcp0${#m2y;5xMsANp2HXzT$>OaoWR^kT?A{p zdHQb|a-NhEW^jzoRddx+7&$Ya*0otO@z&pUJ04)vrlVdppNuG_Up&UeF(Dpfhr5gjO*i~9$M%&WC)aI?sqZTTrl zbt8PdDtn0u3Gz8yTS=_0bj0UM(fs@M1t_b2B}ca1aFg>|^rs^7D2SWVvb4#8B!b&$CE~l>`xhpu6&tdYD4_Nt2ckjj9&4 z%RDn2+C83T(I$CGDLb16XI8IXHh9E}Wg~g4X;bAT7OBy$d~{T5lM0WH9s5$VU4@va zltvYBb_(49g63*F5`{$|GG?B??GdCD3%`a-2yxh&*L%3X*-leXy%sx67Tk*ul}?r9 zHF#ecdt<8-jMGoBUn~1WEA7{53;e(KlG>O8f!IG1sg3edjFblep!!QKMcsv4AhNxH zh#452M3Vd=iON1oq&SL8l-Fj<_vG?EL_OuD)KkluNAm#HZ<>bAT!V<{K%{v21eHya zKali@I#S0(`HFl6{sBCT72^N^0RR910R)^R{#`9!4?Oh%0|V#)0002o9CM@q0002p zmmZ-1KmIxc83ZH%000I60ssI20001Z+GAj3U|_!S?>z$pQ^bG!|Mtw1KoL~H2mqHs z1-<}y+O3oWkR(YIhQFFy+qQRX*4XSF8*AIPJviI86*$|rZL{u=jGnmd*;sFX@n^n# z`B2#fuQK9*VN52GQWmk5FkIA<&m^{yK>>kGlctc2w|0E!KsaL*oli9rut{M$8L}&g zV3xemvTdV!(n%$k5ZaMIkXFM^1jqasV6Ls1Qa7FG#iAB0mRb^a7%sy=sROk~K&LmX zVVfaB>L6tp3R)0&f{YTwnc_im3-a(j1lI|nd*o(J3la~Z6H|$ym<6OzMm|R-Q}U#{ zp_h3AnhD2tlX4tnc;bBL{6e)DEA^t{2IKO5)^=Fy1^>wpG8{ zP(cZi3?iQ#vT)Iew}^KB(q0`l!|_!eLA{tP(uow|s_R9t`#OV&B3;A){Rxy+E)`IO zt+7HxGEBMK@nI2(xD->%B&{;EpQe?IX=LNg7zU`eujbM8Gt^4s7^5+YY66vA$r4!^ zOu`>u zhOkJqR(=x6)QWuFxv}z0BTre`^i!2F+P6`4d3%~FV??+)d#(KX>ZwYMG6F?_$XDhJ z>hUIpHp-hK<}sKA%y(8yP{$yK$x}la(PAWNtR)s-B1jRvs8>`v<{fhWP(&})n4+xd zjK@~=rDUM$@(wo@LqvkARm*GMcvVSNhAo0bF-W4O3u}|l;(MtbT(j%IA4V5cfQN)tDUJv_j}q{-T+y`Q+0%ejc%glgP_ z`b!rRO)!iXH-ng~v4~iC=HN$!@FrD$!9W7dJXAU|g^DW{)1=ppwSw7b z7W1VXAsgK(=WlMZEUxBzisZdl@6b8K;lmh)k%mhORkbAypgY4EEY*=u3DcX`&d;i3 zlclUuGR1IN|KlxsJD-t4i1V5FlU!QSUbHsjVCNp^edllIQ~a=$YcR9Km0U*{%=X2+6=SlGDj8@Hl4_nV7p+qs6Lj1t_L;B@E`+k>P0001Z z+6=)10Ie_p0Kj^z8MWHCZQHhO+qP}nwr$(CZ5wxnVWjxKl+oW{bOQsy7%&|y0&Bqza2T8eH^D=wVIr6o z=75D^Iam`mf$ia9xDM`wN8ovQ3qFM(kbxjlC_YMsvZ4a0G^&OgqK#+|I*u-(d*~%b z*ux2MYMc!h#AR@G+z3y`^YBW%1@FhF@KyW(zsBE4kPs4!Bqaq%8B(1zB5g?zGMJ1b zGszONp6nt=$pvzoJR={;A8J#F#-%A}C)$^epp)r5x{_|8hZtmv#b>ElR#t$OW<%Ko zwwIk?m)Sk`l6~PJPI(NTn5W}8c@bWo*Wyk2GQN@T;m7$UewTk2Awfk9kyxY?IYkjs zUeppz#Zs|B>=wtwMR7+wmq}#?nOhc<6=faSTy~OuV<})31~K2hBl%-=r~S;F*b07 z^Wl=X3T}kk;vV<_K8>&8hxiTtPC}B0Od|`)8nT@nB4^2M@{D{We`rFQhGJ^ah~}ds z={mZL9;FxPZTgIUVw^cFJ1fM>vKp*0YsY%BA#6N5&91SB><#Rm0Z2DJ*>EbXTDP?z+w`V#$>L5zmRO5=?2-z;L5F{_(x%*fvc zMtM8E>wauMtKY%D7SNz=FfBL`ybE!dE9@O^2ycY%1Q(_VMFG)3v=ALc53ycs7yHF+ z@mRc$;z!9N8tG9CLGS}8;gwxW&*R8ImSF<{C)gEOpvai|q?C173 zNC+t*Eo223D3pV0P!F0xJLm@eU>J;pX)q6#!8+Im``|IWhR;qxr=&B$Ip{og-nrRa z?pAPXxDDJEZU?uAJHTD(-gF?eoGiE@ryF89lq@;^cF0Od#! z1px4D+qP{Rj`pNig+qP}n=F{1>ZF9HkGgpYK#c|wX?lGT>Z^_&Ie10E)U&tXe z7Fr965EWdZv(Qf%CQKCO2upBV@Qb;MM z)KWSq6O~QMGgKH=LG_V^Mxe=P9$JpJpiAfp`ic^8I-CvX!^LnVTo1Rx0#;?p`GY9dX%1}cjyN-gIZE;uWnXP ztJl;=5k9g!@|D$MO_<0`)|m}rv)D#>Qn8#m1yW;IhX`faX1ZE;4VCa_wWM}VyRYN+qR9isb7s#%(iXYwr$(CcPAy1YD$A7 zCT)~XOZTPc(tA0M3}h^ik>|*3#~ zC8!4KgI1syFo6%|gI(YXc%>#+E2(wWwrU@hs$P7YPdQ-iVZs?wV-^gJMG_WznSZy3O?it_B^kzx3wW*sE%uVJ+^MjSqDr@z(bj!Eq zSZl03)+Ota_0vvn=d;V(&FpTrY%j83hT?@Pg}R2uhc1M^hMRTyG znu*q+ZRsHD(6Mw5-AIqoXDk6L!Wyxm%wU{NVDs4?c8xt_-*|GKndjj}c{$#K59S_U zzz_3h{EJ8^Qi;qWk0>h2iSEJ{o|qyIireC`8{bXsmT5TC=(@L!UT)FhqA zctXf(vWJ`@cgb7wmu8}cXeHX1wx|8+I699K8b;U9{qz!jLI1IAtTb!D+Ot7yDhpuY zY$H3yZnJkRis$APcw^p)kKl7TAUQ?e?CV6sEALZ@Qb|W`+qdE6g@?*jzMs%`5XAQbKMh3k{$h^oHRu z1r`EcOoCW?!E|YuFvzP`s% zSgq5}Ee@nXSJi___ K0sn=t1dRZFEPOZs literal 0 HcmV?d00001 diff --git a/dev/deps/Source_Code_Pro-0.4.8/font.css b/dev/deps/Source_Code_Pro-0.4.8/font.css new file mode 100644 index 00000000..bf005a3a --- /dev/null +++ b/dev/deps/Source_Code_Pro-0.4.8/font.css @@ -0,0 +1,7 @@ +@font-face { + font-family: 'Source Code Pro'; + font-style: normal; + font-weight: 400; + font-display: swap; + src: url(HI_diYsKILxRpg3hIP6sJ7fM7PqPMcMnZFqUwX28DMyQhM0.woff) format('woff'); +} diff --git a/dev/deps/Source_Sans_Pro-0.4.8/6xK1dSBYKcSV-LCoeQqfX1RYOo3qPa7j.woff b/dev/deps/Source_Sans_Pro-0.4.8/6xK1dSBYKcSV-LCoeQqfX1RYOo3qPa7j.woff new file mode 100644 index 0000000000000000000000000000000000000000..cd65bfdb680a67b359174ccb1cd75a83f3c0b44d GIT binary patch literal 49156 zcmYhi19T=&&@Y_bXk**9{lqq(*tTt(8{67!Y}>Z&Y;5D^|GxJ--|eYi_jH}EshaL{ zdaCO5xXFu&f&2jZEdw5AP)oq z`KbT`f`S18!o(WAdmbkaR1pFJK{E#dfvE-o!Ki8MEp3qpGBAUH5Mh2lPxBl4TFS}p zMm7fa-#lj!5F`^25Q@vWSxqf7YY$Tp5ataK5C>rpkcmE}S;A~{69Z!qkRrlwIrjg6 z(@3*s{>}X6sekuL{{xIWtfRS&v->yC8w3R6+eQS=D1J+KYdfRwaepg7Kp?5Vk+TY4 zjBaD#{;jumt?o^U~^px~nh8U8`J(0#We4 zLWug#d=T%s^b)MP$T_@)ZC{!;9&}o--fm|Q4r>XR_S5Jhn zTy30^ z)>wZ?sdA~b(mB&yZd+>n-`h3F04(KB5cf5iD3-pTAef=K+w66dY|X)CwY&@(T0;f^ zK}gF>h}8$ItA4cW=tT16UVG9=p4>ke9>*y$m8u)|jic>RcvT$hKJ-Akz3pY8f{cF8 zKdnOWA6X8DUI(K*Y;lv@ZFUzT+zZjHg1#OaY#oRtP zw(Z0Be^T(B*O+#}5*`5hI6o;IS*;s2*Ls>DE!0Dl^L~O@I_%(Dm2_BRu}i&_j(BBr!< zvS0v%6`4IU2~U@U47B4%CfB5BcF!5vDjN@wd<|5)jIBol6`EXqJFk;i8^Ngg=HC|F zVqX$grX|?A6uOqzlc7LwTG&RUqN_}S%8uI*&U9L-F=s?s5qj$>mywBY>b6{_treg8 z)s6DisSmjQN@Sg=yiN9C8M5g_!i7hmnPrOEy7Ot6nm8W)4(2WyZY&wNI;oN72N*p~ zuTi&y5 zk6~AnchbmH4hlNC=L(tyPKrOO<`V6{)M8~DQ1#1C-v&C;<8FMk=+H^=cO5t* z78~%j+=teFAY8l3D>mZ0CkD$&adsp}cN|R>PQ?pH{`Ki|om*t(jEI(MbJcZkglBd_ z&zMYQQ|aj}DQ!I3ye=siBsV%+r#{RuP9EOlIJ=YmT_qxBdJ%nq;^X3+F+HLVTRgt0 zpr_j7XtDk3qVacSdwQ7X-qO3v1M$ow8(tKk$5kJD>Y?c6Fm;f9bdz$8_EJQCyHOQx z7ODnE1$-3-2$nb?cXMDrB*n5M+5fYylwP7QB5d421=H(FsEA$LFrIMy{iB@oa=`5c zWVjBsUTyVCk)(Tj&f$FOz>QwROZDtY+oWM!ZA&4uD!9IuTGQw+6Ye^mG; zVG-%oQ`9DNF^T`AR`X0g{SKh4{u`6I>FH4N;-?WF2)z?aQj|C4zsCFG#vVW%RxzG^ zNYtWN9=_w{f?4X{FNsM59dQu7nyEUaKam8(Dd2a2#skm2yp@|<7felav>0C?LELQ7g>rFP_q-Bux zUqe&qduOXBB3h+VeR_7O^;xJEqCr#yV*Fba89eE?7#!fYFovh%kiSJgVu~=gYM-Y% z7`G8YML6ih8YjG&A)a=mRSkGmVGTwi?f@_DzT>mMRp!s-LkL<&5@0{w3#Zjf(Q4-O zt;c0Q#^k5>B5n`IWPtZN?f}9>?|XReHKMO6{4v6Ny!f@56RO{#9gn7RER3Z3?aizO{hma`Vw-7y0itAZkb5~di7kJX56wBicKF*V>5 zAGeEzIK790dPCJEz}7W@Ah9F<9tj{{jdX3Q1+_Wf{W%5WC|J~rnCk2bnHP0tk7v9A zj>Bm;nyuq@c;kBo#k2VWn-lg!w`V;57_9>id~2#*VX*xL(ej0nV3;s>5BND!`ohY5 znQ8XHbcxe&XVSIzimm75lU@C0w6%jXb#<$={PdE4CjS15%y%MAF^_wc;EuQ3&4vGk zj{k6Llev9JWkjlCrD< z9rmwUki_^$7<-I4n9gON=uD+(BW7r03%Z-GkaV87w54S9=w^f`U1c%TCB6=NjHcXp zzTmi(2WexVs=clv4WPOxdA3re0UFTwS9LI4b>4ES+{)#ctpOcy@ad|fcUGv8X$icy zbh5c@D{gY$l+wzVUpL2Lwcxf1OM3IgxHnh3i1fTD+01fV#-Dn#;P-p~0qA)k#5?f( z123u(_K#87x%+bXPo?|B0~GJYYgUevk0L|c8e#)Ez8p^=Yj9K^Arh%9^&dhb$B_)B zG+x2hbA!V3OrGc8($|9EQL$D5PduU%(e2o?DdB(5yl0JF^vWh?v z&Xhh)bp*6?YsXzJD9E(GHB}J9`yvawr1Rm4vY>Lk=~Fq?e|7*H{-zt|)GbgP+}nX# z*>)^+EqG4_ywMkZg(Zkvk8A60jQ(yn@w{J{xt!|;(V_i`yVtC~ENFoO9Fkn?mW&ls zHHn*)>lZ)Vo173IaO;oLuX%8CFj`Slgjd3xhS zQR4QYe8(dmyXoGq4qkW&UebQ@=KNd^?1<$kjBCDTXC&{FkO_`R`vts*7vwS(44uC5 zFp~!({U^J3F1vRs8_3!zsSr)YhziV0&b>xa9;PMq+d-(}zZGv7Lj7}8{f>5E_YP;G z=$veviy{RmP5POv0&l~FXQ`s_BN}VA46s;;i(>Gt<@eZMeW@+!kufhQUM3jR7!5}0 zi9ih_^a*^Re$}<#*0tZ|wIBYfpV`}$^%s-XGr#yVf9ZL5{fArASDNhO_Tn2H%dM}| zgRfKL@h5%z+I6e-^W~J6If9uTPxms;^x}VnfOk9O^f2VqIF0!>jAAquMf#i4N#ji? z;%;+zW#LKr9d+uMXggE5Ki9pE=`IfFr#;U9L@~wO{C@W`r*_`uWW4o~TUs*sk@fW1 zy+z^2HYM=%HW2filbe2={ki<{_0@8R@x+3(?6X}!#0*jq!2cyw)L3Np@tQNRPO2JI zLu>4NTq6gI7@SWC9jM47s9sP+2UGLKJ|JoNTz}O&IMz2N^y!l9y-1MmX1o>QVRodG z{$#wB?ZI+aK-|}w?4*b!${%dAyE;@qR3Bi5kt55~9)CXT^SGT@;ky0t1X~Wv&3Imn zOC2Wm6EC?x0-$!fQN{u+{p!A)%)B;LM9LqRN<9fHz!D0VrC_Dj{$oE65ds+lHVZKe zp$PupwcFbhR05W9#<0ZS)V1C0N)UJI4 zkKW@SFc3mvlI!Ve2mnnk@mI%Z@R4_VdRx^?84d1h0^;UUGQ zRoxcz*mxPIfuD9}b@r;&ERSq$+i*b{atWK^Jg!PQ%r6Q63*!IIh9 zTTP6Q9>H=vMMJUcQq}qyPTGMX>1l>BO`BjGuQxic`hh0*TSxEmf+2H#dCzz0qY`p0 zo$+!Y>ZX}>z+z5GXK$f+v%YjpIVDnyL86rk$Aq-R!f}yP10IJWP{%mTA>xS5mjoD7 ze^9{G`nb@wCjWK@f>$Bz!ud&{4+jvY3GXztj+tPMA)ldq%@Ui_Kb79>Oj$jSUC78# z^7$+IGG8ZL(z#^H^LQ&m$;3#uonw0W*fgUR zJ_JkNDa(PKpC~1?ZlHlAF?%@T;YtySAPAxd>4>+4~@ zBx-lZTV;{p&~nHy_sgfq?LJhuuJqZAw+hmw`f^6LO)Pb_6dWL3dcygk$-lS@Q1G%+ zv#F+Qtc@wRA`y~#voINFC?Ax?SlGyrWwEq;P)gt@Q#3qC=b6bR+sGEJ(EJrJj( z6epXQoNGg-UN;VEN>W)$8R1DMN;Hl(@wTu#&7afr)TFbZnJmt)#4uc5Lnd7;E=Wo# zNYI-Ok28+HPf+4{zS7L{I|hs0qgYG0x}nQ7i6Fg2TR+3%8>V>nvY8I^=(heH+7Z=! z4bbh4a)*~s%;5Zv9rp&(jG0Q$QMM9bn5-&uK16~`%5T|_1HlR3K&){6C z6wGmBg5mc(-fXBoYQZs5He9ITf;@dI^a{kMZfX|nOAMnc>iY}B75t|JCtXjb`dKt^ zISr%}oW<|L6aY2S4e5v1g7S{F5!0wid<mb?zY5+h=ECL~oH<$`6>pxG2!*8yZWR@B?)^ltt*%{GK3>;V2@JS@gV z|3Z7g=vm$2yQZ+GX@Tbf&4I9MKTw`2yJ5329gE48P0p`-562tTHzP)ukC+l;j+9%* zx;n3=G+}z}DEl}55<=yBEIYHG%yM)=Ilbi>wPF+)vsOfL@5Nj3=91b-*CwZSLY!SV z?;IFgH~m)WS4DC`x1rW( zqoGSXf#tRyH#MkEO@0Jk>&$D_*vdMdtxl#{f2*rb0NvbYJjaA3C6$VK%JfB(FM0P8 zHym~$gWb&z=upxoLgG#>KmW|F`z&lM#3gs*OlrP?&>fWKlsVHf#-HB73)`66PKl;IhgW*pPiVksXIF&uq8ISVo0w#x}t<+&W+-GgIl(niig3g(W zEk9ELAqlU9yKgl3-B};PHF`eJsilaUlPOeK|JMp8?9WX9<#<0hue0L>`cb}plhk*# z_puRLc%2_@yv~v*wKI$P>xOnJy;1r$_S7q|)^zJJo%zQB+%ZjNC-OZH_VfaA5T!wz zy@ER;H3TbDlm|wg$VhB?p~~^tTIDi97Qa*k;i|=e6)L4Z&i>y2!W%&r?gSR@2qWvz zqyOUft#Uywir7?7`ku?XDD0l)_brQu*!9eN0NBK`?E(SYNpaVTmZ6s0fz=MQjl1r0 zc?MbL$$r5qp9u{Ri@qc(gaukl)$egt$Df0oRRqol?`qi=KR-K%{CQu%p^E3LUg6^D zmlu=Nmd`w?i*Q^>(3U3KLLyJtH^l~>!!GmoY#)k|vH#{PD?Od+QWw9u@Fy=Z!WA-m zDj+Cn@K%JCW#KOtDt{7C4gSIV&WlASgZ?I6M;Bf0Ds30%dN_*Vt*o_KXUExJTKO;R zeEG&?bVYRJxC?I9cuhfRMIL8{d&7JTxK4?akpB1{ zq+_pOt7v0ACjOaL~Zlbv@>NqWL!nw_FIyP_Oxh-!xJvnd&_wd@= zDRwo{QC2g(R+R6bwt1$QVzIB5tT|^|tfpAiTgOh;gEx(&tT3&kPQn8#t|CRE3G#CbZbbT$ozR$| z4>1{u><*^t1NBuLc)KX*pVBBYsQeNG3s3>VTKBNf{ENjGeLQElj;@xLA>{#qxsVnK`V4Ez^#uH=nuqt=c^&EA`==R< z(MFU1I=*Aqa7)9_jS+twG{-`rsonUzOV0HY-7dL^n~R@a!Xt0^XU(PozBFLk#lOo@ z9SxFm_taiA8nE3zEo;Pb!c?|llsO<5>1Hi=c45`C{7MeMv~@>bbn{ZX1RMR-F9^E$56Yt;! z2kInFgI9;IF$I!~Fot(x{}iC?n8ngoGNOBBkWuZC+3UbI_Z_*X>QR2@ukLfyGAOr^ zy$0Ym7=7~PGyubWosB8`F~>PeYWz)T%}~}?d*vQ$;y`hCNlUr%t5?vVI~ zN}pMCck8`VbFU#khqhI;C8bnt78O}s)Ce9__+w@`W0t{8D1ks$;ns}eRn5PZYsH;w z)%}11BS7&yps*fL>gD+t;UCJYam$$Li|W7d=Hw=5>q?u!ReEj#CT?SKDvQz!Ruc#3 z0&u*ZCtK8f$j*qF?YIP3W5i<2J#nm1mZ4G##`G~6vMA--G@z!w8tbTUr(6Cexa}N zEfn9VG2gUX+St>3+AzX1)7=YJw;7Y)L3M>n77sgBLBhGJMe@Esbs4g_vZxBzUlB4# zZK}V6P>Vp|R9Wkqy)52B4EJgN7S9q0+;OXz1?$zaddy)^MiDDtkwwOoI4h9LTgGE- zADB^2=B+v25XoQ_vvdn*vw+@Je6cqA)S%_{oDYA3$iJkBcW4I4Pkh(La8A`b?Yew3 z`&5vB4%0meV)judP;<~e*E<-`*v)>7^?d8h-ZHhTY~Ij1nS8A4pxOen3+CuK+jY6t zbcgG})>WylP}|D|>jl+E1OWl-*&zAftmFSzUo>ro09zE`uNnMqxVx`Owr|+0)e3v`qRlCgeJG64UoUuC~kA@gcMlkG#c&bL=DTYW#M)0PF z*yKh(hYV3ejW8kl3B3CuJ9#kk0$zt^2TP`+rXKp+@)rf)yfg7KUsPLRk=o zQx?KP75;G`gkB^JO)7*dA`Av1NV^DhHWx$`naz=LTdw~v3H$$3bmFMaOZB$T7-Yb6 zn4No=SxcA|XPD7Sn2mZEntCu-S|}7|2+>Ix{z)*qc__r65NgUWWXfQkkx*EP5Yq54 z%y1ATy^nl?`((a3ZckZ;6Dr<*;_&L5cS#EP0n}UaiP}MnR zO&J(-`pJTStRduc>e!+xlJAFc-iZjeQaK~MtwgB@(YT4Ab<#~E01cuj<5-zQ2WFX9 zNe&ANx}t!E1ZpKYDG8!cl2y{6q6AW8c|!@Xn_Yp=Vg6^7?p?EYf4dvB{{kb#t6iIp z0JR(BoM9Gs83!k>c5Q^2JTd`3Jd@-wK9I4Qf^zfxUD&5Px)L6DxYF~O_LSUJYHRJdQY^L1M1%q zRh(ZT|GEIeOn#0WRIAI{cv{)GUm(EI!U%I31a}459cbAv`k%E#j;rejVUc4RnCB!wp^0w{KttXYQL1w8k;A9y z8|T#gH-D>A4b5E4^P{qT4XbyS+@3E_$XqHbhWT!)?!9?I{9I{MLN!vA%ZDPm3I%Bdd! zXZoMLt@6HkhK85PurRpx1JJ2Vy(1eW$+9);)jm{6UKPBP-rU>2>mHY2xs@yIv0$w2 zd;U|U^Pj4qRv8vy%c-HdZ#z2KY0+!6f1QzUnfc+?dqMwB% zATO-|n-LZFJL#5Wo|S;pgs7i@o+O^|zp(;x5Q?~U@Dif_&yQg zzD7F(iby7oDZ1P3Ww@@fKKh*-T;Fp4zq=jIOC9kw2^I7+y@97-gE3q-b0{ksa~*I-W@KVYxL)EOZ<2bpnKe^nd;WY6W)64H zYc}f-Slrm&*&OvA&ivoKvsp{z!IH(njN+nXg6Rv zXBU+8ELQ>d!8a0uX=r0HLC9ek(O6g;#1l^Ph!TTyAj(s_ZSkH*h#c;c2NhHxLAn$| z4lhLuas-7nloCd)VMSgJ&|p zK3CT(kc6@>G!7Z0AZU$Ji3ux4R*To*$oNxbz;*6#uY@wnx@c4;bP*dSL`DQ`IEwrkEx=@BYZ7b9F zV!siZ2bX5K1^Icfpecx)8c`Fr$&RW3c`#V}@QaGKU8# z?$OWH?%~fk?B&cr?di@*rbT0>QC}iwBY6jh^!n1m!y8K4|D*}5SI5d4rjCG~WmAtT zP>+M_&`q<2rZ?n%y!CYOL=3Zsq9FS#Aup*Ml9TcWnU_S7%~Q3&@jgo=`QOV9G(Cix z0~KfVc(0^3Q}C6R0x10-aDoLv)P;U4LC_9-);=6TlnyM`el0|$uop(3%n|a=Y zo+UNBuuyUkJ&7{}HMew7vB0hkV6AMiWX)b-%+S@w%Mi5YoTRLxpCn}uG(}g7GeyA> zt&g%2a0-tp;TmKsY8@Dw+1SILGmiNq12iLfb79)v4a8EBgQyB9iZX}E6T;?QpaSKHZ8(o)-yvcjjS zwZXY2aZYGMYfEfH>>A9D#u37f!Y!2ix!tWg30_yx{rQ12JCCIs@rO!FI#lpE`#TTGR%biVn=>yQ9h0G?t1O=$j zQe=}~3IlX#F|vs+NdQ1vj%>0^BY+kyLN>`I3P6pPA)De72+*S?&>_5JX;Yx(*CD-h zYE!QO(ILKsX;ZEs)FHo=Zqu$n)FHa0X;Z4e*CC^a)1gz%twKsosY0_7SdNeuUyfoc z!Wk$o#Tmq&mEB{WnKX>~hwgy&PqmiZIkQE^xm_LDCai7R2CSgiB&(v`q+5!*L{f{r zM9Y+Zig?Su#K;s!2!9L0N6nN+h_I4Jh@#6AA8^SNA4H!s+5^n(8%CW#Ib@$m)(+k$ zwM^YNtVnr^Y0G=6TBGq&RAKNkG-c=_E@$eZY6&w$oCz~TRTiraJQS-9BJO9jnB2Fm zuz3n^IC=ulAv(!y$vWv=6St6>Be&4nMXw^XWUrz&OArPs^AQFwXTm-m`g>t&MPB(ypkx@ z-_185qZMJrk4~hPXbd!$XbgUd)Dv;HlTVU->SgG8<7f(ab89MiYpn@+6Rat{|5$^# zSOqnQyb-q$zc-635gyblOdR0P0}k>R%`*jkgij%V1y3P;B~79ErA}ddVdw-8o|`#S zrPS)pB=3Edl-Fc@L{_1E#c7<&lSzqoqi%-`A#Z07A#KNy|EA=UC7MNO2o@ojNuV73 zOiB?Wd&FsA{#(mm)Jgi91wVlJ7?8kijGi`M^m_fvjP6J&M0j#hICD;JHedf1DQ>sW^qPzk3*j#a zQX9+f3_2jc$;As|4{Z*GB*2OWa+61O5MZc)o*}G-312v9&ZIhl1Tz4rRntaf5d9O5 z$h60CllqLnVt`cPFI!9I+7rO}Q+!_}EAq|(iN0T@1!8$$Y$MR?1_Zx9(H&xXSGFUp znlT9($SfrqDMZPASmdqzTS}4aukeLAkxgNuvug7_v?p62 zI-iCmYjMO_o?$a7NAFndX5yexg}bDA=I=59Fv+f`*IKU3?4=594=aK$BS4N{AJZ`$ z&&PxNoHfJ?TND)3rG!7s18)dIs#&7o)~i7C8t`zCULn>NiP9U)-P4n~O00~UtYLE< z5afg&t~+Pd4wrTy8?S;Hxf~{O|0!R8ZqgAYKP%i*M@7loN=Y+*WV&jo{E4zkO{*1V zg43NWils)LWKooCc&E#Thf&H&vwz~cAM_r;)jG=S4pUuWUfwznST6|D<7fH!-p+7BV~7b1HK%MbU^ zL+EiVbTB!EtQdc0=1=i9g5=5Y4l9;rd(S@lrdai^uHJ*FL|xu%!wG(A;4Q(7?E zOWP>ghueqS-hQ-TwA^)j-!N}Sg&#)|GTh6I&V5FJ8WdYJ>_k5yDmj>N=pCgifQ6LL0YPL#$dbkrd%v5jtOk z^4K$FtgrPqM5l(^l?>xoMdY>ttC%6|<3QH}*zi7?wFo+UZ^QyBiNr2#mTV&x&13)4 z0<_tliM5Of_F(U+0%oLuA|=FNKI%ef=nVFnfR;IekpXUWSj0{b_R6#0;ynl`1Tu(# z{nO?5u2K14sQDk=eIG?>!YWN)!4750LW+*IV~nY^Hsa=PC4GECB6wgTc!J7(#N)rk z>3-n$W9-D5FgN8;-}T)=h|P{bRudn^Yh5}jj*7V0)FEfgFED68c|g21`UnrwoXUu@uIGV z0ofX+2r27{$&aQXohv(pOI-eR@Md9!tB2~Y+_Ai|X4NR17d%t#zsKnhp*eIWZI&I! z*>-7N(hOi?0YP8hq3EV2(Jm{;B9Gh=pmIlfK+XeY=2v_+*(siN#X*t#dRi>+RFy}A z!l2DlzUJ0VuS@4UHN58$;6}UZ_q)fnmKFF`Lv6Lb)`;8#aoyUbVKjx5LO+eb+SqGL=&tZ7|@EtysP$_;1Z>prZ#Fy$L=YqI>=_ zvX%71Vv^6W2O{pK+ltxjz0E};;AVZ>J64O^I z5ttt(=1$rojMHu$`eO^XI;rzh78_<}Ztmr2?y8TyuU^v?W7ooVzuRqcQ32f?$8cdG zuR)yO;lHYAeyATtvm50tkY7BegEi3H!{DG)xbNwdu}0_A8+jbqy^myQ_| zYfOrrlmh`rKKBr+pKjcrXwU)e}(L7G?PNG$biIF z#0#a!xE5WdPC`Pt5QfIhrB6?<)jJiFX_UcIUIr>XnV!P9rYN_h=iz{EoxLxE`+ga9 zLPGHO+4@YgDT0W&w0`FnrpB@;6J`r`DQKY|LPneSAG=Q|yy<;3SM^|GKgCxBW9LqDd32mNx& zJZOnL^Uyp>e>)O|?S->kOs-=`gy37Rg_o)pNSn5Utw1yYxGLJfokUm&Z#$Z+$RK~O@?9t2aNgdALWp$Jz`Q6u&Bve3^$DnowU019% zunmOU_Knhk>cUmvyPR%ENq8q*%|B#Ui9O9wz_TPq-bgzH{e5m&LHJJAIz0^D$6oo5~Kg|$Ul+~Q~MbK`qKzBxkzdUu9+_;1du|=3j`x*~ctW|Bz{nRfwNN-!GL#0ALSBYe zpzc;)iNT+Cwp=en1at~3YQXn1;RtPrfFTSZt?P0Dv)o+wj7eA4 zYVQ!=%gxo513-4!brc-T0j;}!%Qc`sXI@yl(tdLKtRO2&CYTYFq8A;t9pL)mZf{4~ z!tejs;~#YRGZcwOeXWQ2Ds4>bXXuu~fc~#=2L2x~D*cXugp$Den=@XO@P+n=W#hqA z4j?D73j4)0$R{v>w|6H8WDTl$Gk?amrPnyiI4o-_8VIH{vI$eW27@v&6Rb}S0kbB~ zGT4kIT6=Yg6{ip>C1j;WK;UyZ;vP7sjNBmXg^w*BL4fTs-iE&aG{7Ip|Iw&XquzIv z3!2I#P{r^kxds9YNe#L^j92B9x^JMG+e*fp&!4g39At2L1H%auBEC0b84WcX ziUbE0p*IfKN4!HNgg!ND-dy0KA7`zD2BArMem_{(3#AhlWkjI4^0W;^8U~<1#rvycN5)bT(8#1C$qWS8h9AOxYBrIW+bB-RIOnFJVcST~&YfL1diuCIxTX!Nc}Ju{ypTjw`pMdpJ?A{UkDmeam8KhN)k&y-e=0%AD1FGsl%0t;V{$lreL zFTy}y2Qz#*2xohFDmiXIcLgiY9l8hB3$x?xT$T1zHAQQ^oTF~9xWU`(*5d?u_nqXo zwjGTsur47ouhD4?HnmO(qwux2t{R_cpPOGbnSXeSGugG&j~Lr*@c|r|@bY)-qz5P9 z09%<{X8nBxYQ$HvcsXXb6#9m}xQCy&0Heh0E#6;5-P98A_}Lr(u+nVcn-^)Q2fEeR zoLf!{N?zOIrw{CfmIuI&(c0Nv>0)oU4E!qdq!73#G<)?$V^3Yi*3i$ujHlt?T-bbR zOvlayuo=|wsk^CLDCQPzupjj2_U0BxtQwk1q%Oz@kD%@^%m*dD(&_**qaT;GNt|Sd zu!rjR%=R^gTWnW*jNzYaQ=r6Fbx)lslA)CsmNF0J6B{iIT<4dWHoHoifpT_*2%_mo z?dvN_;|)*`U0$tid80WNo4q%QD0pG~N2#9i>MNnvw#zYDon>Bsx$sk!`=N)kpB+Ex zw6}s#d%pu{vV`D=4D0$(YwSZ{@0c>VU_xhO=N7&9OFHSkRg}8M4S)D@H4wg~W3SoZ z5d_5x=Zk78-=bwS+^18WKDC|lcwlS9&(msmzAEACxW~_;*&kDYhZ0)bwr4xz^(?-( zRTQR+c8Ta-@22(`J_m~3`%j>Io`ZT$lcme+ zkW@wV1QDNNv_S3M;!gn0Rinh3auGeveiu6&&OGX9j6-b-^mY;n7V)SuyJP}ysBV|^ zm{fD^w-bVYWu(;?(=mfSyL2|rQtwG~h)1lhhW_K(H<^!8MA*6Lo$S5#As6NHT9Wfz&Xs@}IyySl31Z^`ljReZB;U-}msc$C+i z0gXMMI>(!nwVS+r|_w zg?ZJfWa~)xLT`eri|U8Dz!)niwxXYtg^>azW;XZC=%tGZmX6I_E3aamgGQCd&W~VM z|C}XsvOv0l&pGpL_|Vd?qz7zeGRuDR*o2A=rGWmX#jG+;ZmESel@!a$p;8I21$44G zQ5yPIQZl~E`NidNn!Y5>zF3e)m=lKy?LPWk<~GX9ZEjxBP8VKA(7Ey&2klw>B~1%d zWV_-?C9eXi*}3Uo$dyzNTSSd;IMJdJAlaVwh4mVJy{swRA#^`hjCL9fe z-92+nOLgaBj3N%lgs#k3a6;kA%jQ!!GkbG#MzdM#UfY4xUl!S~l$`D>TNYsi%6hK# zgk1CEb)C`AfCV&X=uPdBAHv+@O^9O+ZQIvw)39ySDyU_)3i8o(cKCZVjgCr2rN>C0 zC-{Z)d3Ma_9v8(yV%4)FneYbwZ_8N-ygyq6q7z<=3BRmv^ZQJ0A(Aypof^_zjIiX^ z-W%XIRj_UhoI0M!BO_JGK43kCyn9nj(xUM!)O2r6JfJ>YIDLPeglvjyYR3zV(kKr5 zNF`OEei2f;JFAY7=w`k0A0GXf5sQ7e;Xn>mkmZc1%eS!{Fa77_J zbTz1cx@+=QYpq@`UtjIq@?x;QN-l5J?%q6q!ppHEwaO_LXwvS^C77Gfj2H8~VqlyU zK@W^YYi16kajYxbX z;h*Guw0*16}oZ7=f8E#)BW7O#t&!-?Of zxncIixt%8ch~Gn(7=Zhz8~#vvZ=a^Rc_zPQkl;!6#eYd9)fK%G`b;+dQql(Hslvn{ zT)KiI#!(?LD}-LzFcWud5?_q|S*vF}F2yYP;97k-8&y{cw#b)KW(kkMb$55?D4bTM z=^ZtFW@}~tc|bvnqu4c-t(S&1F#?gdVuzo!zm-|3xq_gRfc2KIwmqY~S4roHesJ_w zpE{bzyK}d6<3EmzHv~mnRp{HqaUoU9#nGacmWr+gQ481rNhI z@k8kIGRA0S1}~zmdWqMBAp1ukm)Mb`Z-+b?Z_`WkIWAmS^wCkHq{W+?d_lc#xtxRcDv z;+k|Jj?-{($p6H=b5i6s*a-7h-iJK(0Ju?o?)ZP;M_d=M6Zfj^FF&vW@)ACW+Q5+= z8b86O-?{^it$Bgq>%~;0+jnpcYY8;hD%H-wZ;zKQYDddxC#EN7E9+Na+=_{`WK^-O zY4)ukBz%OFV4Ne5U~dLx)P8@9HHG8Ko7o?2)!(MwgeuSBoxZoAKm3p?dpOnuA_? z0gcS#KgS)7jZr_ys9wVvqeysHZ^3@GB5v1~&r`%gN6|PX-SiNxHnCo-o}iI!QRQH+ zQJ#>@5~Hlv_R#RAIGbYOjr8t-Kk1A#sl144*Osy?j=!jFNLHcz5{3y0VgTfbGihN& zK2X;q=G{6A3kt59NyD?0Hh;Wvv~Z@apyp?~i^za%J%1K?5NFwIQF2`Ehv|S(iEeI} zjksfB;>|nxuk@~8hYhcEG$B`jOSCgScgqCkEw2gTw9FVs#1rDQc`3pfw>%45f+C?O zPAp-DaQPH-!6`a3%G7_EH-5ymG3Um}6tw7%@vI(O09Ift zRZWEO7dNIw4fqE(9U@(sfaBu`36$M`a4_&5AGfhZYvuwBV7KB_?EQg3Q?0^e3Wn1<`v+eDPFVhu7OPoeF<{4qP>xI0ICr@X@ga8;@i z#nrF-KN*e9N?vxw<%;{JEquX^T_?P7pT>+`t6bO#e_^c?M9UK*<&pV5-tXQ{LQ)0# zg{?wbFrO#FL`3*QhZBZ1u9lPn*ym32IdJ`@fpO@ zE1oPM=LsZKz?u&aH@l2hren}NtKwE+J*ekCG+nzMn^{1@tgJBG@lAY@EF*n8_gltY z14ag?3Ir}4cGup7r>J_}eE-(SDtpki?)w?zr?O)V^Z%D{rbdr`)InC=K|jsXeK%rPBkL> z3fWO>@Ntpsa_tW4o2@jX9AO>rEyGd4&T&qzT}`}Cy4=6ndRz>>bZy6_>! zJDfX7>r%1$xPGN0V(x17&nwbzU|%*05#-ESs8kA!ztKYjgbR=xUb9tp^tzQ^o0ade z#lEzylWQ!>ZBCnC*)gSWZh15BYb`o^pc?O46(2jxI|5C`hoE#Zpu)FAmp#*~uGajH z1rO$=j%6t^{%RAiNi@hLUs$B=0p7?*oY$+%kCscA;T?{TqxfA*26* zXSAk)LuQ%iRj!;+Qr^Rn_71&zl)l`LWk!7MgbQPL?R`cbb2cVS-#$uYXK`+?v&but zqptnx)4Mr=#^Ol$3vT}7CEP`kogb2@MsR zm`~A4T~wbN>4+YvDx7FgIbS?z-QhBN@9xVxXBc*x4kaZJHtY#2D%!vL@`VLWdb0XF#N)()y1aVauHBT;?Qcvtc1%o*B?zwv>(gh^mLEtGJYS+ z{0Nkd2&R0l6zrPqMLBSF^lOg{j_VYO_Uat^pSjusDA4eKDAT^?;@@Rj#K$@Y>HpRP z68`cV!aHUd_IUY?ttx{^WB}t!MSJ*v_@}yjAR>^x32q2}*P#FKmf2ST{NHylXaGj{ z0d2sC|A1LFS3fZ#Hv;r}^u3C#ikKmGn~ku%=d+~>(fUn7G=f#udATYX6pO=__##{0#V(p`&)Qr zwG_nC+N3Ncp>cA?0$6fmK+&aqSo8J>n1omMy`{uvXB)HnZaKCpgKOE-*mHX#;A-oI zJG--SMfOQGWILl~s^I(s&1NSQq4#u7oSciT2J4*bQw&kBtJ<3a48HR!(#3p&ly$Ar zwXTe_l&NS;V|!k^o@yTtDrf6yhHj=~Z!Q+42M)54N!7We#D?Q@=c?#4##5W*Ti-%{ z#E#=;*Y4bmktxn1tqr?ezuc2a|MQrHUQbuU)4(=_;ZtXGCuQ*wgQn<459`!QQH>>R z>|(!J2l6Xw^0zE=0n7fmH@II9DD7?-58iA1)Hul99w~(!Q=GR*eJ|c?@&E%NLDCDc z2ktA?@E7vkJ@Pkqd$>1t`waEdn9+@vy*_tZLSD+pb;`bdDRP)Mz)kw8dMU(PuKt;* zSN;j|;71e7K1Q{fqkdmC-cSGmxa0kF_sNjI3x}f0FkaL4;@13_YJl<8F7jw_2ekL% zr*v9c8A_ev9jDYJ@QIiEEq^4#aOng-L=3Ac_2kAPq?xhghJ5#Ou7uId$OgG&*3ntj z49(P?83$|OSrv#W&T|dE>OR)s`6C@kv~&_~G$p+6U#>NEL0o`TbvBLmQ8fy^WkVEy z#nXzl{rCc>nvL%5Mr3eQ34kchPRp>z+{CbF>b}b(<&h`7rUaZTpW)Re1)VtgE#F$^ zgmjIQlSuu(Rs5ySGKs5U$&dBTO@~8DGQXf=QQoeNKykQUKl|%gjixX&s|hg|Hzv*24LU0WgY&joG^%d+vwh zvizlhM=T8on{EoJCP&1|vzW7!ML^d^b3cPi#MuO*XBOcW7$PP*EjGA4MHW_>sThmP z$fnUT=)=vX=SEoN!=?TXq?CqdtW+^p zhtV70sct@G3Pn%iGEM%?M^7;}6!wDVY$YXYoe+t?;|F<6Y5A zOvjL|z*UbIwzBHzSaIMm?`| zyoArWE;#&RYOhrGX`Vr&zlB+Ta(ak>?7tYlARUojn}&|ZFULwrzkD2lU(<)aCGf?4 zrS|nmoW>~P&t=Raw>EMDKrb0c__M6T5Pv`b##w7d)T?y%oW(-$x}E6b-w{76`P5s; z2Y4o0{o4lazBQ*;lLpu5AON-DfG7W`qrx6V(@vVNQw77OYRa9KGJkc7c>WS*!&?2A zQNFG&sGxLiJAJw}!_rK*$-A#~A61ozYo)RYxz)S8#g9kqNN?qFy^!j5W2I6M-)eTv zbk&Z%^+rz9o06A>vtj1-qBA)tr*?GmMZ-Hqr<-821Wl2LESE|Cd`tE9_cXqTg(|`= z=E;f9k(Z@QjJKgV`{vh8YRK38VJAf160y%_J%4eNUC#5ogh zt<`D1Vja(J{+6z;feMq%IijzTL?ZEs&>l*Vp&{w=_of|}gvb!*Bj!*-TD`%Io~^kM z!aML*^(FB5r3(ak3<{Gcs#|`8z(~(hj*ximG)>~$SxY`I=i8vuqU`m!k^(({19AH| zx8ZR^-il0!>*H{UqsjVAr29#L0jeXcgal8hBafC4@2F|5(2n9>LVV5@vK{XfbphWI z_(!orJ0hL3C=#?sKUnvQ((yLr&ZP;%mDX3oNAX#Q?wN>5#xF+TOZ>6HkQL`zvT5a( z#2c!_wDet*(F)OQ|Rh)5-CI^V!=@ZWgcqu+@nLC z3*3m8qr3_vCgJ`MS}MnR?vS#w_+0scUZ?B)Kl!AN;^p(ZYt}}sy_^L08Uy7);ycIF z`sG^~Z9m^Ab4&C7eL;qNOZEsXCLl<3&)6Hu4 z5Le7g%@c(374#~TTBxj>@Mu4_MX@N{>Ve~MFMaO!3I`t1T%V}1fUbz{gT?=$BLVBi z$!r- z(Gc~5Um^*$5e9=A%oF(7;?O+<~wxQJoeLSsJ@+ZpAcL zD1>l`cDmi%ox+!iy(BWv;x2c=O*Wkiqb=Z?)^_&a|a+n)`1#L44(20;4qaHT9Ibwe%tfr8h@Z4TYa2qAVxuS)*&`p-xL{%r2l4$en!lzX=!#c@)#| zkh@oK{%GmYeaP`K>G7u*DI~Ii@Y%5Ay&ptYq+3t>rC3hhLW19=3%M& zsXDyYg#ANg3;w?O+3CeQX)D58;0VBU*9em*&IiJe+?5*x%NYksV3$4&DKx39v{X;S zidJ1ut!$J0R}*xpwrdJgm&Q@N(6wRRj5Z=bSr~XcO03zkVJU>HImxSvMXOzGjES9k zQgbWCwSUO*uWOQ3J8bH3z`%a9tpW`rO76|^jmj;q@65sIwZfeT){(bBWs*DB9Z^OS zIA9RwN8l<4Qe3g!J!uU)eH9P=)U5GrT0#QVmmiIQ%J-8}9{$_qBKV73WbZ$PiTZMi zga9dfJNE!XafNfWw&SJ;y-W z-nZEW^}kKAh8}TOnR+~KQ;79cEMrqwLkf6i3Y)ZNPaRX!o$K_Bj10TI^n%eg`zh_` ztOV=Hh^#Ag)Xyc$ovisR5038$ij%3N4g|At$s4E_%v0qFkI+{Xl834 zm+l(|f2$w^H?Zt>F{Cec<9B;?awk6_WqPbae!tqHv2l3;C^BO1WhEbr|HSX#4d~hn z+EMu0A$)#5lA*)qzrdeY+V8~n>Ee%Fhh-eawZ=+QZ?F7*FDF=4@W#A-r@82+<-#5| z;#BW7t5?UY40pssoeAo+gS)DioBqn}AoGNtAYd`&yihg>kEw+WY;Wy~j(Ht;X;V7b z_MN%Sf)1*d47a3cQ?W+~!F>fy2=VCKr)3Lt@Bo6yS~i6r`H^ua+D^D8tz`_@%88U{Q20l;>xzA$ zg6Js$B?%jYC468XKIEXOeUy=X(Q^l}Us}}SfSsk|?xqQJIj{9&1BO&D1 zj3mfJL5qWh&isu}w=Xe}(Biyr9!AztQ2gg_;%;r1@1&aBjXR2i{%j^#*MjW?dufse zet#73)y-P5VY*%h5)_Dtx2v-@?-Sa^;PJM#9r>b`6#VSAjG0>!`e=JCNP71LL0&Z7 zQDS+@@{=?#IW`%<2-P$SvAPysLO~RTfOxLsH`KmR=P>Fl7>FKo^tvpPSzyrkrXRxi zg=2;{f6HW@-yjZ*(^|plA67!vp0yCGYV7i_Q5YqeA}WseTV1Fm22_`IW>@XgFmE3; z1LnETeUGrhuXw+0b!WI3dk*BZmy?e;*Hmw9#xN3cv6^?7HV}Yr#Y~y9#XQJYqP)itqv&MO8N@(k6DCYge^ff)a#w(%@&3 zgTwpc#n$WcNK2)|0}N0d$0@a!sF0AE}!7z z_OP6AM06uHs0*+;gK4&EKgT_IM+muN7Y$s5h#TcjBG!F$ZOAPpSsHNN*tcMlsZ+A4 zPe{o|WjN$*Bm*EROMJQaWfeIYesfErd(SE4)^P0vjcz(xuNO@?@eP*$;X6E&yN6XQ zSk{*nNjF?v5_lKZ{Su9oE{kH+2Zg)d8F@Ss+P4>B@VfM`i)AaDUEObldf0YlAE4ne zcS4#mGZ~AVk(FORs-izgOfijM z|MeHtdXsH@N%};H%?;Fy=)!v?@>%tGd@p=l%r!9;S#xR^lX(`HN{q0tzhdyCG@xh4 zHKW^6#yEiND9PiF@wzom{FWN|+c4_?hP*56u+W%aU!aL+9{OQ<^AAff_PJMM+*$43PG0;nxt;rz>w$|0e>1O&Wl`vN z{3n}a_844427Lds4Lgbn@$zJj;`FTGw_@O&V5vNxHkIbVu9q@}`7a3jv4o_5cD+%{ zx1xwTcfa)j_NH&RC|UYl!cKRI3GGsGbOD8bj-)Nsvw}H3aSCZdyGAuYD+Sd>bpDFQex2Odq@67gp&g_Y3W}8YD4^P$eg9 zH((W1;z^7Hpo!%p(J#-1>myYh2=rsen+#KnWmaS2T(~Ya9ju)Ukg!*_dK39I1+<>; zyM)3fCq8(3ueJahrIsn06Wn_a&o9H3a}D;!-y+a5ea9fm!ZdNDT$4YWjLi;dR$~xG zpLgz7&Pkbc!G~oC*O+@gJedDacX_^@|TNS;3T9XV5kZ{QGcS%*dnMS#pV)d z_kRm}Pn=iKhgnK%)>h!UunuNmF1&u5^Vf&-e!=>^v+VMrN82r#Z^M5+s5cdDa_jj* z@XQY{$K>1fy!bG>7j`F#^N1E)@xpy?J3%?F_EVzfaCsS}1~gi^TX1lnh4y#BR>6+| zyp~D&J1#N9Mjl&)61Uyc1?FVUt`Rn(mi`KKrE$m#2}+w}A1H7P zBa27^FZU}{-S$)#Q`6N?TnhvVqLXeuY#ZWlyKi7EVx0$aZe_h1cfZ;lr#8|q=;8Zw zMKo8NoOgXSsN)H5p%#ayUvTB9FrM>bfW~Ng>uT7D%FcWlSqt)HXcc4kG83N71z5?G zh%0Y73xK{Nt#s)ue#iCd>E&=PB} zospp5EVUAsuas%0hn@okX(A-$Hum`46sB~cepa{OS*fsBbz?Wl?J`YoMh7vSlj85~ zY5&~KbIdh?Z{Fo`;gg;WFnzQpt4!*PXCeK@cJ*L3e^{Qc?t_iR&Yy%yU<~L;j8z;o ziA4yD9k8z{#d+@RcUYm*6tGg>DG7$)P_b_5?{4>XY1?fkrS2wl4Joip;@HkZ7)h4{ zYWP{R)*+jMkhKey!|*YtRP0^@_S_DA!>7y&h90%-itIM^*eKqo8%s9MgRG8%1n9XU z{C-!;WG$4C+jJ=XKd6)tGMI2<;DkPbIit8Rl#7ngPnd!=rN`H~x3RCp=j9=trciw@ zM>ndD6pK49M>Z!%G;#JMSt%*!=NC!*xRJKXsdi-!d&bQcf! z$#>U-3U;*nxtFdpA9GopRTbK*?LZo8krtGjC6#NeGYK zF;sG7UUn$qY&P|Uc7nAhGTc+dw|_mN8ItUy>G%g1Z*5-=0f7Pp*;Fr%cu#UZjW~9v z=0-39i&N$YpTD!;Rqk&;)3Z_DA6Skqft`1H z5+TZCWPu6jorXQ%Nj2f-I`hEfaRu1b4n%h4IPb42&nl-s-UgEFF)XyrdsB%)-p=CG-Jh#Fh0S7+0#qmXaIZwmHEn^=cj@( z+4vDStox)da^4U|=y8#{n!qeE-zl=Uho!7tv~=f}2n# zm&D@unCGu{dWm?fDNqS5$*lcdy){Qu+R-5bM2@>y=PiD;1&a^@#JnOF#Aey~E9JYB zCWy(T(Dh669__X|fbLwphfL#H1VI*zfG200D_=~NKRhpa(AKp4jUg}1!DNc0U_%PP zej8qkE=DVwIAe{Fr19(2N%SB|72{8fAG>9WNW{&;ZT9BGbiW6%&u-M6dCn(m*OqkA z0SIT1X%y(6%dk;!Yvq(*O)LVo?~*SN96m6<1nf3zvYs~aw8u-FRQve1 zr2AQ_B<}w*AsKE#AG4;*vO%`{MvC=9Wc&8uqQF=u==!H)%j>o=oOZVkljiO8cHF`q z^ub%wG@Q-4v-ow9g#>YB5jfDd{M-PwLXT>@>j`O!z78Vz9>Hh5g~YfCKdn)N$lp%N z7NU(;wq?2e`{KyZBG!KK9*4EQ$q8_1_3r9(d6s;fn#N`6K4^W@_q$y(xND)2DS)Tu= zmzFq59@Sm8KF>S~sP2)TsD83FuHK-A?+jb|RB~anybj*; z98w`}_xb!4YGvtYjV*NeYK$l)EtHNr!9wH;8$P?ieLduIWS*MA3k?L}bM%dFc2gNP zz6LL7H7MVE@{6s~0v0NZPaZ@B6FUrsZAlRjC)37*kBOHf(b2{H#2zL=a-WepR=(wI zPmaYeNk|54o^{bn{(}Ib3ooUJ`hk$cjRv-2>M$P{wR&wJwrktJ-nLw}u$a78nd}`$ zR({CM6#i-A23{rb=vJf-5Koj*FX?;K{SC5i{_?|r2h%XGVBxnt{WrT$eCi%KHh_V& zS|2p|NhX!w5pZfytJDFYT~-V@Ju(PX7jO^%&_xa&t~I>p26|#g*aYYE8Dt*SIK12S zC#r?g?4yD|Di~07gzmnvu(|M$KF;;(59<9~Y1Ue(3X=8 z%8M6}AyP(eJ?sxITU+hEIt2gTW2tBoG?i@Md=m8cOzgqPJzaRYLUx7A#(S{YOc!+s zq;%Du%6nD>$5z#f@TjE4;%X6Db1u}(wXrPCjuk3fC`hHKCRlZIJ|=d~Om?hfDlvrc z)7)0m*wK^TZ@jFawW1z50+khOHcFMW)ScYp)ujpe{*$MfSpVtZ5;pWN1A(yqrTnj? z^G%Qlm)7q$RL=y#0LT}Tyb}08`^nQFLa+vseO`A&5if8&2*#Cc4A`WT-{B+H*XTL0 z^Xt9CE%}%fp-L`bu2T_(MrBOKyG|gy;@%|Lf-gMIM^02+Z*ITGiOt}v^j`pzJ59A? z3e<3zQ3}yHp4-TVU2&VA!?8KoV^30HBu}(}vNvn-#JxMhtoTVY{vkU@RF~DrT4~_1 zcc^_{bK0S{@>K%9D;aq(CWBfUPoGwbms2>HoZ+t7Cqw4UrYO$1WQo;8XDB@Z0y5Tq zTn3l0;yX`jd_YtX`$Cx1BOZ%ORg1rAGWbk5!bL4=1j0|VoN*J&E?s2&y!T!k_@jFb znzohpJ)Eqg(mUK14@rG`?gt9n8wKteopcc@Qk|vPd&@~nt8Zcx`(x`=?)Bm9L3ppI zCkci3T;;GmW5;TAsAMXF5S&6D;1bFi%;(62ocvjJE;4)nSQfYag$P}Ta`rm|QNjCzz!@n6rqIVn;l!8vGMr*AAc4NHoekWw|+F;5qQ)E`GX zvkidmT)gC)7E=h0BR-Lv7N$kQL!bYw4a)%+D!MNjoPPXQ?8d@^7Cw3a3v4pJH*K7jK3Tyrs{hJ+|wiPlFkuA;mV(ikqo*JEg;p zfLhph(d<ytXpqG&)%}?Kj}-3*2(bWuFR>d%|oFUo6hA%4Hf^mbG_w zH^4amz$GXajYh)Q%h|{?A8q1z93|zOM#uHz__%nLJ&wX&MiP?YXe&IP5R=rt{5z#S zbf_2PonEBOQWbYSO4+hMAeFX49YrSk;Ib54-^##L_h%#X8J@&FaX_gZ=_cMUy*WF5 z%x^%e0jB_`$*;a-TZ9AOIQ!?Oio%S5!3IlGh3XXR8LiMXZ_rsyb+`;#bqe3b|fVy}1s$kYzn)1!U9xXcBIa`=s_-^CZ>C`@w zBDW3X@u*qXS4LD+eI~KxWa1=vgiAkHOZwWEp$+4jGnrJ&zq&V!@$G?~^BUSPx+~|y z4e(MQ6KX#}q{jzu4tL?YQuAv={Gh?mx>gT0tgKP9O}%7)$YAlBva(vw3p{2M$NPgg z-Ct$}XeNb3tEOeQirr`aa$h;?TSdjfR=hNbFl<>@dK5ixNqvqBT4cXUPMA(@!OoyV zCgZnRxf&$nYIE7wqv+j22q)nZx)Xk}8!^Qa36pB#OGnVsXK)(2Eu`i?2N`9OV?~=9 z8kc-37%d!zx21$e7zb9=CkV+AoX6H?=YDi2VtYITV%-BZs<`fNzbMNy`UOLsjV~7{ zan+@BwW-6a?^oUo4QZ0n#Yo_H1mmiqVw^T{8wv|@oc_@$h1^F)bPrse*V4L~eKF*2 zPkozu2j0lyOAcktd|zMC00F2QL@UpBTr;jLt}Wd1o^nqep4$-Bki%to>I9%N1?-{l zdHS@Vh`^w(Gz3)%-dEke>AQT!sPDc&GOqk8-ezRX(o?>Z+Ml0zU8*YNa#9Ta=D?cBP8{sgq3bFw53{8Yr|VIwT1DL3VKX`Rb>#lcv+m zqN~S{{JiI}r*S+paOd}DXVPTF>l^z9HEC&gFXuHsFM!-IQFZQy;gnYDDfcxo6qZeX zh;-6Yu=3y2aqar<`cpp~vlPGDUKD_)#Z7gcz#j1efdhbaNC{x-!oU6j4D}1h^gkJ@M>YCRDa~S3x>KdyGLgbauZ~-P|9H*f7mQQ-8q))e@vm zy3_fvLMF{A!?P1MbO*_H%m%qeeqwl!)&fcdDQ?6ff*MX!TRBL)9!#1h7$J5<*e|CC z-%gf#?cgNgDofG|VoMr#L;iNOa7n=}gFEDVF#C`U$@H^y;FhV;|1jV3YgFq(I>c?!EjeVYhW@{dL zxdr$zGpkRrz70ZWQSCv&I~Tu24%ZAJkSCMXot1&N9>^z{IEn<)q%VCK!!>9=2Z4Oc zk+b4AU_=vbUYN#%(Sq9jawUDw#O^%Uf6!NIIYC(7oPsusZ;~5=FN(S$IkAgxAP#nJ zn$&YlC^wbB=#Sg#aX!5~WP%%Q6>#_eHIEzc9yApzcIzNBmQ;p*LN3oLSxV!{tMB-W z-5i-psILF0Z`7wIH|5B`e$$jGokyS>yw~63j<~2KDTp`Ma&x1yTprk|Xxf00Q|t!T zSII4B-2Cnjy*{1H(;y+YfLOX5Nj^#+)~cOc&07d}(4d+dN(Z(LIS`c|Uf z=V&_q`dyu9q>6km)H1Bu(yxP`x+O$&`}dgM_(8Kp_O6BJc6GQ~h>$!M$GLZD6}v2~ zDnhen!*DKMaWau>QvWCo zY$J<2SWn-Xyr{o|rH}(#@PYd(`3iEuZG}lBaEz1x>p`|5q5yjSY>3FetCUdD+00*g zx+n9x;Cqkl@25G4U8*L4NB=lAl;%>#EIwUP$PK|r)N4QqST9XWtV2PTInLM)X@oey zVHh0#Pw>9y%e75yKf0M|EJF;3AZzsH<#@Ve?P}NE*p^epe zHh9)~JXZyCzI>ite_Xj&u4(c{*A!ep532wE6vS@;zI$_kBk~wx0z#&@>J)DD7Gvo z{?~jW&@^w7FnTts^6T6^L#V*QvV#s^I^d#-u#>=8Yx-7yjg6ydvk{U2&&XD+aFn~>Q) zQ%9?tu^Y5j-rTE&xHhUkW9PNCOz$mUw5^08*X2oMXnlu|lja@{894vq4AP6Ft}XA3+-oqY&G z+0*KDhxif|pM#L%9vP>D&=yrkDU;tLsc#OhAl8zLCpT%ok~p79Nm-q@3TE%Y1H9pc zk~Rq1GRkepPF?dR##q}zNK@rsU1F^{q%4CtY;5frv2|% zt%Rd^cANWA-WC5vtf{wqVb2tuMMma}$ShvLS~}$L)}hE8a+4eg>b{qJl6_Y!<@tEt zv-^`}$vMA#?`X<3&VTWs#4p)SLUi0od-fM230X&MIqN(J13Q2L4S-)O&!dfD^h(}5R{4m{56=(b{>~*pfmwC$9a!d*egZN{ZHNs6oV1aS6EjXS(jW*F*+0 z)PR0vIiHKls+k@D?&`6^fBU(odvFaGi~kCwJWc48V%zPJyp?&GDf@@je@`^veP9}3 zIKZtKnQXmSps-FMZYq8i4W*l?sNaN(a|@H7?}ABg@ERy?q9q38$)dX4VJ^35ViH!+0$(R70}%M`!5*& zetclkum7jJvd(v(Qpyvh`72q@jR z_HvB75p~9u<8>DUN^>XT35S2@O%hhJF-f*D zbJuY#TK9BnXQz2YvnA33GcHjW@LSz7M_+BJ!v!m;u9g@NrG#2yX0}Gbn@BICyQO)v z_@A&3FCBPR)b1tR4GcH_us4?uSI9lL>Fkbz=lNOnbywq~58dtoftml0kD3i3-N@tG@Np{t``)r}XjBX_KZ+E0>E{R!@nl zWvYiwePH`a(fpbv3q-x-Rb%L8vJxsp%%VG-2Qo`bA=o2zk`a&6uPy$V#GwqE$thWm zL73W^%P}ty*P_l9!nAYxzi_n{3@i)`>P(9>WV6D-Y=ujb>^<*Me3Ul z`6_D+Y=7eiVP+s1emb~}X<&_3YNI3(t%;ghoD&kxF)FcAFiP{*QYmeLuF5=S4_QBc zJXw#1TsA(FKl#?$OYd>MK*nABTzjSWhWK(9T*lPyU5E(vM2Ov}0KJko6`I;>`tuMA zm;wQCejO_SGl3`{{~kjEZUC}>`du+vVP9hyUjzb>@z)+L!^a?81zz6%b({{Q@rwh4 zDVqXpOxyp$ApQWvn2#^AmM{+(@Owk9gEE)}$e2U`A2;mZGw>aZ06sDyw*zy{aVjuC zGC&@ly{MOQObJcmwa5{pM!2`A9GE%Z6hy9o2jvsyGq^+y9OSYrLw&#=AC0gVj2bBj z7m4s1G&WFyS2e`Q;J;v${MWFS4+3eq{|sZ!FajTg_9^^NEZ0DV`tb*-f%dQ6cVgBe z@^yATGg*@WrqJkqEA@6W`N0s39dAOX!;}or@I4=RcOq4<*>*VBYz1ScL#DoK&=+u0 zAPaVch&^90XCjke-2vN7%|HM`+63NT#n5%5)0%fH@UqOaVCsnkS+K#(sNs)Zczjr%xzb zsL1Bb1rPr)UMO96(D$o=T#A0*h67HUuVyy!BkbL* zaimnNp1+EWZ7*X`E@JDB=TxG$7$5Eg4SyqupMyRvF#fcEqyD1ptUOYblgLDA-8|=Y z_37@RU|(xvS;W0r8;CFnVKb6u57w-;k})BX%Nuw6&faTDU*rU?nH3qO)L%C6*E{%ZChd`#7!Ic3%wiZ}gxEuc7!T~lo(N6O_xd$~4IOEGtS z8<)`0F&d&GYkDp-Gh>}!Df>4AOE>3yr|0iF$MF}l5Y5`l1*CwRdOj@7{U-IPGRg%+ zVi|s!8TQeRo0xn1tiY*Tv|>m7-R?XHi=Cx>i+H6QCM!hPQa&r^si=dWP7gXA@Ybnk z!!(Rq__0+qe9p{L$9C!6>S?oS<90Sy@oq7^^1$Xe(UYu{5vM@SuwypSsuBaO027eL z%zp^9$k&`86bF+)`B!DC9H+8pZSsRaV?;vk9|VFJQ~c4Hu#bg~XY11#w9iE(gagu; zCL9GHBYpr`NzzmBqY|h(0e|Sl1W*Ah#zA+0FhGtif)qn+ht?Rxqx=+&9#lQ?9dLf_ zbvDfrxIW9G(#lKe!q(ap2ru66|rddzC- z(iMdpuG_!U!>O#YMvRr(Z~hWO^mcYC*%=5W$;2*uc8kU#n%-)| z-d1FVFE?E_5gfmr9Rn^DV#H0BJz!>nm9ACKSuMOR+?-rRD+SM$DieKr)T_kM|C|z` z!vL9|__LjgyX!)9INR9^WS{Q;{7_`$W1Lny@J2tpoveF@BKVn@|%xs)!TNoY9h zKGvL^m&O1_QR(E*Gk%#zgZw~@paba==Ac@D!z0e+eEtBX-*K@< z2JIIF(gcFf5M90#tN%f=L0P-aa7*-tevJwat-!8=C%B$+<$PwdW(;`3UD%1VSf!Y1 zCUvRJzT)(VMe`{ct7Es|lG;TYnHw~2uW}e?!eHnuJ)R5;;w6|7QEHPl6%ChQ$3iG` zlm?EU{H7=~j@COXi`ZYctIg*DJRc{ETBIISA25~A*cSh&Rty`1T8<@5 zQf>9DhM|9u1aJUDmPcgr(pAGpk)Y<4R(Wd6zmM>nc5(we98Gj=)0mGPgL=&^ zv~o`^L$rLF__1UA=}=2e3V@Bg;cmd=7)6!p>jdYAfH7pG2KPOuw3w#$$jT6svGGml zXA4|d+;#dcFa7(8IW~IWUVzW;e?2alK$R~5Ei|b#fVGY$3J;y0+pxmqh>)|1#~@{* zXKR@#Xi6?EM_lmPV56 zX|a)Ar9+r?J-k-BBmtn7cx#hZrTI3ErqxV#S1v>j8P-lt136xPh!WlrJd&Kjis*CL z(jtHhvIve8bXZHS8;-nuWr<7~#gVm1Dz3 z)wZ;_rIej4Rju}{c!2q58|a7xtSyXIBd`azAhT;`^9NZyGea%vrSIaSpAStOWH5O& z;;*#)T;;>Wpmgg0E9@PkGYPu3(O{BHJh5%twmGqF+nCt4GqHKcp5%^g+qQG^ywAJN zIX}L&zFu8xSC_i0dhc@Wi~mRGI>-iir$sLMA26JV@_wMNvGt7A{(D>OSVyEA3xU<3 zI-irZ1pmrY?*^aTiediJUxtj$A*EVHyE}GHY5yEze)+Q71>|6xetJm4&>7UAI zhtKJ9ac{X=-S6eIhR3s@c39J98SyYFwjhL+%)117G;eLs5@CHpt^9JW0#YD{kiDJJ z+HujS&h2dciP|6Cq8^MX7SliGLDhZvk-?*UW){(79z%UY1#NYiwk_+vD2NZ@ehCW< z`j^&~8W;-}ODQAHJE4wZA9RK=IpN$k3E!%OX6} zx|%N5C6>gGQmkFPvh>q?qp_OXcs|@e*`kbu?N&U7xT+?`{J?Aw7F1XF85tP?JI0Jp zZi(fFi5JRhk=i6<=u5r{;FoT3!zL89xwii}xQ@_zUB9SO$G4n_;PS&*&d`ECZ@4ro&^)$T_r6#@5C5Ir!R8(m>PkMR+PNC7RNT;G-q|2 z#pdd+)syWlAZ!mwL4vcJWVQktbFUGX?h~NZrMHG|c_(V{T(!1T%>v;%(Yj zOt%&8FZtQ;rce8$1a6h-$t0WE1Pa=(njg{{RkrI!xRxbFfordkneq4Hnvv{T)TW7b zQx{!k`dS%*E`@us*9yHy1=!~G9o zesy#h6X(tTrV!M3M(d|`vd$`dgJL7}9p|yk*^QxW@=IE{>;3rKQw?0_(cq_SKly(L zVkNCL-g5jG&`X|&amW2b$yYzh*#YQB!X~w+zP#0)(N98~r~ITmMV-Ih1{1Li zrDBpyj)?HrT}-HP75@AMsR{iIsVkV`fxq;?2e8MF!JSkKA{SPxMP_uPj>7 zFW!T}qcD#gb(~#sK+Av&uerlsXZnyjj()?aZOv2gFCmuEyzQ;{4jKyh%;2tRau$wZ z)yxHC=u&eT$1Qf3iRk;uxRc*r{_^^@51HONp1*S%84NYRVM+gVDLp{GtiDuRLlM8X zKNJQ~)o|PuLxqbaEp)UtI@TLX24YCv!XnXs)%hSMBzenUIU=k5RynFtELTSsu5Y7>3q}z==j(Vwd&2FmnxH~q8uoGMJ65%DA>vmE}pT^vY9rbqtU%&F{qSP37ySMmS7*U}c*BH@8)q4V)BxVO<@lzsc_(f#REEx2H~xT6kPiseEF<@Gb+;V z7~`${xeeTEY$xUTE`r(E3E`=5lz2G5ZgU@mW&Xc^mw7aMq65CB=LrC;S6sTg4mMj@ z9yL~}wZ(Dv{Uxnu1Hw{|j3;jxWS_t(_p9YM&Wjy~y89?)XejBPpUK^EbH!H}Pxfm7 z0{ZagsFPce3K1dH>Rd$A%){^oVZ-+*A#fI zRE=~9)?h=fJ{-f>Shq8QhntO=r*LESqH;aByBUeaeKuiAaEG4Kj~{v%hoC#hGJkLkI#zxHia>Z{S7HH5Zq=Q&8y7s>)f z+C9^4bdD-c!mmI0r|7I)?~X9mz_m)brx#whu#QitKK#sj`xf!ZcA_32lFznXa%GQW z3APX;|LPr3>26g$kF(&wL-AYjx?X+#)6kA9ph9bD;1Q8R9?89{S#ztsRqg z&!CRdWpZ%Q57UqA0f$koFA@wvacF8DfdiELAsw~6ccFS!zy1ZV~kAtS3 zanUNXNUXmJ@SL=I9x_^ATtPw~^tE-ATg^Gvt)lrrLxFSB>4!7N5q1$QG6?=toAd(~ z!proyiOP#_v7x3qtI4L_%*-&stJ2JHV(~isjsL+p^KE_#;BaD!x2nnW%GU~+`NUEf z_|Egi#8Kx$uCqt8ZY2bU!fX=Kf%YAwzQ7trxQbl=k_%X*UAs(W}&!EB{n)5j%W&Wbm;LNRMI5SE9Pw2WrpyR4D`o3 z+#?gnNRb4QdSL;?CZ6shtNm0ZFx9!~ZoiR2L3oOH5#^%InE}{7w#VX;fG%i9UbXXN zH>$Zeap6aXuNLy!ot|9jCfQc{|8$?o$uMqg*o!aZ+uyv&u>XqKno6~ib~3TSr%nTk zM5HHAvtGG$alFtdLKO(`1TI|D*8eWd_s1c?0d60GhzAUyajK7f+YTC|Z;@0e6cJdW zf!Ano#_$I3ioJ}`n4Y0Gl>Fn2$N@L#1Dwo6zAD>}z#nn$r3a2b1o|1718(>S0yf=1 z_h>=)JVWcT82Qut|K=FtR`1?CQSky`G12f(prc9VjHg>2AVY63Z(%XBenjUnN3#S1 z2}+JD`P|Qht3dbWuL~lVmM&yzoKnqC= z_ZoP~M%9Bc`u$^!B?=2jKxe$nncm}=J9We*FvWc9YdA+0spINJE#d=HPOnbTSI{_l zo71A2Fn+WZI=j&(6_)UaQ6-t^;d=GB+XF88m)^v1VD}7MJAn0sEH$d}MYB@e;Bn3@ zONww$`@Qoju^{x*%CBbg@VHzPzK7U%bNM*0@WJ$yvT;O6*Owyg2Sem z_KUAAY3Az@IO32bg-n9(QPqkh4P;;a&?iw$RSKa6J zWY;+j1pX|mYCu7xLvrYq+%@I1vW)|> zJ}M~)*6}L7sMqlBpJs*{Z2lB7C^87U5+faHjNhY#H2}>0kx@p;IqZ>T-%5`JcO0W< zJ3o6^_5NtN&2d&Tw;v!Xn&zycN8laE`mP56R(V zI@k5GF*x2?7FUhr@Gg=E&bfxd97?mG_m>s@nD{i87bH^X*C#7BuDl#*N~P795D!J8owD=aCKdJ(tEGQ1r&Q-W8k zI)?J;I{6+73Hqyy)^+|8>Z1(yN4kHz?rQidmm4g%qiGhso*$#X&S?&(_^kW-4n)>A zGDfW;X|5&qg#odorF*>#t#aIx`|PcsZ|ctuCs^-6c?Ld$@udLAXjk&}EqRQA5Iii?te-wm;D4W|y z^rj>FmJt6stBXy92#&=!4AsnNA`f+1$}wg1+zRXA+=^^$9^(=g<~?q$Y;N#8ZufIB zSF@HjEEqgYx?Z#mZfRHKt=KJ*PJqU5K{q2Yas4FYlH(KqqoO=71P9py6r8IwlEZSq zxOAaUgIBAPq74=F@z~x~4e76lf`VkwQpNPn!EoHMz1Zj=S(%rc?)O!rjf(~V>|-2= zP2EmBySk3(CT2^M{ncnu$ZqK}4*fbc-m8@HWsY_`mEV)oAId&bnvfSci2Au~5~qIv zQ)ksRP<_CA)U3Qkf{KZ0V>%ZfvB7*KUV0=$=NWyfNq>e?LR;0JH-`tPhUt5ggo_o| z{;^M9ExATS?+t;3T@Jt@Y{Kh-NjHK&z@_@oWliCspB5v6Kp6_0-GV6MriHB5qigO# zqVITnd*X_J8x+W1dIJ2f+)9&nSEaJ5C2?6^^CsUkypuf&3TiSS+ozXaTB4|RaN4p`r`bYa4U7-0AAb+bjpuyv5Vk5-z@_Qh?i$xs2 z_+%0Md5j1^tYt;00LS-CjZa`fuCp_r^@B(`ga{9K)8PnVTb0*aQw-*ma4tq`y7lMY zJI-+)jM>h(&vR0Fbt28}zagm%K;hG)b$MeuV1N!yg$GR2fkQB$4H!qQ2XKKtlJZ?6 zXg~OXjzxPK#2ok%K6Y^I%y<$EvAW}0srkUw$Px|MW6VvBXYbO_EHT6cYTOgf)E{vq z?6JC{^qIYSs;^Qfx)oCPFaE1Tje{(57%-LLEaRzMI-B7#GDx>6A2o~IWO8&OZGHFgDc!!! zF|v`ukPs1MMRc}itSU11=DxMz{Du1Srg2M@t9{)l2;t@uDD>%X9OYlOl zRtNjClZU*j#Q6owP{>pRxv4(;bQ>{?F|6VTy=kvFeH|tV#diZZty*gt`N?+%I89z7 z2#C)66FqWgyG1B>|E?ZjgG}g8&g7H$4o%1dF|03%!Uyhtd#`;?D)J1%g%GaP4f$!qxb` zy+7LW2SeX3^|L@P`v-W&a_QpP0(RFY?`sv)u|fqLq-spTJ+H6TJ$I+FEn}JWeX%B- z!StTC_5CY$vy#4+woo4l*w9^R<8%%~o!Y5YGj|R^Oz#wiL&^KPQJ{+$~AF zJM$V~aog#0 z(GMQo=f?I%kgk{2OH2^6NdaWO<7x*tmE0wuVNwlG5tZrSml7-XYeLU}*CbU2J~a-q z))0tj!U=26t1T*^!5Hnx;yIjaH^@QKE3gu!(Hx`}o8B1CqF&v|&`FiDSSGxB@3N{V z@3Up^Kqf>w=EDW6v^R7ljO`k*Dk~Px-;G$4XqI!N+)6i+2rfv3PCHUgz~om@gC3pY z>LqPnl8KQ29kgZF(h2BD>N(HIQNiG&qc6yxf&ma3-_pp~$RL^%(JcnkBdZdRP zBhH{PQzX*iULuy$^O8o#ar+ATOHE#>12u{TEI9No%WDE0>Jw6!pmKszbI1 zxC%NmWF4Br+)d>YHZ*5VJbRs?bWrDn^nhn=jS9eX=-ec?UNOBEowE*9daGK05?f9| zeth5@BK6v+c|<&$ z{&$hYm2#ULChd~&*@)oBA3=C#*xl2JYnB7BV%=Jf;y|qfCZoSYCXN{ce5^w)sc05O z@8oOEf|%pUK1ILAP>+~3>9QFA9G_{^vfZ58L`aU zq-z`9+q8>KAMPL2cI_WN*t#dennZaF&|2dg&WF9Y}){ zDA0!H&c}HukQG(xf`VHbkQGfm$5UYM)q4YYv0yvQa}FSKmwA2N;whb5*!+`U@?5+c z^i3?cT_tn~*FwYIEu=(oMKc`_$pg#Mj&xGcng6^Q*^exKb)1{8r%KzbWxiApJTNu9 zKwNy!S%xcSw^s(LGx*|=SylU-YXixAJRWvQA@|;D3TS0x8ynH}U`Gl3!h&j{IF!c3 z7QqsMS5ab}`MUQyhrhwr4(n2@4IftR-BBuQq%N4G_Te}JHpb3kP$&owGfzKO-6|2q ztxyj_+4$EFS|gtN`F}iAs?E6Msn>|8r}l{Cv(pv5Ijlt1PzpfB%N?ke`oYGBHo#v{ z_khI1f*kn<6pgyMl)YmLE<&qRj>=509N>UBsd)}yf}UtkHy*>TD}2}(u4)aLPNuKf z25X7yZ75zvw)2T6$z`gu@xrD=m8q*?2AGeNjKR+&^TV)jk}rD*X&|MRa`8c(uU-DZ z8fla+?Nnm4L)5<-Yf;WTFg165XK~oDk2*s*-34svwm2QQ&fn3|TZ0@){fjXc(jI+_ zKbxvKLa;*kd=K4r-f3;8vvW0;M{D$WC#D~9 zZq|yDK*zZ8`+J1Ai^a#@F^3&p&Z|`qkk>0!FncibBo=-> zy{04fOwy=Gyk-p3vh!$^+PSsvf=Pi(B30|%N)6g&4)iTRuhRY0+I8~gNbT)#Iv79_k0@@Ev(E#sJ$8~wpOIimLGqh* z12EyZ*$S|_ocJQJO{25KeQpQfxN$xG0enF<$vJ>-TZ<-~yfhr*PjD2(|CFzi|JxFT z`6hxLq-PtiPE~BRJ5-uUX6Y7y>=D` z<~q6QwZ4<|OG|45B}xe=Fj?B^?aNeJD2s$8L)rEIg#~Nqww7Yyp*}so5~@lO?4XZH zQ{)XQwbilP8>wfl^X`yp@p-`Xu}=s%D^prVf1Iv)@ZDz#4e%onQV0j- z>d-A$J_!^%&bY~cSs-c4a8pl0uZ~{N=)`dfJ}4PS3dw4(x%9VWMUhSqD~HH;vM2A5 z3+JSgNX|z&@+eh_4Yo=SHH2ckYaJH6>|;B=Zf+E&e*Y>WO%a4|Y|nr>5GVT4g+i58j6l zfu))44ob|6C%sC+IaYa9t@;awflZq(BD@`Z-0BO4>BbpfCFp&R390+din+@&rUV1%D|b_s993z<9x7vv%jUtneN zy5Q~FW)7G~H{d0sXAiK}p>KId^VL`b4hzsMCcYQoWbFz)tynRclcKmg^@6U05ONPX z_s)2oQsiNE%?iKz5yORZRCwx51C|i8{W&@9pW0o#HZDDbHtzn|LmauwfsUU|vcaQ5 z8NotjI*lxYe5QAk-VGY@V+G|EfBBtN??rW>(|WnjVC6(*F1ka4<(y@qyXJxhKC*BS&!RG5U^m_L)(qw(Z97xtNGY>z0IpyAo!=T+ru6)$C*Q$a{b8)Nd1ieY;uwZnQ3fP+(>Z-t8+C% z&}QS6-1)*Ns9Gfi0RjC6QUt|R0@H^A)koxg009L*{&oRb*3BRP58W_h;P~wN-1vzH zJ^}&;0{(6Odws_PU;exT0r@HT+4a%+?SBl?|26Z!zTX6V(qpxG!8!SG7=P&INc{v~ z+di({8^GqQZM+7UuwLtS{~w^zp=ChnV^+4w6pydG0>jsHb}4nav~r5{;D_3a*SA{7 zPg4$A&l*L(b&rD;Js(M5)`vVAg|M=o?YLH_Teet%h`eou(+ikA+QW6wg?f_AJ-;$X zfE>yO{X`?(CyKXfQg)~NgzA1nvax$*Z?THWn5qGt$~pF!j_rX33*h-{m13ViKpnVhfMCsCoMLAOahpbGeW~!yr?al>Xd&96}{ZAhwnT2 zzN)snuG%_n4s`0FpPoD1aqz(B)^#q;udU%L>V)j04rvTO{gkMlu1Jlr8WQ7=%Gb8R zXmcpj?%Jz)zXQL5b|)S5-H&|YG`TmGc8{KC_CfC{rg{d|q6rC0wE~15s4Gy3E9(f8 zxHYiZ34iM72c&kw0aAS^?j5@-uoeHa(qV0&tF%-89m+w0SxkOcc2~g z)A4Al(Q1P~aFvLIUOlQ&suTGYJIMiIOfrUSLg+Jt36#yv9eP4vR~s=o6D2`vVdO|KUFB3 zX4}npu_K;nRp9ggC+@|tm{8pMbk(*b$To|x;Ks-054mJtJ(*wu|C02#Svk!4>8%t6cLO zTUgI5&XMe?RdQ7jLU-p~m*(XAGv}J5NeFyRqGKe}+3B+lmDT|vvsvV)GRhiucTc>`ySR= z)7hJx<{5Hpbzj;otCaJ(R~7EsGwW|e!#3J{TS=<`Ue()U{8C}~^6APW-!`vbKk^A$ zy}&!f#5dab!0`wqvoOi4=$5ez{*b%Fof_lGJ)1P!tl7?B5b1_tf~uy?^L`Ju{`%J= z?@RBOvp%L<_8y;8ie#4{-hrjFr+#|;Sr99fA#GdUU=v}sX0%}e%er`I8BI4o&sfgT zcak0xPKbZOqe}7>Hi+RQSRZq9CDS66cxs<6BcA$}wUpoi$#rjmOu(i^} za!GNiorL;83n!|p^4AyXV(En3A2V;(9^^xQPlsaFy-2^7u{`dd{S4y92}h8*O+l7Q z>}yk&Q6ttG@oiW%Mc(Zc>jb1_Med^PdnQ!25IppW(S+kqDQuQ<`JFYa`Y{RB}c z6unJ^8rI5EX<9jFI4>k3R){0k+)8RXecwZeKK4}puAh5}i@#IP<7+v9u~}ws*K1`a zqBs*ZO@<^{H>17HcGUG@S-q0R6#N}~Dck&fm!qTc-A{X>?aMkar|49u2C^O6>d!f8 z(6=hj$Qden#0bS2MFxbn0qoOQ!nLdL$KV|73cOb`?`4LO-=do8RxoC*veoVxYH6J) z45y`45mwj*?hh={(+VHHxIG9Ad#=1ubj#8`xK6}=m*Qoz$|6P65XPimM31{{v=F8X zQH{`Tn)6I>cjZ^4)`pa!f3ez0LTpCt96Kq2 zcKxjH2>wV%#z#A{>(N~4(e=l%2pR$U+w9|mvdJ=|azhvb1K7L_c%G;Pzc=YdiVrqh zbr|S4lCbtQJ;-a8%HkhponSQuZ28^dVHV3tU}l0{=TV()Gl~W+z@%OUK7UG84H_*; z4(5Stl}{shtitty|5_FV0jX=ZcmEHFwQKtSv=RTYR{v|Ly8luKgleu;<19kqEWcc2 zx{-JX@U7|DZn@A>H2$8**gbdi>*$|2P;&>i@@!;XN-)GM_2Qi2J=h8~Z%yXyFgz~3 zP`sxJwdZ>=5-wx;z^G~voukpiBZl}3Vk_b_fp_&XGD44oSN5_y{LBV#>1DZw){5`d zV8j}Sgza;xL$~?C)8~4P_8yv8AWKPb8WLI{Wr4310w@qU#%&MDEl^nQ2f@kySvt_> zz@!7cG%(>nv5pwmKX*;siE!0ldQFfRu}=aor9GPjM}{(@(~xLG1~sCYnO;)bX6d*Z z`&cA$?7SF<9}f2 zZ=3)+^c-U!w@sb&1Y=X9YASDAkl{%+qJ0evtgc2kGrK1OeeUYn1&x`M)sb|NXy??wRiriHXsq3{+ATiJ?Vw zCsLt_-@Cmvr2vUR`?PIRdWp5HU@;|xag+RLDBp&JGY%TT!q zM+an{s{BC=J2=nyet-0L5T9{AMMTkWLeQy1(Uk;~kzD^_ztl!k(TsRCq@0sOjX2)6 zy~BM8(f*3ZoE5RNK3p&8*c1KPCppailMNp>Jx5%QyN={V)1wGG`l@& z)3U7G3_HWEBn``qJmc)J-qYT1t&F{(nZ0=S^IQr%CXDiJVZ|}M+>Nv%3Z@Dau+ePu%`~6zgozHM){aWr)1I z&?FrjJ+#@-oD-Wqv}4EgIg?VjkTYVNLFgJpi~|k?!~tNt1W4Sa$oYTe>Va`>2u}!w zn<;!*#D};s5n|+ZpZXRLqKs*to|{WI7hhW6B#}`r!*kp^)hw$~W~EU_DR$@7k)_Re zU7(wHEBb0UZd?6U`z7dIo2XGyyo_WV1wW!dV*$O zw&iDoN@XS6+NuR#bN$9#?l*+00MAQK!yo>>a0BT&LJgGjpZvj61677IiqK=B z6aAMv;SS=h#M0QRQRreAC@O`&jlf4kqzgvN5Ue6s3ob1{up`I|RxF^kq5uUS$3NP` z?FxX$5U=5WJE)u_lOeFi*x!Rg^??URSYEu^A&k9wCZwfkiXoc4FWtW1ARCMzAiXQ! z(jq=unk=?F@pAbVdNVj3zw};gDE2CA%66tK38(y_!s!$eH&*~pmUv10*V=J9<=b(?u z-nG69pBJbO72JkES8ncs?3GEoqs+S$6LK*rSK@?{B7qD^^d#MV&Ne~2M2UUG2`N}* z!K~?67e+jh(pgUzt_{K3xj0&+vC;l2D(kWKhHe`yo+11ObvyKyz_p>A9la-H4^!U5 zm?t%_uuh&$4uL#|7rqbGPqHtWc%CvG7X);uCmd62m8Y$sm`ir~jaFsjogOXYCk9BT z69WT&;PgQ6K>ScI!afl=I;0s0{V&jMkJXR_HZ=%FR8fY@CeEUPjTiXK zON6ZrU#asykqdP{OMcqTWU<`o!Ice3V38fL_5L1dJ3!`^IiyWf)@L?pix$hJOJnK% zdjP|$qg_)J20a!-{4-ujjuBXAh0Q_rN6Y-5NYNnDgro9v@m2jOyM&gx)W{hcPsB)z zLL_I94drZkdj9 z=*g+JS*tN!qtkA*{pQ^t5s9QS3Dk1!a2X9IV+k}0elApXlU_JBO(SO7Hq8@mJcZ;H zg{za2b^m!$^OPSHuFJ5Y1g`72BSp5$sHJ(f>!c@!PP9;3;jpPXYWu0yed}dt)(pXb zUE75`so3|Nw^dQ=nO;%bRbUvt=XpeFuIFV)nx5xHOv|QN0r8dZ^-QT`99muoL-*@p z2Z5-WiD+tG!bRHF=kr&v_l1BFAYJ%RI+< z69PlmX$4JPH_CHq!(pyE-DwTaeZzSR9FZ^b1~Upe&Uh9@f$we|mZ9r*7015oZWD^Y z_jUzC-}i0Hu$Nh1ROgxO>?kxrt9_XP%(TDeNJocVxS zr9!z{yqfy~o7HNzO01Iog4^YEwpyZ={{s>Zo7v`H8PguQ>?+Yu{3`12xtYlBy9V1O zT*tUN>DT}C#D)lCX1a9U){JXGgF@kOn5@SC!yMB@VR(-7Ou!t6S*p?;$3?CqU56R6 zG+oC9w(q;`8a8+`}s8M z%I{ffo`Lw^`y){QRPvqTC%z5gPY{p*vJL;{7TdR}@n)@6?sl(N$WZYi@)EN{^i;J) zc7WR>Lah8GeU05Eey-jof4AQ!Sb-#M!stFsv2-=j&s^kQ#(a=~F1p69)&E~d6bGYh zZHxVd*5|<5=UXlZXEhGJ1)gUV{2rt9KMvjfpXdH7nMeN6q{)&-Qlu%ePEi?A>I??XgKCk(ni{bQSuI4r%|#N-rG?Me_SQOzGtGzLE!VRJXB>3Br&w# zI?!Y(%34^aDZlj~(Dqt9@a%U3q!Wk}B}UUxoQ>U*qfcg-7lD}?xQ#}BwBcm+?Ck$; zH87)8)WlR5RMbV}n&;IdbRXuI1Vv(47e#+hur3iJSe2(Nu3A*;CdZcF5b9ag2E}rp z;367p@kRn~SaX3%9_S1%GpZaL57WOHx*lfK1wP;zr~kK(iDCRdS1*kdOiR3Xbam6j zQFQh5%wyGcv(%N<^^4qRwskY)S+?~H>}wZwbMze-^-KSEzL}$I*>GIqd*Ta6alCy? z)L$-3IsiCQ!VKWxR0QX!pY+2Sjm+>(;k!qVr!FKEC({n)baq1RDu^Oh))ML>x2Em4 zT^_DYXrW%Ue3bgJSEVVdKK!kqBDHEdW&(oI*d!K<#-M*xEz`1}eGcHfe=_5^r>bF> z&r+>YuN*7c%C&1*-D|Sx+Z_!&^i+O+wJaQ%ElnJKcu|~sK20O5LZ~f=zZUG+QDmwt zFb0_6_O2bS*>YOPLa0f`rTkCI1rkLP#ZF#6Wy<(CUVxREqSC(hw0 zkd{SKWHTlL=U0L`gS*>dPaA6Qt=cv8Z!2--&bgjrZO*i20wvDh+84~eOk7ev?p+Ye z;c_rz)ZS+&!gLw@uoPrfJ+H?^6p}s0>wC#9$*gYHJZQ|4qqfLfnqsM=@b6Zx%KO}V z^x@CMTJUPrH+o5}#j?;E%;}W=ip6ntC|}+0T&ZVWWctHa#aDFfH%-}&@XK0e+fTFq2whR(=lwQT+gB<1)d(BEZ_Esv-#U-w`DPd>N~ z$GGr&vIq7qoVq;R-$$$9x#2MDO}NoNc5eJicX;o#V*i$P5W`7e-EeobC9~;Z9fj}g$h3KNG1!IEY87?9TZ#3q+CgoQr#Yi0{exDv`cp*(be9Q03hP3?-RjAGDWzc%+uO->$^^XCs)7yWi@TA3wYnsu|Lp>!nZX zvE%&fyey*6s87MgY3t>*Ld2^|9dQP|uv>De!$6Gzm;82iZfg_3NCz>+WQ zl^!*VX+y!?e&wt29W&%EvPDVNzth)=X;|`w9N`y5d%y$MKP0Id#x!=y?dzT4o2hUI z%C*zs8>~(;#0!d(2;Jgd;eqXhq4!4cKFT7In}*SwJ1Lsl_vyxgXmgI32w_t9-ybu? zzQW%$h!O4+NR4S(gxo?EY(JN7M?vKCMi(ql`s?$ZIJn1dm(c)KU-_rMCw@O99)mPj z1^nJOa){JC=ciuqY&|}mw7G^iT>4+>p>$f>9tqmIe=s;UNqU9CF_3s(a3dP^ll8sB zUuU}>Y@6`loAOXl#101u%K1Pp?Ta#$_~x>-H2hQ65e%>gmd5+7)1WXg`Aw~7+!L6d zC{^)H<(Kv`yZ^Csw6pj6Wp3@CyYyf)NBi7t@OSGh2K^mmxf6yz=_xtY`n84NZDN`( zP2o)F=N){~)SczJF*(8qGjp>#K1Xvcr=8Xo0rx*&Z{7*cI_no$Ib+oqtO)^v)jj4* z9KM|M;UuDa8ZBphN8Mh+5-Pb?eJx+j=|r_Az>un_v5HdUD{KBSi78ylQ^T;9IM%S^ zOo?gwxR^+~efo7_MtD@{ydF~{#>5XDR#6>RlnXHt?8&j<3z@Zzz0aw_DRw`C`_`+; zH*oyt0eXq2s7th#s#Zv~^@hTTvf=NT#)EV;#D%-qN=OlCEoH;Qk=8C~H@!!Z+G;lK zo10$W`9V=*MM6thr7;5(LYIYyN0Jv7O4Wd|YxLngn=Z%MZf)Omd^*jr7p{06#g<_8 z`wRq6$cnNQJw|5Ont^2!6=p$Oy6%HMd>Jufn(1mn=w|l%3D~fGQacYJh-gl zig&TN|MRf|ijTK!hC|0!Pw8Tl*PoCZvyn zHjpLHV!T<}F?elqq*vwfdEvgTF*{TT>vDWlHzqOO86eHfW7i&~1Jwv#h8dqMMUBrn z@RrDEc_V8Q?kN}R@9Sed4t&LYM-}>bi_xkL6Q+~RSW6)$5&5?6er%j`Cj4oSK%STL z5!xXAH7_UpO}?Luz6sL2oboq8nU`}C+9>+=vl6;Op@MKl5%bObZyI!#V%BB6r*i?J ztcCUYPvq49iIO?j3$G E0H>$8GXMYp literal 0 HcmV?d00001 diff --git a/dev/deps/Source_Sans_Pro-0.4.8/6xK3dSBYKcSV-LCoeQqfX1RYOo3aPA.woff b/dev/deps/Source_Sans_Pro-0.4.8/6xK3dSBYKcSV-LCoeQqfX1RYOo3aPA.woff new file mode 100644 index 0000000000000000000000000000000000000000..cfcf43e0a7a82e7f042f408d7a15243c6509a6c9 GIT binary patch literal 74684 zcmZU)bC9Py^9MS%?b#jM_U!D~wr%bhJGO1xwr$(|j&0sK=e)oB$GxdfI*oKvNmu20 zD%Ek36%hdf1_A;CChh=&|87BIkiO-AH2=RM`de7!yCcJQy#oRQWlE(^Wfql_Rs7~j zfPi@Gfq=T8lrOFUqKeADfPe&6fPj$qfPlzSI5P6vWEJU|fPfS_z6VwPu6o+ri}{Au z`gTA-ifBMUSnNPREOl&lU45ojZYDrLmQp}KF)l#B*a4mF&Io44`bI!NZv)?cZ2wf; zK!RZz=34fTP5!8U+^V0wXo zU~Sq6oouc3UG0E?5p%x%zWW0G0G|SSw9&UV{?>JTuZ{A16HMfftUB#%9i4!Hk&c0Y zP!@oIm{VCW{d!#2;O0Q#-HcHdKc%%u8-(>RP!X))svxIuj*CSNJCxG@j~bulu?1Ee>w(hQP#$b#EgCBFDE zOeSSk`N;}(hH{fb3AV|hsdBf~#0IAJFctmfr8PC#Gks0#VEhLE66fX1^RBgIUQNKB zfp&zX6ZCTPsmeyaM~j0P;x06AXz@MT^3}1|qtN(I3r^bNl*8JNlxY};!Wi_pfiQJO z8hz55gv34=6<}(0(h3XZ+M>k)cNN(Q91S5Wt4QI>R@UL9B@|6f%X2gQ+WJ33HcRjx z>hyR<{sUGe@Pn~am>sou;I^mIwVln$1KjSS=a-wc$xnUAe17fuUMx`$_8h(BJ0#fw z^PV_UkEKlM*bl350b1KX4k3dec|qq zu4H$=+fs~<$s3t$5L|hA35e1>jS%kbOh%hHKy0GRgZ}ZH@G4-5iJM?Bj z;3`M|Rv{4~FlKgFA(c==q*J2lC%0=Obg|r=-`8hOb@1-{yn?0ufRnhgXdcb<@o{x( zzmX>_JP{Lc`-&;$B9M0!YNBAr)B_>R1=pB4q-L4V>cKS|bLcv<;VLWl%sW9xRJ%ah zl<1n9Febu3DQ<~;Ye_4O81@0fZWy>=3_2ZkV(7HN-}dR+AH`Zn(#_o>q;QFlS&>~K1BuE3iMqh z@VXi#lTOZBq)oB-YEi0$qZJ*esL}K7Q0ggwnW5M2Br9+24#esj`B=l`g@VeQXm|MIGgPQ@uv6sIJ~OPv0u# z>cMys`aRsP9TDj(FWczCGO6^?BTjo1-J2HWxgDVzTLT5s$=3(ps_52iapgaJet|sc zzwmd6xsa9@;JG)>J?bY)YPuL15V_n13qv%0Tr_>%{3dJg zMt_`m`c!V!;FJ>uEvg+REwbY}ZMKZ@KZ{U~f2s&}Z5E`7m}r=3VC{c+|K01?GXLGe z^79u8GNpJ(9NKS59D@S%+BjbhbD<8`2R3!fu;*AR;LS7ex>$eKkwn*nQJe!w9vCBd z7}5|Tae+{hd?f{WGFpmcC#4Y$B?BNnI0Gz#^H`CLesq>yoXa1`E;qp9&mr_;{i^Q* z5Z-(AYZK~39Z5#wA&p9wzdBeonctTTHlbGj!XIx~>QpdhzaW|Zge|SE#~;&fQoVXw z^?m?#h7#m95RKIvzCcsBXwd%ErrmU=X4!n6w6)Q+o@O_FS<2rK{Q9<%MUlPAeCX&= zb%*)*>m#vqZhZMsB@-6@A^>b5Pjx! zI80ydb$WavWpCb9KOdHC#~#2@##&@&jNEjz#+q81v$Po~I$5C4=;mYh2vnND?N98d z79vj=`nn;9f7s}UC)N1lpN`Two71(gR<53#cE37A7~)LWM_E#kbL4Ji926AUr_IAm z*-tHnYc+fs(^--&x0p;y+gLEUw3eT2>}TEa?D#%JyPfmMx|Qwn09s$~!c?oC)0U^M zlbRo2dLU^JP_wlTnX}P7_tU+)?l!$XcY>F0!*w-=`9HZeL7+9HP)65&!%+GuDX_+{ z%&`PJ&9R2V)mcrFX?l(PT+R^9^12;m$5b$*%M#axe ze0E1fTEY1F%N+A(oHL_AC%G7ja+nf;`?Ak{hq3}wXKpXD`QU5MlG!AskyB7Dk@LuE zng^B(Q@svi-D*7r-`VQ6dO`AWWu9xNhYio(h&zh2_Gj^XttG~eHJ&-vrwK3hYMrqO zxwW)IiufU02Gcwv^W7%su$qa9iJcZqQY$<&Z>WVu8HHJPwd0p}w3WI}dE=C;%Lia} zbv3qwU~xP8wt2y~=9d-Q>y%P!^?n^@)Lc{=AHB`ukzwgfqaM5N_YI!}` zs;r1q_&J^CPV%C(n8X{2ZCpM!sHs-0O9eiE0$U)da0?y3-daImdtoDW44LZW(T`=o zn^cNw`P=heu5#PB=Y@2(QW&OnUG09p+N|?3&b1OW44dJ=PspAr%jVs*CdaA z*H7dG%@`u$PWh$w^a(|ia5v>C*%XgfuBepu*V@2`iGF+PFO#N9?1tae#+TX}6II@4 zoCNaoBO*kSLR`1%RKg3co3kp;+Dl2_TzT+X3Nt?<|xAAK5k9joH9G#AbZ_PIvMAFm&wPB5c`bC0>DT4n`A$0jUQtW zMK)ruY+R7{Q7;NPsP9lWyPMzRASq)k4|mh5p&Ne4M|3p?TSJYznmb1G1=~7*dGT2; zkF8kAqNM}a;~C;CO8S5if)Fhm9#X`qSkN|+;! zTs`)VGqpIW?bQFU$MV0emYHk$NW@{h92}crQ;sV=Nd%rfdW}ZX)-Q!BIGq%`GXUIi z>^}~et)X8}VvK<2VIJcx2S|-g!ta$<&ZP^G&*SY98syQXEnN%~H;RkciMhR}M2BfS z0zc}}t!VGWg1;ywAmM<95C4OolGej<_M^ZG|u<8fz9Rg@6^X zG7Ywcy<$8;KD8a}V-5iL#DDNqwJMv_`Df`?fA1Y>%d+&u*GRjhr%w-{dGu)1rLYx7}!+eQnG^l=o<~5|iC)YwhagArN=qPa$ z;~bEBln(Ylc018qu$FTnTyinu<;k6#*|y{{_=w*d@sdk%l>Mm}J@uY3Zo1i2o<+(`?OCiKx%EU*^ zeZ$14lp#qHOEHWW81xGzlr<=mD$8i96N@bHRLVr4NhcNZD|x78Ba!(uDuy%`RU&b! zssALV7051-mr=SWWfc~ka=J&Q6;00rN>5%vynNGg>E|#@bGlTw%cB+$k0BT2Uy(mj zxHR~4vlWIubo*&*At6JEqLpe z?#U;{M@W+W6f+Gu3LuZ4ep~3YfMyaqK_oAvCoh~PDnyK%TeoP`pmov7U;5!cz$a#K zC6Bu(BK4#BDQ4YcMbW?O3gI#=x_AKw(1>YwQabXggGzv>`(G8i1Il~^3Dd`J&oNy@&iCTkrvFS-`5W@?d7kQWOW6CeO~6-Q(pyj7VU%Lp!;@DVVPx zEd<1hO_S*J#Rj+$tlmo99;}iK)sF_7#z7N`K5{23IU``7LmSmNit7Sm8mEXZl%_m| z*iws$a(RLRn6d-v;sWaY0_y($M<*0x6_4T+kN#iEk)d#Fc+W^N$NV4_F5eYd`A6Yg%t1tA7;!_<1oZTJ1VV=U0enosn9Oy3TibQ^f zeZqu2G~YMd73719Ek2#R?JPc>K^DH(cw-p~V-h5$4c{9ocx&;K9%^V)XVWdf78c1Y zi%-_Ss*h&RPZLkd!$*(~K5&=)WTihzj*%$S5Gd2okFFioYvAq8`YZn!eNLzkgI!&t z{T>9983iYf@gB#skl=J6HkMOYKrE|(@lg1;l*6}6Nlv${gdUixGg{(GSRn3KB#A}X zLIeuyjlA?&30bOAyl0s>@?yb6A=#l)yhNEe>xT#zU9WMCT`LJp(_d^uQ=D~ z53c}WHJU@xIHnpjdg5>@MS(<0jKtMIeW+aVwXF?d`?3-aU@Y+y7#IpA33ahz-P>9E z!WnwEQdZ+r<~$||FF`Nhrq{gZ60}zeO(($cb=c)QGT)8Tmq1yYnl{zp_-}uvQo)yn z9HQBrK!82jJ#z91j^w)n!tq0qi3$1l;O$#x*Z!B&n0}uQPuHv&s+)e z##E(D#;2f-xH=Zn*vdoB9fa=-$xO4!Y_7uUpQNmWrO^dL6rkDr=%li>4F^re`BI+w znBMXkEJg~JxA=&mL}d}xLW*JX*5ZEF;J>BAI6Oo-woq83niI4-3J>;ZNil6HTU{j= z?1B!swoq1?s0m_k^O@M|IN2Qr9Ql48k{bsdIPe)c@*UX!gM@E}QwPoYeA3TP#Y}Id zI!xv_=hSYM9;WKj!w9=|(H0FG_knw$Ia#L`z|#PSgq3?jcuwao&(j4dqPFV!3F-hR zTcet2Xv3{ZMBFaG^vKijB|GyGI(KT8wqA28^;(3ukng^Iv_*@4-#!*vzhjkXUyt)F zz>86#ZL}hyYx}0H)G|6gjdiX~bal%Ti$Aaxlhg$N>7Y6VJ&x#D@oX@w%$%V_C8C(| zs+WGp#;Iqr;!jrVK|8~Ig&~~qY08yTRi0S7(gAUo22}4fGf!7ygG8W3k?&!DDnbG8?FR2Y zJCR?_aaS+4!?Q<1qw2%&=tB#q`E7$qcPF-&3&n2sUTK@vUTa3D!r^^nG_*GHcOvzw zr)iv)KeAa;pop3Eo3iC`si?U`>C`PQq^+Fv&?e8%njVEkbo#ZVJLtN7P`BxEkWjy_ z%kD%1xM31TzDApgdA4VfDQTE0BUZ*%e=9qBoHdg}jWEVBWCL$O>eA%oIBuaj*7s~_U@EMc?j$o97FU6YFD>~|JKclI3e zQTYPQksNC*!?no#l7}>e;qi73Qk??C(PQTy?OaDE6vdu&yIj(eVSrlP{8w~{jEw*e z5oftVkiRdf3(f|KQ{+xDZ+09c)qVV{v65z6%oS3@a+=@~9V{BK}MVQ}~Lv8PX4w>!PXY$M)Z zif5B=UGxe8WSSI9ef|I19_81ukd4t$yFg zJTA6#H%-bEpi&kmtyzj$t&1>XS#z9OeQej1mnmmzE5@f?1hp+1HZK(OwdV`MuWLtI zED)G!#XriyYSfWy%$D&MM|)Ay+g3MxU+pwLnpJns0^`@XaODv{>J zkEz2Fiuq?>nAdfdMrR=$bMlTf=;rtb0qdO(_lvhhj-HMs`ZuEC zj3Asln!k=A&aaRdQ?k6{deLm&SG?cZytm9z?@oEssAkhFYs|rq75h8{UQv0|KkwZ@ zydEc1kX#Um_yx%(_NN3ZIKx;W<#RaE%s{?wo}-78c|Vzb={-C-!~P*5G#*ED`Mmoh z4ruC^1D<3IhsFn{Fw#1r@o%#Sz$|WP(g^Y~>~b;eiZOt4)y^al(XAZhNHrXMH!gfP zvdau1(JU#^t>2hgZn3g_?@nJUqV?1Vd}6x!bxoA@uU{@ zY?`q6ZmCTc<&6sQ|A#R(tA5mAGj^jgZhdaAI~iB}qb5odKE@+p zOi;YfWkbuAi<(pt&t(qn1SowEUR?l`auqu!_3)=khw8|NZvAZq%p|kVBrhu_HP0qM znvLz>i)>d2Z$I>-JSg(h3U=R*qdcsSqEJjJQcjJ3eeEVmyJShY5ZHOy%xRQND{iJ~ z)??t@D`7h8TmC`Dtc7Www66b6(*-kGKCo9_^NfX|8$O6>coV4RiHxBeGKi^vqpar1 zilOU2sA_n_s^$rdq5F3*S?}gT&668rJ8E!Q{{~jglMsWjf6ub^Klf(C|E%31gY^10 zKhgLix<#*_7>2NVxBEvtz}ygtBlQbvLCqt6L^6vRLLTV^v|<`u3Z=aLSmU#(>psW? zcUo7&2(o=gX}7m9iWSAEn~n&j-aVdj zJBTcXqLSN4yg4n5h0#dfdVJMiK3!Iu=BFd`v>KEESoWw{QRYe!NTtPEWhAElSmZ`q zh+r2>C=|Ce94k>)aw+G>HI^6=Q>FeU)tqgF+PAV$VqO-9i%c)_T3i1!$?a4obcHhZ z#h>@~RU#vO%Xo34aeR|@a$|9PgVQj~JeMbt98*dvUFNcQ?``kiEphQ76Kl~>jd5Z5 z`z@|ShniQPl~=#>ba`_w%t1L{-Tt+oYJqC(ImJ~x`!P)3eUQq1kfYNeL#GzyA#{#f zWtLi{w5UPSI)^w1Q028RWiFx{XC@)M<9b03dLIvbL7prD6ddN@J`Oad5LOp(%nW*; z`jdqyf-7P6vv_6-{(?tr9bwKfY1Y8J5TyVB$H7}1V5TZq3`jt+z~U_?$=07~)b$sf zuJnj(7=s0?CNB!!pc#U{4iUW&;<7c~%;(~FG7{FfcwjU1!1E#3@j>Wv4c;_)JHPs~ zMTN$J`Y9VRy&+}wZh`fNbSdXQV9ug4^&DR_@Sto`x7q$arI~;G)3%G;bc%ONgtH*f z^(Ow;0nq82Tvp}dTCpRbRPyqru9F<1kNviwzGD3<A2dI4<>v*jx>aS09nJTyFVs~na*4POPTSZ8!lxD*F5S+X(_4Qev^-GC!R zD_nwi7xvG7AEd=mi4bEn^Ni(imzv=|SS8r1(O6E@4;tQRtfk8tRqX6L!YiKZwAz{- zyQM@Pyfh38Lf(!WjL1aYNtgJ$lzhG(8=En0Wsk;vzSHrYvE?frc0OZXj(pXfP1)ys zmo72p?GW;8nAhXYBRPzA(9V^8`>^Bje)T$}kaK1!c#U7>DOMP*(@V0lEGFjs7W8$hhgt;28-bq9T4aFCN1V(neJu%*;_iNpfhuzH*Z9X@ zQF7-l7dc&5(T`U&w!V|ubkHtmxI;(1gO8i%zSN@u)8aZ$n_5@L4+%Ivp&SU>1U^B1 zF#FzC{Eh)#AcR`n1@&Bi@k_`FY!}}g-7d83lU~L-)J3{@IG{?yhrr&P?90r`>|P5-P_< zlwqqQS%e^jr@k zUwy>PnpMFK!S${2P&mg_yzie8!0*+F^W9*t*5C8dS z6A5*jzOT|goGydm(;a0SvSzFW6)?iMRYw6zxKacMiIRqY6+6nSI>OtygT~yzfM#&`~biLL)Kk z&+fhqM)FaB%~gq-<-lN6G1Lms=%51AQH~LuBwOQ}nMor=9eM1s;u_2u8n_Bgr<2{E z)#~GFlf@J`SEvh=SC=gdq)V663l&3`){UbSDyBzx9;81T3qXA2UmFx!=U;9;Qs&4~ z=1lHn?&wzi+HcryMVsT9-3h%1xUYX~iBBEVIX1Rxyj~+*4kJH%XShA>G`C}BZ+M}^ z=y2>iaO|ft_@bG*!erQUvh3hZ-JzN7uQK==Gx#dzMv@ESstVxB2C+E{;btRR^PsP# z1hG{Gu+jOkWx-nWAjVzeRV}<+2Q1DE4bBYR(Z6)?6W!jNlvW(Hj`y|FwQ=`2G=Z+!i7Lak`$s z4~C2~D~$&@>9vF-YbIdHMrOPRXvCv7~U() zH~m!%+lY+AMHqv~|zrmf(r=P(xfn2pyQchq;(=KZ+bzaujOshtB~>R;*`b|ZNS zZO?yft-!Y!ET>6M8qbMrUi2Zh4`>-z#c^rXu8;mj*a^cQLg$v4jM@p?lreFltXjEf zF$lIFv|(>f(=0@{J!jZj!EXqV>8R~@HB8=(+>By(=G|Jka5Z$<`A2B##cjv8Juh`N z3?A*1`B&wPWqVF`TUQ*DtR2Sg%)Pn_-BG)4?wjdq*c@NY3;OSn^EX2_!?^7zw%;cO ztKWC8?^(X>`;quVxE@?vE5@#d%iqEvZabLmxm_tnY2VLw{NQs2+HO=fe1B>B0O?`9 zc}x9yN4f)Uf7+!^$1UiVGn<3nIPBS9-ap2(zciwEur7*Pk!$Es747 zt`3x*_Wd874wC*4{IF3xh*3PMAaNpte!gzLZe_!Fpm)YNVQj25a;)58d90--^l=tW z@P|oc3GK+}<)VXqC2F8lD#2mkpr&P2qO%WV?~iA44NPdX0eOS+4KQf5eo2FJwGv7d zFzDrigH-ah8u!$`4y1Bb7z;bX%po?V!_(xBleW$h_M@nawtj71fezLB;ME?PEp(ofG*esCJ}gqJj#Rc zij=b}y@MM@TZx>JAl8ESAAO=Sq|~0LAl9qxH*{-E5U~ZknncU6vuE_O?UFXEaw?`e zQSA3maL@e*0FtZI=xyW3)%Z^u0|3@0IV zMGVc?1Vchr(}N<{IVRE0#F{lm!6CLalOrBvTzkYQ7)j-<1=-H%1L|2X=&YctXKPYPKj5|cXH-^xqmVfVU`o%Z*BcjBvG>IEA z0tKKub=NHtWwv#)wAC&w;sP5WagM{+9DS<%TDX*t`vYmaA$e8j&E-w`O*)Irg`5EL zsbBaOO>K#tQ>54=YfsB1Wm1`k_KYZxcN;ydQ{SjapU_E-jTb5ax3Ry|j-%fwOmv+^ zu_?x^aIZqP0#|)qu5$c#8y+*fS2EoIB_BVTU2i(F#J*tN6@gdZ={T zrHc%eH9#m@z3dd(&|=nJsPbo@KxJZ&Q2&jP`c4^yB?pi!-pGyCnr7X zU6{D1G30|A$IH>kPG1_CmL1mzWsl&CyZaVA?rO+?XxrikCnfBm`5|4hg%P?XYAR(XkC)} z-`%ki!*?m^s+boSABoz1KR#6~$KW4rJSsm@J11-g9Id0L5ZBj-@JIz_pFI6KFOjDr z01#FKlxNL!hT1+m^V*0U!SDph+NT_}9!1+<+l%EOYFuLtB-3674=XN}8~fL^2!zT| zfn&$=q)wbh^&E6ZA}C-NJt;25h3AL&v2UUVybe7IBmIAc@KA54MUL?p1IZC|bGMzB zFh53Cs6}xA!`$w7=V!0T^`FdJg&>YH*L zOq!*AS4L4U{!9UZMWU^}p+|%ga2V9oEfO+}%M_?$l<+OuQ!Hn05{CrLKdNWc-iU8C z;#p-!G$&$eZxJG+f)996V#-HZxZ?5hN!*0RnOLTYgqX#HOyV{sR2-O#!QxYXmdjij@r zo8*|?eo>El4y-G1jaqAoCmE2t1=1d%G{tg?nM79vKxPiHW|qyax=7*>ps`=EUL~?1 zG=y&e^1XXJ#paOmaPE-r5t zg~tWqVc!|wp^LXqD}JQCq!r|fk*C2u%2Rt z>r$Y9*s_3s`aA9_ZeEwZ{LhPZ@|?}f0V2TyIH3$jBGFG_GFYK7M=4US3@xDyO=1zg zu;!xHgsnQ@elZYfqId#e+(l;*( z4wZnl)GQGEvKEL&DN!!%;-?Y(q*4eJkv668(;`oN#ytC!Z@|c9H;(QDB-Rja5_%N& zm{5^~R@dgZF3yc8jcd_KZ)6LToKy?~TI2y5p9J%x$8Y1jH*lUYtKlu0GD42!n_1kU z%eghfDoZeLyLV1FN5VISGKku5$s(A+-eJ29uHjzvjCg`#@CghVi2%IS z#(%iorJoZlS*5)@Qk$`eIs17THT@;mz6|!0sX1QM(f6S@@R3y#%}||UX8Lo~h!ptX zQQRf-`Wm_Y5>ylweeSdsjD7t!;jL$}Ws30&}uiQ^j?V9{VS);SGr~TO7#O<_Z z=pyHWqx6-;{S~DodFS1(K7DuH(Qx!rA8b5;S$DPn05J6$jkMLT6UOyO9>(pgB`Czj z&AY&tsite>b}2TI*;)U!hyNsJotOBi-<$=ON>(V)owys>I}Qtog59v~>6a+E8f^Xm zemvonkR=#JHM~Z&DA>2iyy|#2)a;n1i`fesM(&l=;jQ$nFbw89DlUFm-!syEs(l#r zBG_MfIPsC%WR&TbLlU0F{<1d^44?DO`59%15*E=N_#070L5}kn_xB)(I(&%o3=rv& z%Ix|e?UZ8bNwN2dtuvE^RsF0E_he8lWY>o(6?YwT`g)(u#Z+6zR5j_mA(g!-DH~O- zJk8@Tmt2%}-~HwS#Ra7VYWLwVoch9;3Q894hBEjo+0Z#;vym{x#2d)O<56A>WzuA( z>pcK(m0ls2e8gMPs2exT$@hGDu8`XeOI4v*I%_DA#iGAm zL$2&8!GgQyGwJ>m=gd~PQAe@T#Zw@$tn4=At$EkiX2!8ICIA?VVm-`1@ubs+^hShz zrp<##Ky;|gX~tB%W-6;{6Ux)ZO0EuIX&rUKWzavb?5J~IU$ukPQuy(Zsck3N(xJ`Yw; zs5fjIFQ`u+P&Z#spIqWQ*(_I$>)$_?%@%Ea5OA&{bdN^q9gmYw-i#4Gm}D*P*RNp7 zxOHuOvM`%r$5)E5=HK`J>Mo27^3+q92@6tlHRMTAo0tz06sM4&;j_u-qo5Pa{zL{3 zUC~F1hBL_Gb7~Pvj$NHA$o-bO#xhb@WoGF;H2vS7O0F)nc!MV|@F&Jt@&J@%o zwqPEpAS4R@u?bhrLnWw|UJ7i4y)QBy!x*?oOOM$Rh^-|lp#M0I?B zzTX}jpw|Qdm5U+?@A3jJCv>e9zOxbcS79vD?XBA*E!XYCN(8@C<2{N!$C|fld86m^ zb?Zp4Hk~|WqCd;=JK$shUAP%jjU1}O-AoR6P|6c;oE-QW2#1JnkFA|%vg=;X!Nl2( zlx!1hjfd8Pl8#H~4AhfGxF*gNyiy8V$z($f>=)K*BKNi;I7Rs%gcj*#MIDspW7NtI zI%?IggIcpyS)zbdS6! z178xB-6A}AT+@9ffhYmW&xwl5b9gRjYk9bRNKsI~iEtQ0gz@%b|0==t2*CB}!S%|) z_1i`Ch(+|7P4q}j^jS^xYS9c3(F~!`3^LISV`mH-YxV!(89?Rv!x^<69y4^oF!I;! zE5RbH=D0de+B``ge91(6$&i@Mkh;kPx5?1M*#N5_dzj_XKo?Lq-LBa{x;XD+V^zb0s7M~qbs_-eX%N_h;EC;oSC_ielrwiQXG%e)DyF9 z2RP>Mveg$6WXv4EiM?Wk2Rn>o&O*Oktvc=md%0V^to@Ky_WJNwP#(A5KD|c#@~B~w zp$m1RyIHMlWXtfX@oDv~)t@#owvdi26OEBpXs;3Z@~Nc23eLWA1&p!uk9nPZ}TCcqK5e^ z*rR#wiB3Y}4`9c}`xMJV9!LDDVfYs0=3Rtq7{Nqcii;`X_wuc9&Ns=BWMul{%W9IY zkgjEk;ybRjZ3$1@n~woRBz{@~0P}%o;6`=r`=3kdaW@sVDMw#Nn(*MHI*-AMRXBuG z5ZN{c$;-reLLn{w;XmlDxBTm97v=^c)JBA;gsG+@S~ZL$30|?OKf}Fd-$qtu-mYUY zjw?f-Vwph<&!Q|%4BJl)n~63Y6bruHfk3*bo zAI4dcZw13g98)S~Q|1~6D@p3?4NoE4kKzlDh61kOKM;_ENl#a!@E3||F~$C#=QZ5a z|8SXc;AXZtujHbqVP*<)Va?o7_RkovQQ=u{+^eFkYZ_V0OW#Bac08_YmPj*w&ST+} zR7)Z-m3EN9KVvelCrYBZnVA=q?I|_P#I_MzvWA~sldz<&38T;#x4ir;v#K5HIy>TQ5(P5M3V)Lp~gbv0^+?tZm<4`ogW3P$5&$sJXVaj_z#;rzk! zG&?wB0P;rBw%+>}S|*1{r0j75^Cb_`DrIpqafboxHY%Y3`6Js1 z#x$ds%!3M)Ww~K491T_#$stgB&uikpKhkFXR2p*e@mB(5oPGw_SczaE|3((VgC>dX zbHlsx)cOl+k4!g2+JfeCT=v3nL;Os^7ZkmZ`b^?YR%t^2sLziu=L{8W4<>3K=anG0 ztXwQyE<;@lub*X&yp*5gjs4Ybjj+D+>1e~pLlv|q`!WabaTwZM>{6vQ$4E26K&WIkK7KWxJKZM zD5)lbYRUkd^@CYiH3>I$UDxKkc8b6fg`7-nd+1#{?ndS{`;&rIeE=m%eo(z4CrJ6R zIf!d%cBZXXgOR{>*Pjp=Y&HU;ArJoIxQEOs5B8^%A#-2Ik1(t~u^*vmmorp%YHY!F zSfX}l~&(5JS~C6Q#=5D4WYZ!AAI-9Y4Yz5{Dyam?1|LDo3c| zGvphOKj(L*`97@y^mxf0jf&hn5p#_m&vhRpKL}JFHm#X3?%J%c^zm=ZU&lix0my=A zj03R(D3lrHk){pSjUTeIVTNOC}vxy-T_((S^TEWqiU%S;2rL63(IG2^n(7TQQ`# zx}lEd|CX{J)fABrsq?%e3M9yq4_;{|#LZO$oq7BVYI7xmfhdG1hyz88C@=%79$d2) ze!Uiy_gI+lmGQ42oIVyY)*#jpqp!G>J`S@hLRPr?K`m;#9YWR#pF1!o{XqD&K?fN9 z;P|ye2T1im`L#s{MD^g=wR;D!?LhjqNe8&?;QF<52k6y6`!(}TTIWje$1|&S_u$nv z&89`X@E`rc>Se|w<4V~!HnE6OYA%2v-)TAck!DX@h-p-(XFG>o?} ze}sgv4;6K4PVPrx;J)@~<|~m}-=C7FQN-x4eqdj?Wor8aK(~p+&x&b{5LMBeFr}20e$%v@AxA9dDE&In-(-6*p^Y6Q@!~ zmZ@WoE-4ZhQE6mFN<4}ef^`#aPN*kaL`zCr@$eDfiZ9N5-rBr;0w0_CIHzuj$pYx{FHLWv6dfLoVd+I0mH9>M=aP?9U4g zGxa?bU+&c*svFe1iT4t2hn-1HjD{n?@`V5OVaVzb;C^S@XD*BB`(> zIXc-Z0{7mOR1rZlk4b&qgTf-zYv-zg*xDbuSW3n;pkUW-C1=R zW{k^5UU<^p7)PDdGxhE9-Wzx3Naq1%d!yAZpA%}xUTv~N$n)g)ckUf-@8_%LV->6!P2wmVPktvTOMtfH##wkrpYShjdNLrnU8mHYgLoz4J7k3{w z=Z+Bf8$}fFt7!K={ds)`H@HvfOSJE>m`UaS~-K~6MCZZ!t)dGnAh_EuV(ZR3# zQFN@{6()KgnJ1*$o=|;qv%+~tWh3BB+`Xzdu_fX|IRbX?GnH~k_fD0smG0i-7;a|M zz#)YW7NYM2@)F$T?^%yOV>YhsuoPQXq`4&zFh5RZpg^{$l<>8T6vjUDv*qpt2qbY= zP<1Q8y+sU?8`vv(MkZ({R7JQY=G%V3MTi#0-OLKYlmZ7TGB%uhNOaT@_^m z74Z@GJqiqf^cm_bhQJipzqI$D#hGFcwMQJ-=0^N3#|H@ZZ{w~mB;vDSPWiQFuNzP% z*ej1K!a2MTvI)x!`4^ZE(|f^;Fhg9I-CU1bH0O|CJYEE-cR>ABPJd3eUw02SBn%e9 z5ICwoCo(5a8=e}56=D&n}xW8*!Qnd;~Vwocz;(7o`yPYY3_d@)tPtUB|er zu>Ex|#RJrrgrdEdRi_R_3y3X9R@5t}w8N&hN|yEUv%^Bp731w4#B!+sY!4m7YUtSI z4NKX*KR533TGi3Z*>SEyow;cDh%RHC3%wjcd+Md4tR*Okxduux4vH#u^s(|9F#R9# z5xIOPP|pwug4vMMy`kVk!25ooy=ft#!No_TH}`L_Uz$#y;f5r&l@UntcuFi`5wpE# z&(Tj#Fib`7>%1RCUtwPLForWE&3{uEjm@?w5tXwRiz+|r!#-{Av%Uo=cw?Naxq zg@#61{Z>oeiH$za+7F2cE1Osm&yk<85!yyY%k(hl>Zk@^rzjSX`J@ zSk{KLf>Ka#s)rcA1Lfq!044=f1XAw*$Eb@jO16z+SSmT79zFxq1O(Qf0E;d>@~|h= z4&}MP#jL(c)*br$EgfQzudl<@w8@UnHH#}650uUU);@H@-INOlU)2ZHL|Dow(}F9O zJGBANfG!B}BqLE5#MF}iCl1K~UhpTdJH<1MY9&OnuOu>RME&fJr5(|GbS}NWE!IUo zeb6103cFMXyHh3rt1iVihn3`1osr(G0rRoZPX} zwd06`<7HkW=8kg1Jj^RF2RyYK!7I!ZgfDb2Vy|#StYL$>mx8XkwZ@LFA0ce4eQrEM zRbUh>zF#fx<7mDhM1OCK9@6vAXHqqU3ZSM3@%~&#--jJIe>wyNpc|B7LR7V5NinT62?aBkkFGn!0c?t93OQ0G$zZ9$J~ zk7=(qd3J>Wn_1chLT(m>W4cXY$Uo7Sg+e&F$WFfzkAbxW9CW_)tL+L|{PyQNVomQj<2t?-`s~MORI&Cvw=yr$ZvbyWY&jAo52tFt7~v z&A~x_r)TicLP0f<5Y2@J{I+CbvZkPDD9l@`0{$ai82tTayCNPm##j_BsC#LmquFrX zavf(~W8K7xTYbGfaOL}d!5PNBtWI(h1SrS8)@TJJRJU7j`Tl)@Y1Vzy8jPT-xwZg(6k#H8#~!-Y}>ZE zv28mW+n(6AZ9Cc6wl>z}nVuijS3gzN)zyXjVd){u3}K5|T5DoeXE#%s z`>U8CNA&V)E_^16>iJ*_LB{H#6));^Hs}yp{@ertdpMVAh^};EX*iT5#}KM4SzQ`} zDuKy|BMi!xgDFg#@nFDsQ2xX!f`H><{^OwRAFCYenTzpH<8slUQknwELK<*v5y*`2 zk8D}v}vXUCzr*Osbhh$ z&esz-jfZuy&Ub;HEQf!-0w&GqQoHf*30Me{2nq=X*UzY4uv=WF6I1p(W1ZVw_cLSB zehhJm|CSy&J$%hO0l&6RH*Q<}74A|AGwR`R!xXC78VmKjO$rx7JXDj2<~=+-qKDB) zUm=-WagdTaJDzz+<`ktvQ#whFL%)q07s1UW8+;2ZgY)OML;7C?v&MPj!`d6ZZw7bl4Xa`H%X6ZbWdC)JI=-e$=-)^M^3R7|EN z3#u8oD(1MdNtR5uW(65GsTml@qRzO1tpCnvwT7|wt((=lt;GRMW?fXQ!zF){H>Rvq ztk2~NE!nHh0y9if0Y}FW&eZD{^hQaJgmj%G)Bm0r4tZ+BDH0jiAf@y(%ri(j3&!#p zzzn-NvrvS8M9iUZqg=wFC!I;OJtoTTqac8$B^>^mUAWlPN~cj;E+q+nlxSN7i)gCP z6zr|gr&t&!e>bM9_Qdf9`BKfK3!%Ty_QXi=_t1VSY3gRuH=$2x*~jcwvtQhJMCw+# zS?GKu?A9lm^M2$fow&lvE_8-H2h)}01YW143U9^gJ2$T5RXn&xie}E6Wo1~Ekj!1v zm!?|+dFO|fVb*HITF(-9)Yw%URExru_SN-2J%ooZ_Qme%U!+H*>GZ^ZP*l?mA6C| zTXlA*+5DR+jB#YA_;(u{`O&Gd0aQ#oCwL@;>$0!!iLUl9=-mK5L(Y;i)v+^D+6bP4 z=a+^N;&J~h%H=DU>bb2^Jm-{1FEN~2wTc|+Ey+yv36AR)nzdx z1FU6fFpsE(ddh!g_Lmv~u!Sf+R)UpybJWmH>!8(Mf|W#b)G$rBVAYX=l_Yh42p1#~ zdyIgT82nISVY|05_=I7DgAN|(NVDsl#6IgI^?NMru}HapW_@qlckUf^ZK_cD&pK^h zl4FVopbcOCm`ldB@pVDJdoz4B4e*TZ(L1#zZQYnX|ES$iymB)VcUl>p`4ofv5QqE_ zg8Yz!{E&zIkn(}%>8HQF-1N`Mevg=V!Eqzt<9UuVKLI{oZr1XnJ;P^g8f>-QjGtRK zyrow8{j9VfJLhSbIJ+46lqAnh8pksEhw<(wwS^v8p6Qe43OV-%W|0lrv<;%=4pJ@f zXPH>=0wvEC_SVV%e)RB-s@+dGHTUkROTmmNeoeyUi8zwCc;)fKR28Qt;JmuVsy5ZC zs-vPNlDfKJqBiTAPSrCed)uJ2Rq4p}$s0{=p>sLk@6`6qt;zP$c$YL`ZJuHa zb_jF8@|NI*eV!}loEN@@E>aUev{os2^-4g`Mt*$GQtq3Q{<%nZIhL#5XtVxCv)&|| z{vsQ2f_KYK(=P0Y@a5{y4*df!axb03I#gVBPS^$&7Q1t%tP$|gmoEY9hIo`r%2knD)M@&7}5TqW2Y;{G%$%xLxwkVIMsED3qO_^}lonqJG zDe1~XujOfx*WaR9B13DUSu#VGqFM4o4Tqh7e6SL4WS`Re8`BxETDn5u(uE1p#*9%t zWyM+}Ojt5(VwIqc$1G{NVkm+fO&p@(IPp|KDTLm|1D{eLu6SVA(@>l2$xeGyRsTGf zg2@LSBLf61fO)S${~36+m$HG$7w)p6vKJb%KoE-TG2s&qdT2!ib%MLA5l~n)g;w-> zRWzHC4rXd+fY+YmNH7wBomfZh#Tp z3n!rxqQ(e3_fV$@S7Rgxe~im5=QdtZTMf7?R5fT$)P#&EC_QrF`LZTtoitAol}gc} zN)bOx5&Qk=t9C#)Sliyb3`-6f7KnUMLDi<6u)SjUsOlKy;H?w4@|kdRCW0*^+JlE> zN{jzWs25(}Cq_tfs~IrL%$vGbj~{oG)+;26cKgp&lLBzMvtj{;5{hQXiZX&`NQ+Vc zpVPsi6VEsH8fjUU8fDM}U^vs^=M3I=~U( z!Ru02_v6*6-!410+f>}qKf2Dr0@Z>HGtM#h=3Jtf)DN9i!(EM?fH2zKdOEz>#s%1$ zq#yCg(g)}0vG`Z`BG5*tmu5A2u%uiaIwNSCiJc8?l{5k_y(FZt;O-iD#L)iE!7K(4 zl`F(lk^zE0L_uZl4;JiU<`+bkg^GRVo;m#i1&0OOo!V&mZ2lkAr~iJt;r;FE_&scm zQ37*Rrl10tPq1?-h3-C+@rPmwREjo(lhK^UU9OLqwlSsXT%9JIamd)@f2YHj~+iErDS?!K@d)FDWZ9Ac1SkOxDBU1E}aQx>OtB)i%^FN&5;67q* zPPc6BU_LT>aCZd5l#>j}rEp)0L0+N-pfTZ6Ng$3ELfZQaIY^`>EV@$C3SJ3;0SLb^ zM6d~2qY>f*m}HT>N|=+frp%CDHT#U<>Y~-q4f*h>##2E|S7&1LoQX<OEy4P!Bw5p2%wHbh_dEBb)^QvX5ivM@0OjI>V z*91pampO%~zyOcj{SK}9k9@ZeO>>SM2@mb;j=X9Pjb@HjV^1WJ%=F#NC0fi>md)kV z&301*_Ic&^8J~=J*p1jyziXzAeu*1Xz7gr6c}1fj6<8Q?%|vjfZH$dA<&@l`}ZqB4-zX{G1ZE=({EIRgrB| z#(!cYVw0AzbVZ)5nPzjU0MP?WR>ac&=oJUhQU{3lI`GUosL48zMn=d3 zMzEkc=&d=>>N$u@Jc_Bi2MFY^o&D$k|`YKY{tttiN}tE zu90b*WLL$DF-w$;VdEI-xiYl^q`=F`)QYljG{*i;lH-u3kS2Jb%Keh04EXW2tMCz; zdk5Y#tnq@MyDQQa)_Mn}H!R~pIJ+yw8ya>8a@|kR2FbCjr4usg2unZY$%$vatC|&j z;D``AWXOpP{i+X)@;}jkkpRZ_9y7eC5cB6FLn7NpZPQv%u-0H^>; zKFUI=g|L4RwBz=v2&DyPFnqvSIxNvwY zJs80zfI4XG&QQ>7s1jSZWKue)mZh^ zb9kTZ+OJ1@p83|&6Tq;zP+$~i&oqjw51VIMK=ey^|d>3@@1fNxnpif=9Zz2tlEt$1Y4d?O>hG<4@n$01ZK z>_V1WDa(sC>W_ewxvb|GaMnj#U+@W{x{}obqX_t^`jPLoVyA1E2oJ+~-!~+$8b>2> zOv^CmPuJ=s<7a!uw)RrOEA9MkeMIyjFirU%YU*k_>Zcc6taRfTs*zJhMuxHANDL(G zj1#g!Bn%oG#(o%)`zqFSgW&wvv@3yvbi*)W@ng%gxn)~+)HkG_1pEHKfAC(Q(liZ% zaLBO@EpifJF(ftz;Gpk|DAhUlF_F>@OmgZvt1~8&syU59z{QW5VlV5u=^}C5uxA=( z3Y8gMRZ}m&1H>8jCwOnnbOh8$Z2^$%>4t$i!_IO4SxjvD-XB?~B}1huMrPzYG9=jV zV#rv|DP~tia@DL^!d=~``>!6BMtyW1{JK6U7TI{uZR=bg!R(_;z45v}P>Cvs2wA6G zKIJtyH<|wJ64A@MD@*a$C)Oe#Z|hJ3YW21uFg$!lp_-#lF>=)^ha8=>?}{A80XkdvE_Er93F_+arT)JMe?c}(p(p|Qj`7e9*CPrl zqKD4k0I?#N1z`^pV@ z&<=jKJ29-m*sh}pA5F{#(0_E-1OD_f?ju%w&r3TF{sUhdU2J}3vDWy1?`h+$w%YaI zhsP%d&zjna{L;DaHo-}j#HmhBdyDfO9KJoEk83+3>)?}~$j{J{e@*t!<^KH~{yzLd z*8cmV&VK8{=Kkyg?>^dm*FOB5&)95@5PZ13D12nE41C0_5PTGaNL2W&d{ktuL{vU6 z4^#D@$jhvz#Fx>gh8KyZ$QO#HiWi?Iz>8lKH}}ub*nR7H`F*^(nSJX;dQ_AZH6OKg zxdNXi9`c`PN^Wk=uy}Gmxe89E9GVSN zbsfgWJS2}S^5u}7>>%Mi^%LM^)!eVo4}YYV^B0hx&kA!7TYi^O9&o^EYIo2CF_fLK z>+OY!wU(oo_>;JsR*2k7ED-;Jx~36+9uF10kmC-y6ZTUh5c5F*_G$i$3|rWKkI);v zn*j*Q)^GhlOxXC9r$Cx6lq+2q!JlLx;7i|+$?1q;Y4Cj{)}SKFfq6J0TAD17#I`N7 z){IAZ?61$gkYk~STT7q;cqK_|=;UmiNFv&vSj)$wO!m1K4@-V3hhIpk0QM!xYOv&N zrGLh>ZL?NWMY!yT&OMZ%GKXKtvj7UlNbS(4ZLEGqwav3umPgp^kIY?`U^<24$v6Yn z$H?qZr)|$k;@ZktYb~RF_Vw~#<($!fJmb<`$|`4 z5SGzj%V-Tgh{-wbENGeiw2FF9SY{GY(%5`%%E5_#Gb6=K$HoPKTaaEetgl8(pgF=@ zsNBN=A~NMOGhr==?U-yW^(1H)SrjNc$~wvB&T(sI4h( z?D_>!ZC6c|uee)7wuM{M8mGi|L|2x6!VHey7WVhxZ{a+m?|_|og-xdQ9obP3M~YKH z7PO$D?4qD)S_BmLNF=sKCfQ9(?#-!w7)OpX$ws)sp-%~k%tvgJZ-`B6cH^wJPM5AW z375dNh=~21IVm#^@+fcF(sbQ)vxa?ev|Z!7&Qpqg@&%${x_p5Q4n~PhQ|=YoelHsb z`qY?fRE>~p_J}%(O+1%c%Mjmvv$;>RUr6CRBFKPtPSR^yKAYpc@HXd%vWz(6{h7rB zGf?^PPC*4g2q!}gPPakBZbO^nLu7f-#lHGH-Z9@M3P<8L+tQujru#!aPB6tjV4;+} z(YfAb-)-&z)klOSd_#dn`j&-`re8=)MaOwvHgK@19m3oKzR83rznauTUR%Z?t3`%m07q&r%~{^7_k=_zSfU|l~@+vN|$*J1$nK#xe65&AnZK}-Y;BaX@s z?mZ6_Vf)6?5sL zOO}*Ma_3|fawHMw3!JD+rH*7)vIkOslSk6Zxa58+$p91!mRS=-Z7r1}))x;^U5ltl z&t+Al|E83Pu)Dbf&^*_`E%+ls=RYX>2!-IKSR*lo9G@(-qzmqvc&QsH=5SHvirJJh zKT&O|=ZTs+MQaz7uwzow4b}}KEn_w0th>zC_gy2F3hdJ{J<#l(Yvp!QG=1NChH&SQ zNteU@DC_qgNIr(>Mg9BrFDG0&hR)}4P^~4+jgUHtvT5p3TnLxz@fIIZFXT83@H*kQ z=<9`C!iGW@vR8)*W!+_Lu(zUoFZmzhhdLHXN>E}mMmP-tyUCW3&LtVn+r;$m#<<8* zYddo$loNzPQTcSs{ZnT^;0z0OJ6~V=1?y9Kp!2~Rwsg^+v`fN2*#YWPYT*6B9M*h6pVUXN zRE9HZCjOQR~mv)c0Lv*0jr9Jrm3=TGTzFBir zPjE%%CF`0A$(u|^^f?0rnoLI)IRhI>rY)F|i8xleEt!yo@Ptf9oFN@1jZ8m~0f=3(@1f-Ahqma_T*qaiQ9Rv2JC+gQv~Mw4zMg6-(LfB%w_ zJvlCTx*=*+nIElXQrt-5ReF`qJA&_s$58)@3@JG`Sfn|dQ`rwKb}4pW)VDmVLU$qQJ*yKi*!{5mp}&JU-u$*L&|o znW2T^;;9Eqre7JaH(Qx+VvD$N=Si2mSuOI$UmKR#k0|+k5~KL94fYJQ8%LVG^=Eco ztMK?4dlAut8)e2;fJ?|WELm@7{PtXDe$_LdWY}r9;_?=M5&XShS?eLVB*Sr#;_?A; z5y`zF<;5M$LfR{3G6JDU2MbYH;wYMA+;Ng(gD2eCUmsj)`B{ihz^t$_SuXq=Np9GP zRL>6=sU8?pq_jZ0fwcUoL+Lq{7wY6!9e8ed{V?WAyfWfMd*O_Y>b#X(TS}I$pb6X# zc+;F`#or3g`BNvL)bB4pCaMVY8{*>fr>>hhQ_7U8@2sf z^Mmbv)~db$`3!l?gGx_B=Gn@}p|kku>=0K$HgH1Ujp8$tlS2Nlol7g0HS*Z70Rn>0qF57!vZ+7Wc1J zITw>Uyz?>xjwPn}wR~gZ4e?QwlT8g5FtjUo7v;LJ3zMK|ciijtS2n#t{$~b#=;d?=>1ylwg27JBq^2d-l3G=Z!ZKSweSvk5 zuJTI#_VbrMN8LP7h6C~)c}q6S`ucBme~*wmL}$=7f}8dh#${{=#j2W%eckM$@8$ES z{{lFEQ|DQ}fx_Hie78~@#K!$_!>CA2W6s#P8x|k9vhg&Qk+q*BT@wi86}c9SvJ4%< z87iGLQ)dZgn5u@1@{W`4x3-Y#}HH!)jr z=Uf$iZQ%}8ZJ`cj?ZpwhN&;fK<;I`7CFUX>!m|M`?feL5{Js#%8opUrS78rilHCuc z{7tz_v&1pW`ak97cZlVd1YRd|O1=aE`CmeS@-GoUneI=zx$B2Ib4v!V4d*7JqLB4m z&?jC3gz@_zC&-`f4VaVINsfm}Y$|lr9;5=^sQ@ZBaiNVPt z;X@O=CDGfun9Gl#Dz%qRr(cb$Ut3j z21GX@-Jmajr{7ET3S{q4w({^Bw%4`WKWb$@-GA3%jZC`5m*;s#OxC2CNp0V-dmmCB zdU>54>TR|xWP2`H@^jqK>brC$nP&4&XLZLa=^_id*$9CMp18T&ICpp-f3AJDRR5=j zpyf*KJ9GD4OJFxlrCsV0$zz&*EN{KI-o)lR1%hU2mcDcx&Sg83IeA>;X^|rg^#ThF zDo{kF78J1nt~*~g!WTngDd?2KQM%v3Js})NF9`31>@Pn&Ke0$hfv8g;`EEm zJ>YoZ0|sO;BBu_Dui|SPyI)55GNDrJBj`kII8a;LAg9a&06YJ1E78=#77C z{()zH0Hzag@jd6DhzF}cvPq)!LIlm1B>6abJ83R@f|0VYv=q(RFJF`J=!83F-QzLb zHM+2)j?DyfTnRJ_E4kXLp3t+Ew`^cu@45b4ui2v4y4Hq;JwaIlZsCDzf&9EBx6H}; zFWvLv+XavFSH1M-;y)PsPw=jL{+IesQa>kwl-zCeFBXAH{pDKp0mb$B;J`U^ zAyG!2bRt?rb*PI#x&G8T6T_uJmEaR(fiKhBBm09BdHUP*96o=$VFK44H@{|g`n_al zElv~$wf9UImaQsg?P)6K869T#De!xUg&x&u_~ATO)nM^CxOJ^1JH{WO1Co`vuUf8{ zQ(?n(Qx!Eq1P&nbdB$ozQ4M~v$i!KM7R z!rnKWX4fg=tZ>OG*#3>MxVPsd&!@`KNKE zcCzOxD_*$@OSZxawNL5Z=8E3a8+Ep*<)u*d<}2$ZM|IZ*wd`_dmwuV0zxHbPUXWd= z>diOWOD5`UTiQ#J3~DSr>e(1m@Tm|qRp;WBfQRPuc7{)^U;ubLfzXf8_p2wlDdGRB z^#65Wx;HW!uP$8VE^E*2v6g8y)$P^hwAK8r^JuD^`{u}T;Sd&4`~uj&L2Y@$%o?*5 z?k(u23)Zrj{)Un(LY^OlgO4x`onHMcK`~oAamj;u5N@nnMpEr z0bH36b?wC9;|F!-!~}m*^sXP`?cG;&Sv_sd38P7`#kawiXEkFC*#@1Eq zOTH(gG^ZyQ??kqtb2Ha^Zq2KzH;`pPn(@&jA~gTDH@~4tCx$ZHr_?U8AxDQ(0Squr zC6G|VA?T5=snH47rxm#k)soCJL$3_}lH6-Z3p{XvKjTbC$iIbUKSanG$x4>p!=qbp zr``u;TKawCV|+Sg zakootn9m1lU9m*-;6aSR?@T_WRgN9-y}Rfn(%|9eRU=hT1)b@%%aK?6Ep5or9(2jK zKlt&_ng_SxIWdK9;e~zgW_GG$w}I@hiWdUmgZ@=^e`f-?n24VGH%_A?m>6mstu%>5 zm}pXmXuE(7zD8yEc@Rv2KehZzPJV2(IRCGXeA_|WF!S2GDzovPMvJHh?02fWAkV7! zBgBTwJ&H+lNIHLq0ly{^x4EYcVj7!a5$Z}yXF9pMA*5yzs}1wJ<-dTCTwO>S!`~vI zqWH(ZwK`2(uVO!|T%>CeCdy*vKro4HHx zJMv__BGW@rB!!g|@2GR{5PR=<{Nn?S&`TkTIi*lxGM8iml-P*bxF$e=l?EKT3I19vj)5YgpH^3+Dqn> zmpSFFi3yqk+ghR&)rGlkjKZBb<=N2-ej^tkXfEMW++(8ICMB^fy5q@T6UT+un%QSekd3D}KUej)U4rs^pYwzU{ZTaWQAPbxkZPhq<5WiS zx|AY(E{=j&S|P3|XIx(B_;<(MUa(V^VYKHbr= z?a>~=(UI=a0pHPyFUBr7#-RwtKFJbE%z2VJqGV}kkp>BK857P@u&kA|8Dd@)l(M|c zX+g2e5_5+o*H&{Np_Y_FbwL_CqaYqmnH<7`8I(1=h)Y=WTa@ct7~)%6%v+q?Tkdqn zBqpC>oSu^+3cfNaEWrv3HZ}};-)`q2f%SjG*nG?1dzO8<=1TqBckx?${-EHR#`*4n zi_+O=*1#V78Oj{J7i~aV*w!yccpFc_dxSIV*)LPV9Fs9+#O|Cv$*XrC`s}kylKV1+ zb^N9N-D1=beN?3wlx@b`xHe^nK*ln8YXCl-BaM-tUk*Sp#ksPCKm5wV+y`d*rXf&bmZ3T9X9bD?5cnz|4agV*sq2 zvAA1(X0?rRWA~LYg|+4q;J6;t`u8aRlk>ogTl9iJ0c}je-0!`M) z5vA8!a7Pw^#6=nIQh``gWGd6or;#&GoU{XBooI-8zMPRtkIxnVJ9>WLN{@`tqv*pOB*YPC%ORa7pn1}zUaVY*0P`2$<==XYHZqP)j0HT zYHB+<^xgmW!vi$OR{hur-rHuF;d89#r42D`!`q3us}q)uPBC&qaF%XL#I4p-xbK#) zO(XZz<4e3%Ikh$85x$}yI3T{P)^E1sI{d-v!`S2PrhAZph89Tc)Hbx!_k-JQ9* z9Gw2vSv#)}M+8Q3kYZd#QcXzl#)&MX5MlbslS!7Zf0j9mdybthtaKUvO#c)&08pJv zD>$2f9d9R0B;20?-OvlhLEZ-&YzgAtwdp?|f&tJm7BYo}{p|0~bPx`fCM2|n4eCI9Y^m_xu|x=j4|BS(=hF1eZa^h=sln{dI6y_oQ32e0yw< zCd(C#6DmrG>gH}^GPQ6l`qpyTr4a5@)=+e}GJ`t_5DgSbQ_e4L$9SaKTfv)CDw|f9 zxSG?GRiSE^cZ1H4o3p2!9`qxOi3{E=(7U0K4wnq})(&(BijAFz#U z6}%fSg;psJZ?ne6(-wGpd`SC65+7K0qWQXT&^JTZzf4Nz`jlqPF$zl!74+1ZXvMAO z9JO7xXN7Ldsqf2G^M7U&#%WA+IC*xl=1SZ@u#y&;n0y!zQ;`Nc?M(r4zzFvMcQb7; zghVg&MFZ#`d8{uvtO}V=j2eZ9go{lXTy&ELpioq!g4}y1f}>#9yBtb?&Imr(rGL<_ zztqQCVo8H6bB(U9bfnWT@;WzI@0twDIH%K~cMm2>u~8>Yl+pM}vU*AKIy%t0ISg=^ zWa1L$G$6t!naj)PEbsWQA0B3mKef=^Ra4}4v3p|o&Hxzdj(jzW8MO;Ud9U{aKcC? z=27rWf_C;COYMsbc->U~=Rb&BcOK7BK0I4Q=eS9XM8CN1F{B|gwRLRNv55tG!39!f zn@-UFLi!?g9WG;>B#>4*EaOna-q<_MO=ibKq=R=Gteqs5Y;7ZZyS4GU=)` zo9mpib1ZB6uve)6w)ughZ5yi>RlHuf&@p8t5|Y<4v|!|p$SD|xI`n~9^HN2zUL8{L zb*uCMEcB2dW%j12bb(%^3xC|a|%U7-$42_BSSQd3HmYi z+@-Ml6y`X790z%~4{HV-ABFMG>HN?0epLDRf;5#FW-2p)SMW~WFMRuS^ zz%bYCtVag|Fggv*e=~pvH5k$$EUZY5eT9pW3L7!7P~fmre^3cO3<=TOWI(o?dz9nU znGd$iXx?7ZuAvA|ak}n$J9r75WyA<1aYzL(O+F!QRMn$EK2}JLV(7UUF{MJGB9A;8 z$luGn)@~72{Vj~H0h3k;Vb!5ys9ru5IhpaEj%P>dtggm2Y1cQmiT|^A@R6+48@AzN zPeK`->>O2CI3h_Tj?v$x~CjbW9b0>gmJC~T>0BDdFy7F>|d~ylcmj7!SZd?u*AIgmjG2}64R|>2&fU8 zJD8TR_V3I5APMqXt6X3->~aDWz=o*p!Qjn`M*Gf-{Prjn-LLF@6#U-ImhrmV!& zGXkm3DlM1cw&12mu7~8ZrjZ;%>|6U&X7*P(a{nZXL>H~3;q}DGhM8v(A=jY5AAhNr zTz?5;GPiq2e{>l{XkVQ(OG2bDH%x4poHZ2S1=_Xl+_*t!7-zbuLJCR7IQbF`ks&#H zBKl`#3c|O;s-#cKNb$}Tb`osOx2>rkeB+ADCi&O*bO%LkB3t|}74k9sOIj=UwFKGP5*&hyp$Yr2Zgu&Z<(QE81Mhymo=>JCj=<~E> zku6H%$tDB7z<(XY*8%8Nd=;xMnA}@Nr(JUtH*Fq+=Sor5tvK*>?n`(w?i;_33!(8F zbYeG8L20)dfAC}4SUxnoe(@QE*H8F+k7|zLkUq&l1flVN>GkjG0S(;U8Rr(0s&&7% z?|QmF^CLu^uGUSAz$RUYDBj>5+ShdzM@>uQ6()+?x5CsauGot6Z~m&-qWcM!yh2nq z2bkYxo~JaA+Qi-P0XJ0&k_GQit$Y4ZB2vJr-iIl8JN8KacUvFWO=wQ+K9s{1nX&>kb*yS20UH(aUo2ls%fxH|Zu-dFcx1$>?rRt{BpA;b2Sx>&`D8 zMT$Bw3Q@v;zHo|gKJxx$X<$&sAuat4wmi1qrG=_q0XOGz@OtEG1>x2g7hvzO(q3LxR*?Q91y(y_wzOD0V~R2xxR*8!*QjIni=z=Gz0vHKVn!yS-c6zb z`T+?UwV_l%)!Z%$JRz;TS6k{iIl3o9PW&Mp@~Ybgk&jP^!V9%ckpI-pN!<&&V790Y|SC7D!~L_0;ix$&xr}BeSgyMj0R# zP@7_^M=he)(i2?mn*Vr_b>(IZNp~<{Iw>b`$MyzQiT`-ftX$O7sFACw|MJq!2lvc= z1r9Fk#IH?9DFK6(h*Ax5P~41T{wMk79B8HY)0rq|m}tD~V?U~m-1+@^cJxfd!^M4M z1j`oqsBcL{%i+mEWhzS}2KN)(1JNUzJ24@g1LYDyE z6-iDMX{eUl-phs8aSxjPdNb#vuUtjna&}O^CL-j6#3aJTD9^nFMSpvq@FCZ;ngR1_ z9jCI|TQJb@E(f!hXl>(LQfT zg+H@!gdju*Gs_#AZ$3Faawnj-^;MN{y1C#Ad+HWx+l!lL(4&lZU`1y4!wL;g=(qFp zDT^e5|Ce?ff}gkzl9&92@g;ose@RUt6!xHW-?(n6h;unTz7l0L<%4zxeX~kdUX^tD z?Z;aKiLm~C!M#ZN^5ySzRqf>Uz$Ep)-(DQ9IrLHP{iOqRM3G@L-;Q1g(=AW=xDlwa zbEs~tq-IVHPn%ej-RMr{Dy_{c4@3XT`AQN7+W7+Mx7xzAyYr7L{3nllcNP>)Clh*A z>Mhn9mtSAD8i=kjd*I|hGA-Dsg~%NVu#+@eRyOQHA9tsEcMDWv2laBgA5coXBAancBFZIzQ6K(9~T(Npzi34t!)!kTVjF9_cvJaNMYyCzxX|F470by9cNL~ zBenVKTU6~|=^lcyLC??+hK2i=lFpOpN{^+ ze?fl^uE_IGzJ^jzlE7xG;D1PO*|(hGFMY5YT=dk|Evs+vS>M}7gLspDQk~Q2EuQYr zbyq8Xy#=X`-lUV1dr&&9Ty_B6B9-Mj~_nV-Wg|1;v3z7m)D-UE{z6?1%ex9HpOXPKJ( zWW2fcS=(eD-=h8&v;VRh&(=8TPLzbp**CZ1^-vZ{8_t%Bb}g@Mnv5T5j~?--&rte} zce?{e``;n$!E%3Wf)S$mAbTi(+dkShVfXSr72*GEiT=gi=c-)^$X<+(wq1Qtf%019 zhq$ySg;+1d!5i_iLf-2glTKTC)%Q`iO%q^_p5ckDs<&lr6DWnRmUk2h4%K<%g5BB0 zShUqDZbB=cc2x$iNL@Nj(lbFxNM@6jhvRU~ar&TGWDefBC1IIk!u|=A+=#MHqn``= zBT*6c$ifs$r0#*34adLczGs53{WSSKh1;9FE5EP&N&5G0L6}-Z_ z-Jy1Atafy?Xnu+UM2I0t9_)n31iq+b3Ms@u7u|NUy0_R*o@Xy@N!d(`fJQ#kN!eL?QT#c=sDa86Tz@I$>)3csPt#WAi+ zUl)KM*4)zW=-ZjI{BCiZJ#PCb??ZO6bAGYaZ4Qt>aryO?y0HCtpv}JR;^F1~SnbTC z#g4(&7KpSFsxDFICwD7C|5XFe@_t*2wB5$!R`K!C-(uNYVbwWa)qK>|T!{kqZIeuO zn-{mtZ$I09mfnOsMD9}Eeks+J6d%sa zhoD;Xr=42}&CC6Ilp<0b3?cXp#y77SJkVZ(cQJ3%cL#S#0*OF&C|?M_C;Sg@*9%Y4>5^3V`IGF3bjeTZ#17(j%k}>A;u=-zM7AKd}ZrqGcDMVb*a}Z4v z!7i0WZrrenhfCq(nh?f7e9Y+hPuuHtl&KL-n_R~wx@vaL&WZcMv-_d=DC-(Jjt5Oc z+dnDe>kkzUHw~+B$C%s8+D=}gxBron+%6ixdLD^3ml}BV;wAq-&)Nm+BYX?;qWSHW zi2wdmI+xk;AHPJH-|^OOx;Y(Qeb#Cl88e%r&m8iG_TfF$$bzd25BV=S*LctP z>q%MLZI*E^&pqogBF-nd9?7EmkO{%u<9t0LZ)HE)=dOeQpu+t7DM^kYl8I#BhyBHP zGeA(S(&F_@=Bq(O(8kNfXFj$W?=Lj}FdlWkf=<}um0dl!^zt}+{W&+(*AMQ!XcO}N z<~_*?$Fm)+rpPAJ22klB>C|Jkm*Dd9Hk;=5rjGIszp~~E8dY|_GyYmSFUM65Jrhd& zaRv)6PIut@M+(1oiD-v+1AX1zn5jk%ZeDkR-7xZen-C$Jc`yMp5W+6wJ0UQ@~S8Jxk^NcwZQg?eCc&JVq^nReH`y=5BM6@LAQjqj# zcxl^}=!1svN9Uz~!P{L7>_y-QubDd~zD4)aNb^JSQBIq+Hzj%5+MKlT$|jmG_Saz# zB0_tcM)VW@UoY|KF_EM1M!x?>^s8SgAtpiUar}0o6H=jE&tRevg9Tqe3sLohwd)N ziCB3HJ!9>A(YhDUO#6TMdZ#GOf~{My(zYsXtI{^Uv~AnAZD*xz+qP}nwr`!k&+T!0 zjPBkK@wOjU?3invs;FsdOBPn{9KtA2zMH7mU}@OT-`2GA)lDPoZezvx3`OD3xaCes!@QYx4^fJ zme3Ltt8HpJtgRJ}T1PKE$(@-h6AcW!9&-1%=p|BrL$QZ{DMo9gQ@v?HjCTz5%Fxh%9?%j0 zB!bbbhZ0A?6V}-q*K;wD4E{9+{YRUL0VQR`;Y-_N)mB+*uI(AUbhdl=Q7oT}CB>m3 z24MBht<9VUSvFF4OjZg*dWv8vQeRHB zHGaiHe>1*D?Y;!W!uWuC@!taa4gzw(W&Nm`Es(iM3w1$rP`&;w&Xb!_(c6wTZ1ewF zcRxi|;Cy6{8Q7me-PyCYI?J~IE+pQ$%pytow}4{jIfVN6-@*XpVYsiKOOtGp1GLN< z*DR>=iES5t%tT-y@7a5~DM=BwxtK55D;NkMnH~zYgLX zb-F#?Ly0YnJI`TQ*xXg1E5Eb>BbhIsD#}aymPat82oCqQF@X3S_Q-VOnZ(EyRY8i2 zd0;oC{~fp-z)7!f6BhFgETacGz+BNO&>TdCqfuB>sll- zD_&(%oIu}1I^awF8R0`Y{l%=e%lsAcgWXbJ6d|yx5v0IN`~tH~XN5_2;Yvi{uGd*cnhWTiuS!H&fjnS|gPncl_U~yN`$)lcS4=%S-C(dr^Y7=5T_p z5Dl9m=JX0fsd7(%`Eq|)KtfJmA$thT$LB6jMw^eU)XZ(MDO|$$K5NgGbrW`XkdPzg zQ195gb=Xb%_VBd9@at5CwdO$D!lm32lsKsyki_ngta5K{lzY0;N->fh4Pmy=|fRhMZ*$8$nMWsh(>45@yL#4D+zs~>w@Jae&u%4{n!6SS3vAU zPB@?a!!<8O8A((aaJRqV>f_oBJMR4bnXnofW92 zbqsD+C!N_PZvpnkg7J3J+9Pg`hZ_YU->!~CuZ~!1T&_yov+B7yx_etIuNv~gsN0zE zAg=t!3~fwnJ^ZV=S^d)@@-d7K7a0+%glhp-CHhN}i)UPDXjR^(eC8##WGl6%V$nJe zuZiiJB<%Eys-@@ocWB#L^U}6bUG}N`a*eagDjyVI;Ao1}f1iprKoyKH;iPdB?L9|E4E z&0I}y+_5F3uWGfF3(b*dZ^BC!z%#coIQmKKaJ5$`8H_%!&?DMV@e5728XO_EKP?N2QoA2!wnw*JyZ-?_$#(Grvuk+r1~{+G z#8Ota!!0J_my_Rey)R5jX-MNSGnhmcj}b$Vcg$A1|M#5_fC zePdQ)=02XCxS)AXfbX__O32yAJMl@^6VkK>*usxdyShPQvM$wMI-3=suH#?GCt&uR ztg=z>iBV`}8Y)iXHn>kqXIpa|JiycI@u(YQ8k&Vy7=yaK;KQd$@gnnE=j_sv3iyk14Lv_e@Mb?Xoh_idjn9x0w^1}E8;Dw4YSyZ4BLMsUSlh7*Ugot73a;Z z(N0A+<@k_mWnPjpxtGj}ksk@odyb$eb;at}kkM+ACY%P?@*rOL=*y2S8+qvvI%m8gV=ecZYpX<(Wn0u=u2RP?n zszo`~4sAiO#LY`va;;J((WQBIX%E+$#U38^NA)VoHsxBw_nQ%xEpXCpdX@MQRum`T zggOe35hT`I299jc;!Ef4DC8RMl<@Ss!WByqHqC<{TLX@?kSo2uST4ku0g1$C;9&)l z_K`&z#6d0xw(KFizdF5RTFZ*gDUtb=PQX06Z`D260`>e~Tn*J*a!qj61})D{(8Z+0a0Y}UbC@O*-5l7V%0>h;(Rfgbq1Ap=7hM3 z0T9fqRBKXW$RM64qic?IK=+rN#lrmBBbLRJ{?aKTl@hbkibAR^Ir&mnj(2rZqI>ncDxthwpZ7-Ibp-c5a_YKj`vxwE@|45O44`Q^Ei)6B<9>C>>L zM~I#rQ{&$(7+@cAop$_zux`9wvqb*Wk(3Q&LEVdBMZc`QWk!?Q{0fJ3bl~rjylPfv z;J13nTV***mbi|-^&RIu%YuqDw#~L^s3dvh8)pszeGo$e4hH4q>}i_cWnMIa-TX2f zC7K4~B8z=F=ULvgHm+#U*XaF}_%Ot(jjdX0PCf0l-~P77niaQEj6VI1m=&3TA4iTB z(RvS(tVw0tu9&7;=CI|eLL8t1T+3-kOQv(gPPB-+SSeXOoJ$~3xG$!9SrN*LhNYj% zPsFU0T{8qOi@LC4VP)m?P`#2}>*T7%}iESM>!#0dC=ewal~{wK}GpGEg4T#l1` zsZkPiV?Bzeq*th|{muPUn$ zo4BPcI89e316gb+0h#GNnDq^#4OkW4M+I*O`ljshHj|)JX`2Q13vZ*!3Ecp#eMcJ` zeG@#Z*bagA64@BTiD&}w-!Cv+zc1YluZS*2d7SZb{%+x`L#zLD+QO{z=2WZ~MF&2k zjMk2KdV^t*$V_4!p5f#3vzw{0|ZiAOIh!IP{I%`F)f5|mmUieTWM z$~B>3Bx%bRVR;evN;WrodsP-m1ivE3h=(wsMK-m>ha^}iorzu2n?N>T8VX!6t*Ij* z9FYihQ`yVjMP0KI6{>`HfI`>FFJa>mhV|al_DijzFA&Q+0Ui^~ARQaL|IjQr313=s zn_e{Y`f`W+a}0hmAhk;OY6I17NWpb>OVI{3z-J7w zo!P^mMW4s@p%)n_5oTi+Mu~%*{YFV+s+OzF+CXA!Gr&qtNEoL@FCf0IUE_8jEeia1 z>a6Z28_lUhlre3>tuht7#rGin96ubypdj|o+4RnC)+VexdRRWya}iF;SjdqmIYwce zhZP$!$UHd^LZ>LaP3jKb#*^l7{I5C=29~WT&?Dy0Dw)EviO+Ao_yRkURIbdIXitW= zU^9vZeCJYP!f~BUT||*(a?_Zhj8kLF&P(0wEdc;D9$2&h@QJ;v;!efdR+On9erXxb zgk&i*o2se~s{Z!Z%LsKW?2NK&UfQTYcV5+bs1ZVTqRd{gf}B~_LgNdfM%rTHfDv6F zB%C)9`7(v41cGV4FpQ}|iC77Dqd~;QSpm_O=BqbFu@Wq4%3=z2OjISgGY?9dIOMTi ztIx;q!GvkPPQe*e^gIs|O%)?fKFaIjITuT)UC@`MRnb$B-Y)Z|8A~;EO&S!q>xIeg zUQRymxPXLn;H)(MsA!15HF#xpUiX?nljp`7Te+#o-GDKBtY@;nOtd2>Ll1z8m;PHa z8PkI@K93=H2e6{x7Nn;L9-mEGW zc5xU~H&Tg0zNnZlXSr%nXar#}o@Ol2qhc<_fEsUxwXzdbtcqt{{9l3zzR&TrWimr2 z!^U6{k^cJ*(%Hf)>zHR&GqY%hopu8ksF?R}oHV<|mxju1_$sdE<&6xeY=yubskUzH zRJpgcHnv{Pl2LVp|D`O5Ko1*Ultc9 zjvU~tjvbO?kJP-VAA5WJY=f)IGbcbFdNbbnkBl3G&Yl^Zd?SgYXZqW@<)YQVPcJYU zy{eAx(F3YgMMYZa3LBQ&fuE8fD91!olY7ahju_hNOBBly!W}4GYov&2aM}H0?v_~B zSi|%0MNuPH#cEo=*2Ys0lDX0_&3CZ!E<)SH#PiH=P{o2nP>P5`f7Yp^+LgOvYx}*) zaISc|{MhCRPXl$a|2B=J2)3z5OQ$`DgfLOINmzWE9Et4P#4QWkWydc|SOzwls2m=h z0-;AT{{lMV<0o-X!~2nsE05JTDiFOc3+Yj7DlHEB1gq`SvZ2y+X)nW3^AFM=6fbId zidor|+nA&JC@ImqfB(4bLzg1$RnT`$LG!Vdj(h#J!fY^d#hC&5eLL|%L)Shwwa6-( zhE!xM$K-P?u4Z~j#>|YF!w!%UOzTz<9=Dt|CD+d%!jj(Ngw_Dz$71ymK<63OSe~jk zW8%d^Y<9&AN?4Z3Q_PJQc?dl5C`hCD#8F=wwbPpi z7cqdE>!Qc4P@zTk_5w zneg1e(V0-)YTnuX9>x3j;OwmM(fHd~I2ak(n|h_|3#+8Q)^vz(lyaBm_<6Qi4o_UL zZ89LV{m1@cN>=5&^l7{~9vP~QwxyFM0+&t}H^N@?V+ZF)jnC~=qs=3ojsmz2VSU-5wvYJ^1^Hs=xiqoUC_2YbVKg_!{af3yV45WanVpAN< z1ue3}3u(^(-|m8(8zmJz7RSDID~5)p*0(2AA!>$XIloN1E8A7}v;_sK zG*vwogk;TX zTWuNW)$_5glq$juw3{DUgo@|ECZY?Q{m1p1%!8Haa!bVtezv;0NDeY*^hpH^7x;_N ztXIc2E}m}~rQj{LgEFNmdZz(9D_)PfsS9%*lwp-(Mn(|ZD$XXT4W9coBxIRa zyYF0xrOMsGhudhA>@5CiSkB7Cbi~guV_L~)OK`UV!VVxatgMo-90FW4pDJi8P~Q0Fz$#kTWV-cd8NUSCG40R}YG${{B^POVENK&;xHupa^9?g(SV#N^I6^7Jc zA-rwx1qEyEj1XNj*ghv`Mtr|+_|4qocB3@ISQf=mdV6K^uM_~A_TP~3mj3xS=HzxKd(s57%MwqL9HGOYrmbDxHTt=DU>Bo2NPFA zgX#x~Mg`}ND}q?b7c|uGls{rWhk0g~_iq{H}8*cpw>9cx{}WbDVX@W*m|@x7V(pLS{%&N11R zYpy?EzJ|2qc}~FZI=JeJk44J8XQ(bMj(eu@(__Mnj`1Xs$K!@@6j|V2x?2iH8h+sC z($2bdCBJ@U{hFejtO3?5$t_6ks7f5Z2#O4_t_qxeuP6rUU1uevo0X48JRVcU8>E*~ zufNxeR;(RfWEP=;T@zBA9eu9)m2sA6A&l&w8M3If$=cL`t2Y|#um?MLg6n+m_FJAw zQJ%0)KTdS9l6zt|Akd^4jqcTyk1Z9gf~ysm%HHL8z&SNcZkTqHT;LA{j?ySo5!bKu5laV&h(mQ5rH)y-sgll18gejE|G3kIk(^* zXju`a!C9hEM2G{wOzjp;5#S}O9>pAU0XIPK>79LWc(Za_KJ6W?Mzt@fg1a*~qqFGq zQ?dnTHzp|{b;&3?+O-?=8IBCc^3!dEcC>?iR=`-!vYf7k)V>~W_U7wL?wz#O!LX~%{-=c*j>bxV&6b*wk!B4S(A`WZ zJ@&(Z>)CHF9{l4gmXRa3p<- zp#F9<1V&Du^>@Rkr)Kdp`Me`>@L*&B&K7B`u^Ja1AXtu>p;yH1U7zb{j0Orc^vu0< z^s7}esNG*VXb&b8H4~QVALQ^qYEwcWT5(o+C1ZK2EBqc5?90m|rjk)LmF4&)R|iHs z?$4X3JyTL79v*!As~`CK`b#|ycYlJ|OUfid@Eq_C&h>|JTYJgN=8IJ^#r&r#&jhsU zRa5K%4U`gVGnGZTq=erfIDna}y);s(#H%ILKXB!= zh;(xMVciyOr7#*o)S=e&n3ZiKNAA+RruBH zLdGlcw{~RN)1g=ZVh*Q;?5>Sp-X>u0aPR(mP-BpVl>9K!AX;i;X`K`i>M5cdF%*k! zurgDnZmNppqv|VPawdb54Go(;!DqslP8lI~VaECa+y!nG;xaNXY?C7~Tc@}U)7Lx6 z41{t`$P}5XC_}JGZJ;P|>$8$_#Kaxu^%noY`@!9oq2vk*{#aIgW7Ob)F|BH=DRaXi%X;ETF&_5x(D3Wm)wYiiNj>|+5`Ek0 zDfZ8k{3FUE>~vWkdB3z8C9Xd$-fyCHV@IygKce6s6Ybw}5G#sSw2@iFP`oc51uH3T zA00K%w{pKi}#X8P9509aI2$H?xV$K8~y_H#li1!7gxv7z)VB?8f#cmFmVNGRp^d7S3&F zuiX>hhm>l^kz)zs?c=-^kc_{7-<(k{fasBq(vr<9>7v!p;e>P1EcZ6=^3v){5*LhJuQv%=WOBKk=JAh>o@#iwj*Sn)yj4v((>=t4R;uBvF zqs=edZMi2CQD8}u3lnQN-umqt`#qa_qGsW>)ZpAk*R(DZ92pOKgVXp+1O*iMb*|5;$}i)*hLL5q>bLSUpmORdMtO%*mcj^5kl2inAjcQ~_va zNkJjfKCH|=!*{JQ>}V4A`VOB^a^BPkbM6bNTJl+}m+Q%qgZ~6a%r*N)HC;`kJ0~_r ze_a4w>OwRD00i6PYo;}`eBInHm^Rb4(3oMSkV37+dMNmu-zhCPJFi-|0bQQ-ko7ZL z?u86=;x~ikPcKV;1yOEf@}{00qNoT36RzKO)8n#tppV`|E4uj)1a?XYuCXzRpbDUL z$)QIye#US$rzjZ5C`HGc^W`Hg#t2*E&2z^+i-lC?7^&|ukhwM$Z565mAt5kC?BZW|Vv+>)h zHOtnjs#9}!8~)Lm7U-GH9(jSA!7p6WB;}g;dcxx=il`@Uicg4lc`6R>;Up+Dtv+H8a4QY^+iAjT@@?HWXHH47SxDH}%1Au?)S0X6dAA2~tGU3%UPz8yh+eIw z7f#qI+ViZkddjn_UCsyVqw2LiOC9wTh@JQD%ljD@o%i0O-$Mv0_a}O!fVJdFH~lr9 zp=wi;zys+aoU5m!F8GO!G?+=yEB6d0=;Y&PUY_>zTGv*#;^ZeM=QHDHq#C#c5Jij5 z#bm0wS%&oI7)2tR6T8{$`2DBsi1;M`U39mwN%u~DxQ6Sr%DKbxVTW-`SoIKvXw1DjR zz&oD7cDoxybW@Qtia?xx8TG4K(RROFt{U`mS_OD}iMx@+BSdE~t`yMA;1^bNO7QWI zrE@Sn{Lb2IuXWn2HYm&oHr4u#Jv;)*WNbZ-X#gl=>876RVT%ZQChVX_RF4LPIx_&Q zoP<%iOby=kN_+Q+sx4f7KGf$vEyh&gr|D&`g6_`!-CN;LM=|+~o#Sp(OgitL+Te=clyWVRz2!T!!4U@(SP*CXOJ?g5XE9#>&t3={ zjrj5DySF`y*_w@Ou(eUxg!Zn35Sgc(!946nr<58aJ?Brr+)pGHN+C%b)&ztrJ``d_92j}WrQ6~>{DlIu!?At7*3fm%5U2HekA5B|AvHe zD+l1B12bYO?IPi*rB-%|@LmW{Z?k1MrwYZ79vT?2VB#(pe3ZDK=9mbCiP4!&Tv^9<$_nwup_i>q(_lmmE;AzdYbIW(D>AwJkO6NhAK zo&5itssU>W$!o%_>Pp^W%NxDgrb47ba2ywI$>3&d5xg3Dp*H#3iArL?oo^mwKMnYc z2v*3pwg**&f|U9mB*H{a>&227PzQ1U%&c?pOI8cZH!7G*4f{wv>>a4@{2%%ZAF(Cp zhlOO?OzK~kUDxf-*WtFVR1h~D+zqc-a6FdHo31P3s`MirnlRN#a1LmlB7laYD#dOEQ4OU!W3w_#gh9HImec@j*~s6 z_F2JREDn`RVLR#WtZ0Arg@#mHDVfgWAu?#v87JcZo$n!ZYbogD)(oC2H+Bd~EcBpi z|H z+u`q9^O|z+P-TEA?V3ZpRd5KUO<89*me{FaK*;pGUfN)-t27fYc@~q)r=eQH1?4yu zah}S6sT*+4dKanu^>E0ivBU@X4pjb9Jlv^$|MTr(c2SF(s1f0QWJS4+5|IkW)UF=2 zs88);IYv8V1J_oxT1D_PtfA90KGBB{zQYr8gLLc~QCdW;ktd>_w*;maoSxr*BsC0^ zS2i@k6`MfrS~xgHDoY_AZWwU4l=4;Cspd-C9LAn| z`URv-z3-P_&MMs@1hM+!2SOc$xpkE5C2(iF2sD&R^uv7aw;vhTgYV3L2R6D>4B{k; z=U>$DCsjr)R=H80j?4xTX-efMI9;IW7;WnP(4cZC6WoG0bz$sb+2c9A6Q|(IeA7f1 z&{idS;HcmeeJe4Lx}+s$rH`MFvAhu4Ejz~3S~A??SA9!$?>KWnTPN7uU`2kK3{J18 zxW`o`BdJ)|rXjZY?V#I4NS2v!aqDKD_&I$EE$Q|!nN>qUPpiG9Wo02h{~3`URpR|2 z{?%HB|5ZP=kJhzNSFhWx`@C3N@^~-Y1Aj3y-VTWTS_Ge6C^|_Ue=!z!5Ky6TpAK{L zK9A_Opseu>2a~x-o(<7YgW3vLDXA(d^K4b2)v7$Yc+@5>Q6KP?I~%IlY_09x=h;?J zHgvtdj2_?HlBTtmvCQ`rG*JUlwxD0Z%S}CJRWlXq93P&Ykp4{OdOt2gxpRp2cZW(I zb4$($)uH>9?0r`sLe-Tj6SB={CzREB#QWP=7V0d>C;N@^Q8(&~t@Yt~Ssi&&U7_OI7 zkzQldH-sUzazZuy)K>1qoAIP9U!ZI+&h7nRyRy)5IYH(fCHIjiWw%`E1{34z8BcE< z6C1tjnMiLHQ{uW8)`I``K=#dg`!$wh;x&p8<}kPe>O=5$u)9OujWz9qK(w>I4*_Uf zmAmtnQ-yd7H`&a|{b}{MooiXNyPVYKQGIyb%)0fcdeTM{b%}dCO)CKW2Cb)Lj`Xk^zy)E zG^K98T&}x!B9}>V-tbb!ADUZ2zMx_BBeD+hb@XIgC_U@Rccq>#G!nT^yOJf#5_}!N z>n42&xdr~U_mm|ydw#5NpRk?<}Igt!x%aS zM9Vfki%-+dVg1lhU)2kX?f)4}0e5KZV8^O)faWzX=rt?|}z{Aqj18 z=G92A=;zh8Hcqbp@8_j^txE*>?f%_o4%^1t)x^f;n`yA8Ao$f4mF99sAZMQ%{po(x zhOK(imdURs)CNfx;h%WC*Ph?dD&OztSG`*HrHoyp+4kkMzvlF8@hutFr>s%UVb9gI8+|O{tYYf| z)amn0X-mdJXmF0ziqToYSs*^C9g~pX$j7ATH0lyZ<#eA0*_gl2ujHw&hSuTxHb8MH zUQsW4xmJP}Q23+ql-`jZCYfk}Z{m+vEZ=2E-2RYmet>f`VGelrC0Z5xg03KKCXT!# zACMxSz^lS5j4o)xpHB*`7iDl=W=y{f@BD3@v9nKMT9C80Slg?dteml2+iIUuIPuxb zA-1Lt{-ntV%w|L>WlAphAVr7S1X_l<$6S54&Yb$pUCkoYi4_7v>SqEr=w}38eEGZ> zw=vvOwW!{Kd@XAHVzCc7j@I`SeR`d}2T%*tQwVLJ4oT|YR!%wM@w4~TN?|U&+jhmp zxWVqWxPEiB$0Qqs0}h;jKuw*mb09{|L7|^y-jTBcyiJ|v5IR>xc$Y-^nj*4|Easq( z*&G7$=wTGDjn9!rKBHuriZ(%sS3{$6;S~)=K$D`Spg8^H=!%mtb1zAfV2G|cQsn6J zldAYRGUcXAl0bfAb4E^$m@I_h6EbUa2Y;KZUE&!ohd=7}b3W<6u=yp_ zpm#@xq?aQ^^h$$SQ%<#RR~5@FGlG?Kw*gxEQ6u+emgpc`xW>Lr)9Lo1C%Oc{ax#Q# zj%-0V@+6Y3sw-Ba_`z&feneiSWF|sM+JON%tNSqk)7~6!bBlz*rjPx?fH~SnA2nM9 zo*MXzH$4!hs4aBxkjM$2pZMna+*)$+lEJH&xN`Ag^9yx=sjW-;fI0&!Ju7+c6v87~ zr+-C?!JPaGAEN<$UA%V`0u2_1`^p%$g5fAte+_JBjeWMT>{2^eJW|3|I%&*R=#(>! zK{CEmI60_&9c4W}Eo0hfbv#etyT2p5MLbdk0*l;q(|5>z zfH!DtXkg(?>^HI*>tPV}FES{d&}80gmEQ}825CxUD@Lo8?bUtT{x(@lDS7b|`w67= zPJ#1ZtFvg-9;#aYAv3HQzp&!r=oybTHl%)OW4sn3k!YN|GFO30Zcleoj~wAh5sH?ZMw;it^{UqA#=uA(gZnsGx4(Ro z3g!E2+Of%S+y#;of&dd}MEH#GlS2E*Au~RS^w~fh;~Y8Md`tQdqa5P*%^^SF6rMo#^lBf0r9pr(>sj$HRL`k%-o*5FpWWPh;FEI=<;NS1OZGmma)gfsr^OYri+>$Q!>IU{iR}eW~_kFmp z7(Yvg<;sbtS>bbY;fF^FUu-s;w0M|EH`}fDzH#+HJ5=aXwFA66e!3eEUo=;^U{ zNUqq{)`Zz2`8Xh)S8WoL{Xo=4=+8PCUNwZfyPnZ9oNARqi( zF%$2%=qXxI%Vg0Rxw0_d%Cc(UbbxlbvdH>7!J1;4{G7?j=Bn}U9%rYm8aQpC9;Hck zCe2;BoSjFY`K5|a4Jvk{p(@M|Q(Yg+XXiC!yPD{EkGWg?D zUI|n!(@LVH}Rb5v8ib1?`Z%vRRMLw|`Re50c|yydHfDQ z27$x(aH=@MNTz_BevwKmZQum)$TQfa`al=J6^wp+EkdQiL3NOW8dC&`lnuh77=yAc zj1?`;&rO*_h+Q)Lr)g_pOIuy=Wqf=M0{_yE?EXd0eQ_{mz-A3?9GxD1?CdTs6C4&a z55;}3`PY{oRgZjFgC-~*H6_!WeEPoJ@c>S}o$GMu>w9|#MN6g0HT1OjAL&v`701rQ zFyc;KuQ`y!deh~Nz9+|t^tqhstq$$bBPR}WK)Qv-`2+F+GGrtl;7m0?lLgWb3N zy(Gg0R0?Qt=N5o=QA+Xfm15E?NEr8+U(#Q-U6gqlNEuVU4@$iLJF2upvHgK;!?7Ai zRZzb#J(m#to<&v_0=j$egZF2{v!msAc5!3n`{IbV6bMBnxA2#4=}}11BWVM(IiFP= zNs+JrF^f-FNg7SBqQO5%M@Qq3B^%W+<_zjyJk_^#D(Yq@ZYlt@k!N+y{34&)Y+{un zk*D>^c$%BhP9yNppLTap>ik!oV_CD=U4F-JV7TVDPP{-*B?}8}wK5-l#1wGl^i)vF zw!f-e5YMme=u4O9vu|K8DAokNf_}wvD4m0$6(#zr=-~(p^;rqU0nrhG)Kf4LbMBkJ zrZK>)uODNz!|z+@Uz$rxUH~qe^E_yN)q6|0qB@?xONqds0PPz+Su%_j){9J^yXHt+H4xuvOKwbMW0+- ze;iJGU@iJB(a{<*C;8d!+CI0jLm(8KYJ*wE{EgYN&n3(zbkh>55hvyoR0-ghw2NsO zu_7B&fxr*h{^nggJx9TIe0$_O3R2U~N}LC9l4o5~3^nlNv1q&uqR8f0Dam0kbyLXB z{|&hJjayJXa^8=4cc5OZHRCQj_J?ToDEr&Pq7nlwTNDIgTfqGqR7=m1XPfH;mNzo+ zg{;s`UYQg3(LDbFn>V>NQTI8_%|ikLONhB!%;XW;0Pr}!uWR%-RD`vwHA4R}OK@dVDqy%hKnXk24&B&Sw*v+ku8Fxut zSTyD}HpwWm^_JAnR>`Y3R{5x?FI4w8_>p>|D%9-2RG@=DTtim+j6BI|ePFI8kWWuq zO-mpWpH&0N0t?gC+Opw5gICC-Gv5?f!-)eLnu*(|I z;owx)RMhPO_f}YX?3wQdsf{MGbTf4!ZJVecFV~zef1y*aH=b~?71!ElxAzc4hJ*@& z2LOW#(qjNaKwt=-#MnK$*a7JCaCW{%p5Rv|UhKQP)V_D3R3a{acc-|yHreWCtfjFv z*p54rpRctW8RYss(q&AkcM|TpxMAGbSb$aV#t7DSndgbAa#Ej=%Ohn=h<79gEC%qD zz4DCf#FkjXMj+U1EbCTS@3S;{pkCIT<>0GT0k9)1V|g)ZkjRF+6}7N^ugyr8nWoHP zth=xUCa+Fqol+B%Ce+tnBTmc*Xjtu-FC?*71(Xw6w$Ck^%gzh$hfQ2drujJ8&sR=1 zr{JXLIg4`bwmBWY@B5BUW^5lV?n(zUHr|dixEyuHD3(3grhk5YhktnQyz%Yad;sQH zc>9)b!k$kWf|Xboj$d5EPXQcC9T+1qz7$ULtH6Nqkzxg^$J}ddFk}A|yUJ z-#GQzF{t)cTfGETVP$sMJZ|cJ^I(m6&s~tUFNUEF4yI*U2 zzkxqau(`g2IE>Oq`wnn}tbui&6ZGf+M`L(^lyhUv8x@pyt1FN%Xc{@wHqAc0XG+Nz z*zC3<4T>gAbk|mv0$efZ=r@(;VLSXX_?ashi6H3qd;O*nrScNWHtlv!S&RAAjis88cbFYzu%LPxS zqrA`s!yrIWN#*PL)@e!yA$4wy@(>VkMC{zbQ5!jTA;nN-QLxYH+b#LLN}<(-|wKi5}* z4lL1zxd{l|@27EsB0?1u84xyrc@t9TmeCezDO<7&xeTSDmn3NtIO(`?fEkv-KI8<6 zHUh1OCRH}>_2$3$ebeoFKo$;T$JBUlRJmkN)oh3H@$Kh_`Zkw;j>qJxe?QZb+V8V7>BBQq_L+EjCEX@ve#M4U zfgg664S5G)yekqgkiRNs!^gC&zgBkr8S_5TY?@$v4q7k5mT|E<8%?MRDxms0RB|y= zTR}bwUd%o#TUbzHGthp5qbbq`Z z71QMX*^jhkLt`A15t9G8OV#4l&7CKzi&l&HlsdxWgMHakc)WARcxPG!+!)|ToCSg0c)4Y$ zVU)HmJ^&%Zxzk}!aEV!+n!mk^zDmUcO$O!5Tz9Z;(s_@P&H{G?tC{~1ILtLDMs9pk zmH0=+84`F7H_b=|&*@LGeH1fi@(kqKM9A&xL}n7uyO2SyHGlnp2O}`}(rsuy3fYVL zNg`UO6MQgvx_zb|98c5!+(zZnL{dkR)!tu+%<(9yhW~;Y0 z8pxM#NJag<&(8K0^wqd5Dcu&#^oDOHtO_0OP*KNFDavKSdCgTPAz!--7ypC-bz*=LfDnMv!lO&x8LAN+99d#FKw>N!a^pVr2S z=A!H;)jwj?K_64EGI>f>(RLHT!;!cY2zI* z9qG8~8pTL42?u3>#xVW81oM{tfmFB7#^{pec>}dAw_$DZ%)(Bo?LJl$+}4n8PX1%L zlFkvOuNUn7ty8pa)$?5migg3QUJZdjhto`yg!(GaMa@;kb)Itf=kP>xEag;kfv(SD z%Krj>K!Lx#Dt@(0Q8qbVJ}vcfcrDsFSUIQx12RBhc$kZa(JB3Ee{-!Lij1 z@r~WHyA0Yu#25{!YB_1GY`DIWtEpA;3X`C3?Vil`oSglBpx|6P*gj@c!T=FRc7bAd zaFwr( zlSuGbO`S}pXqgSH@~7b*+3~oy&rAP2o<6TD6mr3_YOVpJe2W$vx4pCd;?9k$LWehF zoL6Y)e!lJ9?H6@!oDSa+i6Dz}AQta;I{V|X0cWZ$5^ZaXM%tc?Mj3{sV}|44X{=`w zOrCmg=!R(3QAtx3-NnH3yts9ehS~^MW&d#c`>TqkK*3~n_CvBa^@Qh#!V{FKn&3T{6mz+Bm8c+CplDucs?(g#q zWPCkoLv+2%voYOuPMo*Y^wc?wHqUdZZllh-C1LDfFj-51Uc*<>UKPVv^`ok@`kxz4 zJ$1wSQ%_x=?&(RVdwUxmI&$X&58Qd=q3(UxTywz%*IcuYLCi9SK~LkoOhY-E5J@dm z-DL;Q^yl@Rm-e75O*%i+$Pp@xC2}yIXE8%RjbXtYc14Xk|E}PJrqoQb zV^c%YnluKM6}pF1N+XK(f3=~>x2m^yW0Y8nFi1H@-?|%w0_(CE_QW`0$K3!((mG(S z>F)@2W#hRmncm%<@nJ(ynKlQ8LfE|AHL*E9g$CUIwVOsebA!dBJy)J|(e3>%Q;avn z&e`hlZQj%|8yEKmeFN{My{H@}1MO* zwar7K%7VVFKucpgh&3!xUBxOZB&>36S5Lh1d<|ECVZXg;N@@yEgW}}d=bwMoRr?qQ(fHN>gtr9kTctMN zf0n;n---3KB40v#m~eXWzpTf;4VU(|<=nl7uy;+z%$DvmhoBxmdb}P7W0iV5KVPoL zSjv_B`!V$I!1EEe?!-%``pUv z@&z1H6%OjAa&O=rdar399P?z?ab^!wztBcrNcI`m3PM9=gK@y6vy=h11#lrBTvD4* zMN&}t!U#*TRHVR({ZR;5z z&B<9!3_l;8^v_Me(CGhRqdBf=?9p1(4R{5 zJPFjmvsLulaD7`n_K5V)tb?K21M9HgZZrsj!APS{Iw3F5!(S@xx1Mt5*hOWeiRG&` zIwI5h0+vYFn&m^5snp0Cu<{0pO=q*w9o<6%?a3qr-)uGb?4gxIuFiC(+gnk%WZT+_ zUxCUKBOpPtHBIdCy*jH?@Es~aFBznA!x3wS4_l^uVv1fZixB0e%?6(k#_37|5wjdU z%shY}gB)U%F34Zm=4N&k+l(H*e|Gl%`FZjj&A@XfN2Bk-`BC}}+lG!Z&*5iCzABIJ zktS+&uGyN5Yn@J3sm2!R-(3; zd6O-L9(L;5d`Pd=n?wHgY0wBHqn#kx$@!^9exeb;fhXF7p96S+!UJXa{BGtY<^oJ0 z%-oA52-?G30GMHl85YwNV7i&_p{K|QUdok7@iP9&E3UAgeRlV4x!cUQ9|nvhV0=)< zfd9ODMmYOy;mU5~;oHr(<$yQvK<5C4lZz7Ga6U}607`Tbg~up7M&Q8F!~6irk)DhW z5)YZ@mp|z2EWv+*o<`ad+^Y7V>wePKR)XWdSHbbuD{#r``Xevqo`;->fDX>tdFBaD+$br($T#stdMZ}(@s@~fzfkGhw$MxOG zWTB8uc9*{7E>OLmy2cE+A@!9{n4eD z{&P$^dRAAJ@d@RZVBOH=ws@kv57o<)q6W8r~+_P3EErf z-HD-mf1b_M3bB|_o5=4 z$0majZ&@?cD9RNbCzY*%EAA9g9

    )ItZcwyph^l9+HD z#DFj=hNu!VQdLY*qDpBzYy(<>U#IUL#ZVopZ!iA!2z%1UpC?ae=cUZe_}}SM@Wjn# z{>A?KV=Z~o1ay-nItkDrUGcA3R9_;*RdkTkN}yyZbtZ!Z^mZ{Z_aXYXVi>q&&^>57 zev_`CpmjAB<4K*Cxvp}zZIqu>8>!tU-up@L(8IYM1gw$@SMu`p9WH&Pw_vM~=X0?zL(PHBh7oMXEx^(-Wnw&{G~jEqnA) z8R1j;Roa!}Mfkcn%EXzTh5hItR|-40C>EHRBSl7>N~JR6^5)j?b&!~8jp{OPcfj4* z*XfQp>0ezmFsUcwYqYBtww8?(;CnkJw}tmWcK8O z{w{U1TOS{@@d=gQp*H~3n+t~8H2`(x?C5r@&tht6a$0SExHh{X1s=$af1~^ML+(q+ zJF-;wi?oCQUL8-|yy^%Td6wSl*beDHRi+#s=&aK4ElaOepD z$HM@3Qn(Xw6b|h(p2uGTxSPV==s+1Cp963aAD$K~_~TXhPJ#~_8-V}C05>o$V%uHd zv=RG*RZYFRx~YG#PSPiB@t9JHp?FAGom{cW5)NAo<);2WC-PSdsWykdqs!+B%=84h zlZm{)s;vi`0w)E2RE(MmHU%sSel#?Ko!SYD;cB^D%r$Xl@y`MehLJUU)`p z4p^exS#kW>+=XIoe+MW_Pl1kDpfclthV`|0{kPU&|;Nf$0?YE~SAZ$p=*v7Gq#k zCQ+qM_)4sbS#@UqtktpD>a+6Y>&S(}!xxSW?;RfAI}x3T#HYgEtX5EY^r=EVX$fo0 z#$0`9`ZFUV=dTO~SDrsI@|o$7ckt5b=}QI%E}5RbbZ}j0CYPBCTD2~fdN|uXs#AKk zR)$-kb&yH@*Lu4Y;@Cq~gu+kN*MC)R<;vV(E)a?O{|hBgMyI4Zy7On;>-5+y3~0xr zPOxXk7&(;00F!`sw%D1qSUb>ZK?p^v-#23`WAGOz=eW1vb{D+fg3DDfk63~#MKCCM z^u89}h&rP)ne3`)bX7Jp6Lq);L!m*Bhn(FVZ=38bt7&3Ck;6MsYNobIhpWfv-sAP zJ6?Wy$CcCqpiRK{LB`2sfN$CAk|x@9g2e@AAI*i-5@N5hw(-^$k1nFtgfz}<&=^&i zn(Yc+%PWH>TlU<=3T@JB9168d1z~vV-GVEkX@;%Mc)46z%Qw0NA>FV@Rm>Pc)4ian zk_m#QOQ;~RePRJOE*Af4$E3U9F^8Khje4b!jN8@bCaW@rb}ba!Fg+R@a`VlO#->cV zt-ZO~rqPkQXN0$L0N+FB3fq^~hRouwnl>y5C+Luy9U2=Ou(bw*Yt4%VqvW!|p~+A- zzJtbx-O3vA0j7%?qrJrH0I^lu$BR&&jDkszk3>@!a^))uE~!fKMK^9bvab8AnY&clWLCM_ zTHUveA31aD-Dh@A+_ZW6oOYMP>TZM6W{) z#@0J{Wpd0Jremn2N%$u9MYNKU3L!xcNC7?60zCxCR3$uEty@0bGBwL5_{+2j?F#Z+ zm(X6Svs~J8={s$QGEc+5%%Qe--gyT}4lOZ0%?M~88f8sb#zEmnR|8}kUCsQSRRH8F z5#mNyqb`bbwFn_pofLA72=M~Wa!Pe=6;6Rdt`i{vfb>zS>qSTus7g3D9LEu5eO83H zDv*OB#EiZS{mH)opWjTqs-4rxiPcL^aQ)8pKB}xX!Q3^RkAf%)M z$5C|f)4lG`6voF33O=6Cw7TEXV+ z$~k%md?^M|%{zgUbFqIq5naqy>`*@u8s>d1(N;^at1X&#Su}2i3x>0!Lr$|bHs0W~ zS`Dpsn@#Yz%|@F+Witt>s4d)76LBTUhb{5uqveo73DZnH>rj77BbxMOow}RjqS43h z8OUUA?mKnGKek)vJ_>GUL`@4oXI{#a4%9-$vHf&>koPIWHX#tS^FniL%eRiyH(3;k z;T0wAA`W-3rHOw&yu;2$~zY~mCVA(a1}!l~4o zTeW7}8!n?3!q!re%<^|~zEq|Q z<~j9^Z$ffgfaY28ftv}^lRMe3j}-tr`76Q)^X9)0nJgMIl-^7GDPr0oA%b zDwR%GqgQM6dW~97bh6H0!`uM43cx+VYZqxY+gORhXjJNqu`?a@ZX;5w)jEgW-%HyY zrie!I?P7aVN86h^2G;oz3oAn0s19{eoU26$q3WcNYea|_aF$c5YpZYy6mp#i2>_&z zQe7`XqNq;9x#2jDDC@H##8rVD6d`%$Ip%fzBWepp9Dp39kV7KGhcI&hZ3M_oBE-tv z%-ldBH;WJl+K;^WeJthfFGaJ2`!RY?_E*H^=TO>h6>qAu+8C*YQt10sf|h|R{HYDw zkY3QIRJ^X&)t-vVI90UKFI&qQgaAG zYU*{Zxomp%h{5GDn4C_BKWR0?SXzB+_#b|+*T~iAl}d9h*BCG+J8HvqmX>%sCzUGd zo0}cpKml1@R;$Bqv%3D~;8o3t)#!Bwvg!#^m#1%*dJSX?7fGsN{6m$tq=Px$=?DSp z`xh3}mcI1cFFXCAU(gm7a&s>`1Nk8r{ee|hDV{U8XtgbH5GlnM&_2Fd!Sjk{p2QPn z{>5Ablr(lys$$7Yp;47pT=-^9eWSFYj&IKS8byBp;rf39G z)KJog^xt{GMUukp?>%jA@7gp;NAcYw`@eRmu!5l!`D>Ng#e&h4Gk*jL&1L?T+DY~gVYu1DeMsvWZ@td-7A+Bm|vGN9k-^d3{U1+~f z>1kH$mAtmDmbV+6NllZxsYxf-XzFV;g4ve_sm)M+e#W{OHAoes{fj+JF-F&sgfASe ziLY7}Q8za>3TS^WdVd(NSrffKR}}Sr*Wm>t`OvjlduO8X3;gRACL}R%7 z4&bV*a77Bi1&xwy$4r-B$!S9AsD@MfveUypHCFowkH^=nd7K=@7w(>&y<3#)1zrl^ zm2!z}WPFKF&Cbm|o>tD_=-#xW$0u-B54!q+Tf1Yi?jv{hrc%9>UV>6UuO%rLgR-X< ztY4H$^L$HVQ=Q&kE8E}MS<@`zWO7-&zo-f7v_bxh#iP+Ya8(nl zE#?Mv`yoH!J4OA#p%3mqimtZ)d(`%aC}3#-%g%16`H)z`&!j#O>6~m2mSqIWxdAr7~H2UoBcH6fY2Gbop$m$R}DiVXdB!lI;-um9jt!+0mymHl;na z5`T?6)=B(wHP9L*X)fB!k+|m8`5;mT5m#rS`exO$N3> z-t-T@pbZO1f1k#ofxr8TzYxN_;P)uywjl3mmMdwhq0Gi;d)->GF{$c>8f9aX5 zDl&laVk>r^wM`g~Mu&y8&Fb}9;Xn_yW}Ml+zN|9?o-M%<3_65hX>R#8DEk3uzrA!E z892h32d-p*ie?iTrXpGIN>z#I^LN?pUH+bMXD;01&nr|aMc&`TXG~q8-Qm8zaHOwq zTOc1P^hCM?WMyuko6iciET0ebDwR%tsJ(rN9CW4eLG&d4Jrkg7ycZ8J(amNSjV`Hw z9A0g4T1JEEl)J0H%e_3`9xi~1N_c`v3YhHQwOQgbwHaM)K@Vu`>xvX+>b7o{cuf(5 zIqtWIY_>pOvVU#eR$^@ua3VAJyp?Zy7x^kau?AE+Ffz4Oos6Y8c1xk9PO)twF`^H{ zXK%7iUVFzu%v#Jy7d383HyIn_oF&&fwb^G0@#cKIwcV0#G|J=stsIRM%ERgVcrRlr z&4Q=L2}_>I@!nl`-F5BVE63y}_)s*-$0qN&?(VzqJ{-=6P}hUjf*=&E4;Ehx<->;w zSNKBw9i%5h{gNat&UhjoPr;8xD^ILam0G3Z7c4>PTz#RUD~nLJOR;}bU`!uTM=jmU z8;ivvLf`*Z<5-6yt&3PE8!kD^$JMsf)+l6t$=R0$tRcO1^U8>-PHdPww5)UUTv`Y}3SBcvO4<8(QLe8@mln7gjZ*WsR#yzP8NYfxeD!C$*oiSW)s$ zt1|#(Qa@%BUK2FPc|*ukqn+;6N$W?KYrIV@bq1x`sp4dNFVo9}!bW+nZu!U$vRr!0 z_Ig>Tq}GwOb$0%NOv7VXNaI2DV<^M5kmsq=JU~{%E1ga@Mbk^#fMk?Nh95NDE>=u7 zSqtTYMvPZN(sQyVSv&M>W%ApbGliXN8k`N11_|VHgR@ENX^tq>?UooHZe1ROCq`3a z4*CO0Jb+NKriH@|7|#vuciwW!fiG%yY(^NLw5MKB1-0^`loMM0?kKxyGh2T;die4| z^rr6Os*;~7m;88wmi$kx0Q9U<9j^wb^jf$Y$z(^ZL{?Q5q})SCBr<&P+H!5c82Ke~ zliV*++Le_mp%hvoO=funv6xniQj~i1A=C;MEUCbF$ewCSKIUSHZuE%pqKAj za|teW%#{#$o}4dl2&EFk@NaTvIzIsaCMRd#}V+iq-5+%p(X~NrHk?=1_#f} zu5Fj*a<%7Ad!Lkz<}H@|sO(8}XH0UhWw1THYU(ezcV{+I{B^dC;pYDc+~?@nsEMYM zQOaV_OJG@$!p4-O-Gno-04(|Mf{p|vj-G$X`ZziFId^~FHEQY<286t+-;vEbXFMsl zi))l8>OSP^>r!%brrvPZ+;33G$stGahaZ28?8P7Yir+w?;x}?v?AUPy9FWc)n$BAp zLn;1Is_Kij;>?wmzif|x*ph&=KO2||4nw=8;|?C|8ym|=SxuWd7Sy?o-uCz&v~Aa> zHL2x(t!Ba&DHQyY;)GArnoZoMQT9YT`o0*6FkB^<%^*F%M9cXs=5^WRs$}InR}%9~ zRwcU1nNRZ`a)0DBb$=&9DA%XlGwOXBp(me2=;<#u_r)xhQ!Edn^X!tWgF82s_sA5r zvPP+=(ES(me62#3l{VhcX)_gnJwj(49z^fp-&bPeFK&dyo+ueLh6;e#&h^PNHnw~F zbrDV6Ha@*_#1w7Z`bc(s*Or=zYd2i;Q1jN!oWC__uwHlG1=nfhU+gXZDObCN5$*K% zp!T(uXP8nGl@u>0I)P~pP^(=%N-Uq+R#!9D<85{+pXq&EYYBTCF}=?;oEl!MXxea% z%CG)e@%M6NI_~K+Ijrj%rbcvLrB9-=Kt)tXTJ7Oheb5q^=rcuBkrs<0tn?dQF_$4} zC4u!t%k~@5dei*)RO8L(H>J+r5+~Ww;xn4Uny_gg_-t=iSMRRPvhnLTUh`%7ruD49 zHKc82=l&?M8~u*3bPIZT_ce{UuK5ZE5$^$d1=pUHm ze${)VZoIo6U2t7{Q%^THk$-;OV;>hX?S4tn*%Pt!M~0{6#g9KO?FjNG^bK)7xB~pv z339~L(95Am4pSc`?Mt1pLb(P0CcmJ31pfT1+Y#3%n?2ls>b<_$fY%@U`n?mrwF8s> z*&uvd*q?S4a3hROrd~ zrWrIp1G8WM6W>mH>oOEW_oI{3#hV-O19Pjui&%b&rQDC0CGN=x0;>UPSIOfF*B>Fe z^9Xk(I#$Nut^f=t_tO%b&5AQ7|APNODX*IUwMe;!VqA;9P{H`;B8+~DaW#6DV%PxV zV~TOj{Je;9vB=|Sg~wkO@yJt*YtWMv!viVcD8|(c5;4vYF@u~_2xVD0Eg^2OviXMMlq{lGDxE?)Nk%B13b=6WR#&iEgT5b^2 zLNNZiq?FGR3{i??sk8vbYl|?h`veSgB`r71|6auC5HTLD=<%OR>T&RRS~!wp;*%=O ztI&O=vWDNU=))~4rMoNdn9iDHwxjp3pUyU|8t44(Q%~iedTRSCxmVzi;vpY;5AC4e zwoqkl@Y&|ewWo&UDm{I`9coIk%eaL3`m9d`r{-w`;%upn~- z$c#~+qJi>TF!hVA`VDfv&08!y-`dKHS0eXqvz9lTd94|3FaLtnK95L6z6?@lWiCKU zx;o%R(E5Gs3&x8m)M94&%{#%ENU$4-K?@qq(?Lj|Ae1m^S5AAz2_qDI(9^F@Z zTkXgQ-=>GD-$WTxmb^Iaw+!AgkdJWDJUqRmxc8CEE_;NgJrDdR7$tBQXG~Ztvn8yu zj*)FwulXga8)>IMihmo)@5|ki+ec4CmK`DVF1nF^6WW5f()62gxusuj4!K=wjZ+ac zbX%%^Bc!wGOcra{ORu&NUFmISZU%lu?37^gHsM@)o7-v0lt8X0tO=_EU0b{fJp^U9 zI8XY#Zstb(OEgdY0ZG6i-;YgLsJI$5eARvs4p6MzDUwu%gf$wR=~^3rQOvy8)9YE= z=jjZ$aKieo=%_z1T3qAl(X|$w?nDaR9!<9=eIpL<$c^1;Rao#1_?EA+M6{uyz_M7| zRA@Zu^udqFt$Ys$E$c3PGPH=a>A=hr?cH#+nm-KMeT(OI;9MT5Hiuq?-o zkEQnR-O*~rey;e9;(K)E-^~0Kco3*$Kt=Y@fnx@JG*x`&T>Q7WI{eVw1gT4Ecn1f; zYSz-VS?a3wnl3RUgyQ(%c%`fQe74)FGq}fcvyw&_vFClN$z0pe_Sv|j)z@Ox6>#0R zvitj@-tM_OS5Co4Z(MF}M)EVaE*o0^$TFcXV*m%Zo53_z*`M$s#==Aw%~VudZE6~< zfr^Ylov}s};NvU#JET&0h;A6Xcw;KH5%w*;Xk%*bWlq9+PVeeD+Z&JESo}JAMq20H zmFqgq%SsyJv*-8qoj)5V*Bb5_X{{uf?1;4wpw-f68tVMfM1X6MJ|U&+CI5&ESVruG z1SJqJgUsfUulOHG;XQ_)E)E`(qgoEt2A}JBuC%Y=uW%mADL(W?Q4Gmk3Z#54NU-Wc z&*{+9$GoVy_>uQmaS-rbz<-&@-$j;Txl%}tI(^5AL+GhvKGZBHoP))`bBnp76q&-B z;t`4!|4xuX#lPvOR!(cOK<&6ATi z@9FN|bMs{HzRhiIoA>qh?%mSXwqL6UDVz#oCs(wV*RPSi1UHHWTh$8753W0+xZ6-G@N$6-Y! zw7CI1UHq1aoWc7TnzL^~{(VR}DgYS;=;I`-E1u02&th;DMok$fg+#PAe9_!RW!#O( zk9<^1cqbz?RSX~tD8Y_U1pFKP@i8_f>RHCADPu{jsEqi`+!v9*jGmdhm~hpB9^)lV zkpj>W+|lPBe*7z%JO)?c)ReJgsEpV)cM-m*g1xc$t>XJclcD*);cwwP7Qcg`4m_5a z`xaKu{jLt59h*DU;lptepLMVXumn<_lt|`Mz82{X7+aO`u;|SuJidl-j0vb$RZ+R zvc$g$%RZN#O?!HH&VKs!W65QoJoRBVio!X+{rYHh@b!Pc9H>pukNg>aim?Lq zai57IX2x_zZY6+&0*d-2?hf}rP-T@xC5;AMPf%Si)JVW@J*IUzS`${81nU}=nwIdI zHdim-sPz~^lgi?b)Q}VMBt8E(^e$a_CB( zDi?HBPq)ceXwXYHtwA3FmBwhhC(jF9jKpe z1V~ogt>HTWIZPqBN+gps`V#&*K=Ktx4j{h;$TUD`+lJN5EdF76?8qqXlVbH7Zvd_o z&!A>}knZzvHKk7B4yFhaAY$Qe8Z8j+@2B@!a?fare}a`B&%*tlwxy%3T!@F!o%rFZ zJtnRKDThi@DzRR&=t2B_fDDR|JFypCi2nm16C&hcNZGgXKLIi&LcWWKP#=B@AfqDW zsd+Qn%&-92CC0;fVLpnsQOIdD^$oQBGtynVc*e#A>0S`y%vxp#b0%{UNp-4v9%R+; zD!B3!J|X@a@J|4{mKM6RQLS!lRw)DYs#evP?!8SaRg+w;Y8J1n$+cNU?&)DT z!_VnYKV83;U`^mW^AOYs9^@?fWinuJwwe_h9;a|9Zg9fND~*Qy#(DT4@e6Er6s`dq zml*|a%kXQ=qwFA~S%Mp3Hf;2?np>25Hq9mj^tZbPe&W~ECbiANwROX_o6F>hW*6WY z<}!Sc<_>glFGF>Brmc-UIUoOoIlyYmPY$34{F63PzsodO3KoLgidkm_&oQy`usq*3%|r1WQUkWN>{b!w670F^+P^i z2rhm2rO|ke5Qzvi@lhge2T*;E?Oj4zDsRFASnzu7XaJkK@Jr4PD_Oc}?QjC!F+9Yi z!1B~nx=O{>wzg{Fz(XdT)@;`5Ohm>T_${W5O`L#hwQAwOZCTM(N{{DB}0|D8*NpW$gB)DIiQ%0e{6QQz>0+7<-&P zFKBxZdzoEe?WwkkPnd@uZEuf~qnvZzw9lJPd!fr>Ga9W{qtOPO?tnVEkv;9xIeAkl zuP2@Ms9IZ98nYQc7j=80QI9)nH|q69asa0zU;|)>BZd|0Hw}#y3#`n>g3}qCRv$Iq z3kP{?pT{pSUuSnN#LW6;(<+$zb)g%pf};6Rz=u@bHuDzuAz42 zWw0xw)mT1aRCd{S;FnL=&(7*k2dQnK--gBdZP}ce-mxXS5~uGq9#z9Z^oxRiCoR@* z>yGs7S#aPNuC?5vhNDz_(@=ZA!zc(|X*~`vqgF<`BgR?_iDbcwp$_}37QYUsNu?!K zSRZO_4KcJ9z6iB&kZC0J)nD}+qEHblRS~~flNcFEkeW!S-o|kz2rEUKNl6taNSCLp zac-Yaw}EsX+?R4R>z&^`h=+5_?D8WzP7v-o<4dn6MUEzZ?=e7+!P z?Ne%`K=BP6Wn%abjGXG2s!V+bVP-{=Wuj7B071Yu_ zF)xF)sjoA#8gzX6H>#Pek#^NJu0)S{ntEX3zPZJz&E|mO=_2&iKpOE^ zNJ)ZtwUcB-Dh0jTPPf(Sp2x{xAc^frFc<|yG&nLJU^Y}Vq&jZskM@5vbn?le(sLO+ zKSH0EG*s*QU+n+q$)V86mFGZTFFps15)LrwC;0$>CA?*TM@FP+PHcGb(NKuw=&|`I z=zJJM|BYcj{xv{$%_o_IP@kZ$2$0_a=J;aU&UaWT}yoPj_u|?gYX$pMZ=XG|gLLEHc=&5f8+K1--%vzvrsiHkj+~`jG zjU5&{bQ+YrJn+8X=ju^w+e|#)6sT7a**}6_xj^@7p#2v?nvoX&^u`RWv~Ca%#zb&^l|x?bMLI z59^Cm{eA|zKVG3WIRsa~wKg%#kQNxq`=D3~5*oVTC6T1PbW+x#%+EtXHyQ+F$H_o2 zNmJfho$?qQ=LK&L{_Oe<8?I*<49}b4`Qr>*#vps^p7*C$Z@&4XyYF^S0*6)e8s>rd zM;H@4r_D-v!m5lmER|RT>IcF>y<3KB+`3>mY~Xo5%xg7n6%yPbt;uk zue%+%9>qRp62DJs5nDB;5wpfBf7k~X8~l+Q@|MItC6+>dlY6mO2=_hoUbJy=zn%fM z(C);T+gK^}-WwM72YAvRRNbFWW<@Ks+ReT|w->GoxW^N`QpuCUQg^KB-trCYMbD=o zPR7fn=%R^4ta@&ks&AGf9N{EDSRI$Uy9vq_iEVTvq-_r#VXk9GmP%V{QQ9`p zeRy@cUST{UqY;kudOSieDy9A`?HRTomv2a}?Zj_GJN)J+ah6s0q(pAxj`azdCwqNkswF)ik#a`#}pYMw4 zIaom~Cj;9Geo zG1Sm{!Yer#3?4kO6b&#kI)lE_SNx=$vaK_3;5L}oU9vcD{%zJcIB1-`w5;=qy1)G2 zm0{m(-NJ3LZoXRN@)c1Q+rPmuJZ#wTnX>-J(}Cd|GQ<3iRnWaDDqqs1Ozkjj>Dgl1 z#$6#yM{veAJ8K(|7|*p4ntjmE{|S5Ui8SkNYX{ca)^Zn^Hwy3-zIwI3S7KS~A~dxi z=fGk)vMM>3o*v#(mUEi@EJ70iITtUMBdd~g&T3(*EN7KteK|efV0oZXSL;^YS1C(8 zyH?4Q2(+CUQLapofJa7!Jjfxqg>p*YW3K{ks-?IAv$85@)hqQ@XYILZQJ*G3B5zhH zuvgOK6oAt?px2eG0Gv$6Ii;4WZ590rCa+y7Z{mEMRWN%6@h9lIYL%_GpNtl9t|+}Y zV<2HS==xdq!T*MYiqbt6uT|ZmU<26Uws>tS`qK_6n4Z>m59xGTjl`MIl8Ysl2rc^dRlizTWjA1ymgpK(Lpie7^!pbb(i z_8Smh@WB$2M*RK=T>1*0^$F@faKvH`@E>e4ooQ$OR~kjO##f!7(dq8b{7*F+JSDMy zfkvm=&pfWta^TRqlt$I%@C4mf)Tj-DN7m7kTdd)3d#Pkbk;mMR#L`77($UI>xKJ<@w1`g-4 z5~tMd^}3}_Nfu|c6BF9pVA@)zu~;;9)-?6}gqZVLTq;3q5HF0aoznVE{TXghuZsDG z3OFxSJ53%hj&Uv}F9{xNdJQZ?-0&ACA`wb#jw|7a;mk^sbxeSXZ&|~+}SzgTFiqayej4Y?a1W$CDVJc7?~W} zg|`=`6(W<%Au>7SgxTC`W28)UevEwzJZ>>2#|$!)%z9>XWd(RFQTA?tEOqSoqIN+H ze;@{36Uu8~#AqVQSjAW7P*=7qP*g&L2@c@=Z$p!3pA?OrboS&>&!p=u*HmEH|` z>fH96(+Q`}fss@;Y;VUxYG9<@9?qud?a17pMh3`j_xs}Rp6tu`=2AN?K`_XVtaMfr zzN&a{@$V>&)}Y$rqi9(Jp6#2vrw`6FO0#PIWA;XT9V21t7)@#ZfmK1qSXoKc#~5;u z$q0DY+zaUM#o7;1r~if<{MTPk|2Q)Mf&0|qkkqNiFD`r_ZcS{S%v(t zBYSx^Ao{op?jrF24+;Qco&W#=000023xy9#?X_PIJoNwr1Lyz%007usprHT&007-) zFE;)<{@Vy|1IPdX00RI500000004N}V_;-pV7~G1Jp%*BjDJ@DtT^(4A}D}$8vvx3 z2Mu`IwU+~sT}c#%|Lz;x&Wpy*Ol)qP$-b;@+qP}nwr$%sq8Cn#yI*(pn|d`>Gqq7w zef2j_`<#32#oAu)Nw%jVJ5@W_q3UP%MO$hIGaucb{6(Z2!f)zf$D;pG{w3^rXnWQ?=XNvh!&Fm-YWL{AVmp1n^Pu8 zU>Xzx#EaASAPx7S63|TI*z4?gmA@-#&aI1Zk2aq2sM71eTA(i6+rf3fU9OcIwWGV| zwZi@1D6Xu9Q19MVChmRJg?oE7@%L~7>%2lk?1^X#&WrcCp0rz^_EBpMNy9s80Q6amiHt@%Ke--ss;w@X;I(e>$7V-Q7Z@ATV*uhR z=c8-Gj-oC8yB2KPw{Lcc8=1KHQ76Qfn%G|I?_*P+aKiO+hoLI)Z7}!evjUV`xUvd%su8p^r>nbGXq0WPp?0(q z(LflbgiWG{qQnIEhWt8NU-~=6EOzmh`j)8kWf#fE4%0BirAVrdH|^Ee)!DO24}dNz zaz5Jo#ZOh{zE4>HNPCZpsc&E_zsc%gvo+nH??=3wbsFaP{CD>7aSgXG ztHL}+yE57|(HOME*>|?R-3IX-XUFw(xb~F&?$hIlwZr2jtReF2_#m#b?~s2ReI4C9 zp5*!>v0>}_-u_Kv~cVdz1WKLpH+J)Z-q$dFzO zpI{@zv#35cmQ(f(Z-g_6&Z6&W*fK&J8 zhkEtmDp*qQB=k7+SoA1#ay-is-K*ky4e7UvvU8|A6Fmbx1sy;eaA&o?aJF^g&i((w z{TKvA+=mo84*d;&2>KT+2)O)m_!NE*{ORshow$1o?yhYN?#}*S)_YIchxLLn)(7{l z{rmd@ZdMXM)LJW53Zo$jqijO+H7ZV_CqR{Zx9Ep~SK%p`4@bhmL63zq0(-zwfn&s7 z6z>k3bCe=IhqTjw(3j#_4*#CVX@_dxc#66>-xy`%2MSbRFQW{6n`44+ya+P=;!x7= z+tsSR{YjvpTjaUi!UHx5~%N%#rSmww$ zVZGu1%(e{QwwHxW65iw@n|GRp)Mcth_eID;VL&v zmF?QuhU)Fw5$lJuA4TXu=oj8jX-?O2-i>3*lxM0~8`uiTlqv~1unY8n-d=Z66D`tC zXbZ1*uutz`AFx+!%dmT{cET@i9ns(3tF0l27~VB)t6EP$Pe5yw+ga*s|5aaeuR7Y3 z6+u_%W-sQgRjPt<`nY>x4pkr67V<*6AZRg^2hD{<8l^NEDBJvf)9v-R3Zd5q_uHQP za8S19@d8gZwKZJX8j|y}@-@IFreuVd2O54N1^`)N{lJ2Uunx$6e z2*w-D8~T@Y1v(OXtGy{v2feG#o`>R_%m~V7aF?ejKiutp&>uPmhC`d6{h=u|;d^Hh zI?kn`G^6cAXbHUnO|(tCeVS;H`qXo1)^ogdcAmsaa4QWp= zC0xGVIQcTh=p88cx=b%Qt%YGhvjV-N7QEe7oY_?Nw3vNZfq%bU+nejvp7&E?4^$T@ zfLy21sVauf&?}@X0>w4*w1FO)?67-DX1TiC`Wob7CzX9=R2)sWE(Ah?6Wj@&;O$1a~L6LvX@igAMNPGPnjExRdvL&%Niab?%S*uX=TL)l<*jyJ}Z=_1X|K+Bm z&8U=V#tfAjSH+}-~92r-Tcug0`&~|Gz53VSM zkaENP6}yAPQ+pe_rRmPXerp0xtOB#cHZAygqgyqN%(Z$KCSF#6?&nG%Z&6I>LX?{% z+!pmlUSsHkU%vT0vLgdm=vMSoouefv!{!i>|2$J0)((uX)%@0oJF3FJBPMui;Ij}S z$Z+!dL@Z(K`?eT1J3Zj>!v#g2oO_Mu5?VI`+%_8=9B|fZq3GkE{}vA&=D}>UU`G@^ zblI9JnVRhA?KtgZCP)m`Bxz(YA|xXZi|^Jk%z~{6+?u=%p?UW@NL9%^`pX5`Q*Oc) zYg)PGxf6!O>e2QfF_Y-J89qy29)yOx#eO||@&+cxWOa}=fVqB5C*V8cg&4yRblg|F zV$3j;cm)N1U_)nmbp&K_MAJiv0}7sxAh}y=)($Li9z*|FJqn;1Nu=TL1xo>>v} zgkT`q$*<#;158*%Pw!r6!x3pH|@%nAvxz9JzCa5MFWnSrulgi$d?;@Z=25SHRZDck9i-6 z-wk)}Jv+3>U%D&LaIOZzdn5RO096pbeDA_WnTAvOmi+Zupdsa3GeXwSc;={rp?xBLcs8Mh;VR~F?S6ev+2L=-u(J6ueS*bLPJCv#FP&@%oDLh zZwu-+5=z4~=!L@%3)=MLBVh^4-1Ju?OqThjY%)WBBi%b`+DMQsmO3eXjqNA?0+SKy zz(z(3ynRgjwzwy0PDtt|6t*bF1#IIc1i=*~>J+`RlJSlQm|~~PXvEv?VDZb?$6M^+ z+{;W)uiz?W?-l;EeWzYrA)sh{*Z3mv#5*(w(dAh8n-|iRQyZ%nA+4s0ZeGVCjjHap)>%o2fiAY(J z3(M{kCi|z)ST221PMRIKhEiEz8if&nb3zuq=8)ax4HWUNT3_aJ+$^Ar zj!j`?0E-3GKi{DnWnSh6NhBSwYPw0zA-*D_Jul&iRKEu4P$Cn0-pQ+BZ}+LwhpEn` zZ|J!uwl*yflkJ?ko_P@ojgUa>ZVc|ypCbKb0=@@~zu+Vxx4pIr>Vi{(KNLf?#OyR8 z{2b_2i_+91&WA9+`K}|-0V`;TopY}@VGyfUXs)Mt0l$4qj5LbV3AuVe-}CMGCbMs7 z?l}c*v1?Ldq!JNIsnBfk-b{}7v=Q-_X-mqgd}h~gV-x7!5@(R+Xx79LFh>^?v!C|Y zu^;0S_mcgR2$GsTuX{Rs6xH!&#eOO4&%kj@k18q5ApMfbR??h7xRHiVIJwDZs}szu z-WUlRjL(hSn0FfH&duMLKn-4EX~K&lcEV}jlEa0d1j50Y!)DTUjbGRWFlv1I@3icW#l zYt4<=^RuMx{_aRQW2uaSB(z1d)G$J3)IDPKeVW&Vr}#4DY-~*I3On73zD~VvQ{jbp zb>?HT^a;;$KNNhp}5Gsofma^9=TaI1IX8Thk6_PCvRU+$lkyXSE)`JD8E6O774 zNLGpNjzo#rjZjM_js*v7!TQTk`n31$>K9wVkcGeMsUB|UpSf!Io*p+iLFt{fgrp@h z8G!FNILHyzUo296#@gzpc~8rtimkm?f2rCw?6~_6l24c)Py`TA8^D)LI#0C!*#)2f zD64RckvD94;pDKur!VGu*lPp*rpeQ%Bg}xf?2`b_`$)9+)PuMjK}?h+gBZ@idhdBH zd6t6Ri>V=>yc4ABj4QE^xj1`dk@?j9G5yR8*!(G&UE!8WI zYbUr^U~3ER{1(7BxaOP$bj_0X6-!8L6+xz_Nff71NjA z7b2~1lHoKUYeu&WbgvCM#%%|m)|MQTJ%XQWEmHy)>)=xQwTCz>(<=QqPhyY+5=i&0Pk&#K5vM2s3FokZ2fXQZZ9Zf!Xst~&r^)O2MJ;A7q&jj8z#z421BhCu> z?SRiYuSyyhB@~&`$BHQBGva0Wn`yMB`^8X@L!(A5=o2h|J9R^$wfJC^cDP(dc) z$GvdLt;QBg@^Aum4L7<=-lG>hQB_H!9oerTFD`hb`XKCJ@rL0{e>g z!+c`bBFzKIhpgWvqL2W(-*NzsjH%)fB5SIKwPSXAu$0S)5RU^`GqXSCmz$kn#j$Vu zN_F${3Bu$2(8i8y2LFuqww{|w>&=StDb;Nt!N|x~@|BKfP)FGs%UNq~cg^YTwO>GX z0IMu97n*A=46(TYyCT_Q?>Hm30w+fo*1@`^` z0Wo$c5%7`B;TVDN!=6hq@!T5B%DAtO7{5kJTC@n#w6vSG2nq#A8WSG0lx`HftEf6% zoI=`h?xXOBjv^TNqa!{`-P8;NyFNavlip#v2q8W{4qe3|G`)H$`Cbj|$IklU*bexn z(aiVQ$LE&)LpOYcz@R3Zyn>ZuQ(r@$J^~_~xuF{ODPQh*cT_nGaxnF1NjWJ5Mp!VV( zwls<69`lUV-UK4Xe&!l7RsGC8>dFb`8nJZ&bC3I?GI0U3rSNr)%gj=A0YB9>T*i<~ z<{ZtLG3T@$f?{|UZKJB17VX2b-52fRI{!GCbRl2}?9@_M3LK_we{~#voqAlmSETw? zaJ$lFtbL2Qf?VvVu&X z?JO{=ljStWzpt9n#S$LH(s~?OQ6ywm=E$5}-M(3@Yu~ED&QdOT$k`@v3F+s4wIC{@qBUwvNB zqxVbmiaWh+h@Ho(%Q^z4@Z|!IqVUxUDr@KE5{W}6s?XZvMxi2L+QQKHX4FIU>6)=J zWVZIyW8r+j@a2hsQYFcf-MBv@^}TX}=|`2Ha;cQ6DYpEZYW559^oB6PH^u6(e{S++ zF{)Ne{A8H5o+($Y5ig`0)oHYzu9hreS@pg?oOS@_QT9ql6LZ@46n&gF2WN0PbQjQ$ zXjJMn*l!2E_XNiLeY@`tnYQ@XCmYrg4-9#WN2eDot6b0@jz@10_(?9|r))Bvekd$I z^zLBtKb`+?X@5ugAA3f+yn*l29s!YWA(f)@jj>(X+@}* z4Xc-`{nUxkaXaL;oGH?d(y&`{JDB;Y8)xA6fKJF|x)82x0{W81WwsQp?Xt(L)o8jH z`TvD-Js@y{66U?Z!A<0cv4Z|x?zErpj&fgKA);V2eJW+!r1}(z%`9EXcY#eKpTHzl z&IREx9Zq1DsTR6N!DUdX{8YxV%b-@SQYBsW*MzL6Dy1rTP6S*Jr>bOXM4(7$#2mJL zrR>{upEEe@K$ZMg_)I$Ww*BSYM?AJm^>zc*!jBlF0?x;MWt{sgdTq`ppen&zav|@_ zC5WtL48St8#0eF6KpF-o01)VMHkrg8cu|KIh#b%{--e zV_Ny-kDB=^$=2M~vt{#n%8BO8|5%u6s=cuH|19~*1T#jBD(z;#bc&sz`w8r@(?q-p z{nu=MkIkuM8(#a>*4vHAL#bX*lV>TEQQU1r4)Mu`)Nn@HtsJyYVT zS|qO0*UZ-P)7I*l9Wy2V^@DU_dZUcm1cTIu)y~sI+0(T8@o_9imA^;yoibDtR6gYW z_`m1z6oJF!uR&8u;?!Tb7&R~&C*(;^TqooRR<9=%D4=L;gIK-MY{P`xpV@|Rr@?F^ zq*qL}gV^&eW9atIQOhfvEVnJ=2(T1V145f0$34eT4K5?+J2simJjdUNl&h%wZgCpk z4fFoK3d()j;tjYP5q)j|qf}JZjUi>)){SDcAJ>h;htUZZdwv;Kj$o+YmaoMLP3KQ5 zBzKIWr$2XhAH>q=1 zA%7@&A+A%6R4FP@&y(0a>Zo^9AGKD>kyp!?PA&(>z733eg$VZ^&gfPfZ)J6ro9H?p zndQp@c7n!saGG({zvnC?f*pJmQ59n{P?KQMA~|}!>Cj$3!B!4 zlPZ+TCSkK2giY0;=u9@N;YOl{J+N-ARS}# zs6MH!f+6;%!=m;tG$_62AeOJ6_iL`d69a}0axCHmsix}%IEK5aPIu;IiVd`P0XJEJ zs56~`iv9Y{guFo?M53YlA{n9T2^u$rR;n}~lneXOP%CRMQjq0mEDMbrR?wgW9(T|$ zLZbYW5%MZsQB9XT&KlOcHD76#T68Kw{jRrXZ7(lHZHu<;{RI?F1qQC|DWwdxJ<>Dn zq3u2IoqdI zBB%3s)4?8}8<$s=?-TU;MM+P^vO!x1VVJ8Q{8y^yc>S&m&$8A#%+`tUC*%Cr>jGR| z?#xW_UR*sxMT-wU$<1t~+OymFT%Zc(R16myx(h2Cv-iFts`{!FxxS~%UikS5e?^6) zoJ$8>uT*KSZN<$_cW_Sz;`^3WuAz!9)j7S zf%M3z-37nX{t$|>egNMYi@gSPVZG+Ge^w92u=B~F9$Lk%1Ma)=?Mgf%_!zG+^ZRGz z&0$Z4=?r@n3z`nOT2bjlUN5OaW!+86M+UBgf>^Acl00tliMcgtuZG}KwSz4wEcqzO ziM3#HUE`Rl11KbC%qO=NIublu*GFtsEw7v}PH@8&rih&R2KlJ=r#232ka-F#jz)x8 zT5Xx4mLR>Y?<0eD3~zJgNa6B8u>L)(DIVRih)y}_h~*6vVEH}Z=&nl>S%F?Y|NeB_ z`S=mAiq2aRqV;&KHNGsWb4I+~7U>h+Sp%EDvJ@)(|IQnANyHG8kNPfZls&69&anqyiB4wO}J@ zxrI2tFnH^7Bq`WM%G>r1GDoOMc@13-^R9m9R2# z524qSnI;k3O>6G+_=fLKyTnTNu>8*{pEd@rv4YQgRo@0&P(JOdzdfTco&d1?e!zNu z;0VSeHb`>TU;vd6HpnRzcsDx!1PJRUN!K+Uu=UPl?ypI>2o1basI2Xtv%!G{_mc?1 zCmXNQvd}UbyU%coz?)l8ny;5mHHyT>JAM2VHI^q8Mzp786afoK#MF&T%P=$OhdLne zPYWO<-3LWBDGH@uT$SAQEGkJ)QD^Eie%tj-KNv#4!wIN%lU09z{BU}T@fcud1DQY+ z6s~KlKI@QA;GXumwe|m9*a6ZjQ7M3WYqKFhO9Rq#{h|1%R(=+H18dO@aFxudft{Fg zuR7bcW7#Pda$AO0cK0&BDa=uBZn2vZU1y0+IRW|1Kt!D6wYNgz?6QOemIkl;eoKqO zUml71rFMSXN z29zJZ8geHIe`P67*u+6w&qRQF>=vA!2o3Xn0&HZ@Yo6HSJ)p!4oE(r|j&%?9C#LQb zk4D8DE|$h-2PN*6NJAT31_j^H6DYPB+H*O$VR-Ft>}<(hX%u?>RQBU8SJ>Yux-an- zoXM6HY4PNDxYn~%Gt8D;QKEw>9~}+1Pv&BoAd|tLI=> z4M6t&!%P0R?&G+`4gMYYh!l3w6O-KDn*2RJBK^T;qana~2!|7uS0lrtEbJMda5q9K zCr!JhZtAJK?B#9rWgpc)?calUe|Ei*_A-vA|BJ+T?{uv$?#-L|6C#J(tKRW|`^OeO19+y{wXqD-{@ejjk~AGCrbnC=)~S#mn;RgFylj&C?S z=FLBhFHyXr{s;Xj#pSMx+;;ar0k1;NA^MPIXwO_=_7Vz85YLxyVUWEX!9B7KkJGwS`&KrA|wG)!14wU}~n@ z9-BfHA1K$~5lFRtk4Eln-Ypb36p|LsdBv>>W@NA7Fpo{*Gp7S1;0R0X7?D=dIpJv| zXTd^q40N|zxo&Q}_XnY1#NxhrqpDar+5Nh^TinS}9I|0#BFZmBp5$Nl#5*etfrS-R zxxI{y>9T4ZdE;a(8G%K^Bil!e4Uo0{L5LVpB#RdLiIAR0Hkc~jRj$ZMt}nVzgQU&> z$A4}Hhx8dG!Kx|IAW0e5(tZcg!e6;3X{6&nI+zn$t0Y0JYV*;shXeDXam{L#@S|ZR zw8;9r52#H^lPyVrJr3uj_-gBivuffEq{eTEr$E@5uGdfS&##2p;E36PZ?%B%S{%Qejgi^S`X9J(=6 zaxcVD&2tBDLKBTZU<6Jxd@wc>V@@0xl^q`fy7_hV$3u5rL_)H}w*5~7rPFnatg1N( zoGxSD&6Ga5WGUxSusmrO*lyP%bu8E>B6Kd&9o=oxot%d?q$5xhx-^2%D0OY1YqMvy z!*4LXlA%2y2_#A-e zo=3@!7VJa{T!B=4O0a52&l}}&RIJ-#!ie<=7_)x{;XeI_(zPS&>&!++cH9f2UtzhEmGwb~O0E!!OSz(y>dqOD|1 znj`3MR~I5#4MqoCk(?~O+{mE=^qL&jpA$#&+vT$KFrb$Z$XwaT)z0Pa{NYah7Y_Q` zWBRObzUfIryCa|IQ|;>O6!p2an2U-FVZQv`0?yvMJI=1!LjrSJu`G=9H5W52 p=vRRQ%YD<-M=sI4OfB0N7q^cG>t})krJ&r}>?$Y%X*-(5Og&vw)zvdS zUDf?ZUR)gH2grBoLIQ#RKK*d-|Gxhp%74`VKS_v+iGNpM`Uc@Q7K<8+kR=r4l|ev2 z6+l2xp+P{HRi>-P-zAh)g+V~jbwEI1Yd}CSYa4q?n&p)lSwKLD;l7`z^$i0Z!sJLJ z8$l;*mbRI-yD10=%QOgxy&ee2n3mM()~dOQp)m+Z!M9uxj{kt$ zM0;TVP5h>P^Ma852UvGFTXP#{w{Kb$2ngi2eu!Lc8QM(Nc1GXz$|^xXpy?4U;QCfFK3!Y_x@`R&HxaN%qnM!qx37+ej6I@U-lyA$L!i9&# zK1y@#A-US6%1ZZ4YpHdy@qb^gLiuB>bbz?6j;H(x!c)f@`f9O_m%~9$YC;CCQs^Qp zB8&YMS49IC0}&IEX`!GA2+RK&AOcd$g`8RH1ega57-p50qLx6eX`FHMrC5wNov}~e zoUz*7tskGSudh^mW?y;VT}*P`ZE|kC9Y(uKt=2fb{zkL*49YbSibtF{Lg8q z^1@REWiRT#m@R=%Ac9p+;nLhW@5@K0-IOmdTT#V1n<1g<*M6z@&l5Ca|pa_(R zM1CGnL@;uQt+|h8P$o3!M@6}Yjrq;rw;*SmEd`68mm z*^N#U!BU2)Mrm5fLc=f`J-lf!CNi@>U%I>1H75Pht`(F|6pOoIY*7PnK@?3lO+WtPcT^5P^Z323?! zh8~kW_k{>0|G(FoL;pCeD7RjGKz{yf$cP5A!->NaS^SK8yt%Q_Bt0D8*I^4a>>N1C zjjyT^pQ^gh-6Lgxd<^`ar?!QmL{K{sG!LF?L<>*h4<$Hx4>^eT4l%s=$W z$~o?|@Zo=%8b#hy%`2)C)+vl9n;>JYebq5cf0~#0z^DIu@ix~8jcI*bI~*czBW#ds zP35U?jc}LAaNtjpIoP8&ggKS^y{|bOZWgBaqf;r}p^E6KpG-|!_u=Q6GZ~<(DYL3fD($KhQwh9Zm2v^t{7YeyIH%==61pzMCrEXY34RDqCWbMD&~9XL)0@w7 z!Ya03F*C@j@0Uwdp)*$5sRYnnfG}&;_%m;OFA;VR6mK6&14Gy?R7`fYpJd$57E&Ja zq`4I~-MR$Jt_f4*3m?B}4Z@G^y&z>BSOuUWh3)LW7M& zm|1yZn7Roo6L{SI-8aGHL$Uc0^~s6!`n1@fRQDp7fxAk5uM1lUjM-sE`O0ca$0K9V#|I^~f_~LK%EY;&Zss`1!P?4Zf zbyp>cd5VI5#zMQ)m|h4Y2Yh1}slWF-T<+5{h&2!AD>r#eRa@KBs(A1a#=WqxSwi3| z(0$B&G_T1<6pPV|dZ${nQpAS$;9-fI8JZ!$ehCn^c4cr7sBA&vN&FDBw$1Bg_FW zJ3-=G1u_2~(Kh#gXl-1!D>Eic(|W9Z;CqX<@y{%wo#K9o#eFXNCZ7667YXmNg(Ju< zsKloiTkOBsnktZO!9!2Xc^wJUJ2T9Z#A{U!T+%l5wn$rLS~Vu4RLyZm?8}gp*{mMk z^Sxwbt)5&~kjS?+h8k1VNj;a}Zon2yYvK(wNJu6A#WYd;omW#8FRCJjE~bdz=q#=~ zuZZ$6BNe;RK%wo8ZjQCc8GW@b0~kaaNsWEBAqnQ$iz0A#Wx$!yfhnHxjgE3ZwR_tb9c~@ z)z!gPj}Ncdvpi~asJd%yj#+Fbw$0_RjmQ|j+1L`|zKr52i)hwnSUJ@jJ9F67USC@~LHWR4)H0pvS5$~sL(rA_`~9y$r0PGo1W;%x!XLB`U=T1gI^ z5zI#aYe$Zz`D;K;Dttk~7G6bzG-**ViM+Ilj6FGTakZ?T;j}6g@~mJ6(!7p1U5>0W z8)J;Z!o83#rvW_y$g)}mYB%1IL2!D~Nby>k=7T%vSA@;RY@Bs&wsCIPfoJf6XCCOL z3tr*?sp)34Z%=?Z(|w`l_aqJ-t3l1E`HS(6CaK+&z1?=9y{GNcN8e(b(kCxQzsi5> zdE*1|)A?%*=OqJ~>>41&(i3rQJHixr&`=-H*Z_=qxZGsobL)fKhG*^9vqB0;EVO?r zk88KQWs{{oO;Y3WSz8cF@^A_3dYT+b`STkXGbfceVkL3wDIfg4seI75wR3efuRMQd z!6%oUJrg;9O5U++r?;@iHuh$g%D*^-Hd+H>(FH0%@=>^Du|W7b=1pj18jUW91U_@A zyS}lpfv=RA__GCs+L0JRC`Je5k5VRhN?xnI*rpA&v~iSc(L>K@gh$Z;b4(Wb;-*Lw~Dz+>Ra>4Ui?m`yc9=+*1Cq zXz1{~Z+ajxU>$;r%fu=y=Ajyl>#&$bq;)&NZc=&35f(uxSj4K9bSY&0j#9VB0g$b^ z*$n2nu<7RhYPVZLpKHUuJTG>nUl;pb{_mU#Ul_MrvY*<+z6Ce25nc)0W1K4cxaAI; z;FFYv=t1(kZZMhuw05Pk$O&jr5YfXaHIv;+C3#i$T6S%QG8j$2uiS6-bF=>9ws!g8MRf=Z4S1% z+nu@h5`P=|5vb#V*XRB9_#+4#dv~7k3zrWse0?;1YH)4Tp`&@E{*VVuN@g-yd@c<0 zCtWpdcNFa{&QHc;InNcp{gz~h_t#Xr zKBKX4R$LA-*>NM8@m~UZ0&^w=%&}?V?wP5Xdn?GS3CxRzX=!O(tjMwOam0NgQH{nn zeH;no6exB5*Hp#SN2e_Cd4X_P zWPJd$CEkfETf{s?%_3yb{BLVnoF&!REzL;02$_4l1mj5CZUG24&B$bDp+ats>r= z8h5Kgi)L0D!1gPHj7%#e?^;!{7C-OX983vTcM>e|8K>Tm>p(DHZq~1oJ$%sKa-u7sb)C@)cm} zL{r{JmZ`f~Ke6tm6C4!wqHI`<&*RAdFjOsYdn+>@Yp>=;uLgDfxX-n~A$qjdibb9O zP4AqRUgm#V8bZVOp(387a^4~bktl=x$eo5lHR%+*>_u{DTsvuw-&5nicOBTx!u2v; z(oJ)Xg%xpHG2NUjv7JdojQFBV6s&+HrjYn{*%E;1p0wnav4xqu_tjOElRLySsDM)?L84oD<%jN)s_v}&+f>$~6#i11hqm2mErMlN$LY*( zn>kt!sf-3a{Uyt)X(jquuQmpWj&x&gJtKB$d5h8$B6x+^`17%9-UK<#1a!?rN^a`< zOF9-4BVmH!RLBu}YzO6Z(xrp+dy6<{nb3yOHAh99g8*{NBI(g0QJ8~FW2tg7tu8X2 zoMf!YL1}g)!FmR68jnaKNfdQdaz3dxI#`T;#IG`x0__l5Er1CAkW_E4E89D$ZMZtK^U%NEJ0kj{Ns%_squGeiils3RQjx;0ZgGcwUy`IR46zl;BZ*`q2D=q`3me{#}-6 z=VL?R=UyS8CvC1?{+DZUlD-Xla5l?v{o}%BzoPo6Ai9i{Uf_KKXP-mgNpEj|#wt*3 z9la$E_-;dt9*Tt*@`lGvDb=*oIm}bi)(L-j=uOS>+)I&^fBY0jpOoEihi$!@lGna} z6J0IVC3{u&4%M5@IU#~LsYOs8&O0(8T)#EfKi1=J z8b3K80`UTT3oT^sbw|~Q@Abz`oMPK)@vE~)&S@RPGII&*s|MjIUq?ZKN1qA=ChL*b%5wQ+ zW4*)10gv&KD-*3FCc6~b(Pj?q*Xjuk>VF5t;={FY(p@}IG<=K9THHl))#iaZ@f2nM zKG~HRYpk+Vv~ysnlSoEV@NO)DWK!+A>bVdow2B;i)X+&p&`j)feK?c^HyV_?-qG8- zK7$$UgS73#^5>}s)Y;omyo3MTf@<#AE$S@^|7dpx^4wEhX;&p}9Y(GXV>TyOxT$fs zWPZ=bQz3GC8e|BP6^)AMQtS8PA;zIldvus&mzQC^!In(BsRJ&1;IwB=xCzpzrb(j; zvE&2e?0@?Y)WOjYGVg2WUHO%5Ba@Bk#v|%3#=$`vZCjJ11sYSiA^Z-LN%vz2xquFEVHkqt&K_2-(fkYm2e9ecbK zop5s*HlNNJG?zLcagUO}*sJr|gLd=QVvU22^{DQr)b@&}+?%~bJFJlZ>ybzKp_@h5 zjKPi23bqQX>))95{q6AA!gz%SWBKEK}diiqJd%k+;GmC2JOZ&25T7bb_yDn=CXe1%Khpt+@`e-9^V*(I? z7XE<+=mgn|;NYuB$QClf`S{prk7#Jz z3W_I^A_b`US(ALqMfUaIfkn5~s3fqzWNR2=OPwWc62Be}qxq_UHftQXdyC8e`JFG{ zn24&3inyG@qy$`{x-33SX#b=d6?*7(Ih(P=D$}%ZatcF&x{mez>&LW9-OtlLMuozS zh%+B4lok3QU8rs+P%`H?Ns3~@Zeac;iUWVa!xpC{B%{dd%yqb8E z3_?j9A0D3Eb5>z>a;*P_vp`)x$FhvSPGjCY6zgtjW*j;_R7y(7Q+;EhyMg4|j$|Yp8>1!2# z<(p-ZsL!OCR0$-Er*q+LjQ6mvW6B2lp9Ni~r49H$a~qETHt_!}Z8$wSa0PYq+1n|0 zHqlenFuzt-?47oHB%5M$tQ4<0XIQKxTh&{~Ow>a(4JR+Ntl9Eh1Z9aOQYM|^lwFhEGeSA@rjiUfJ7SBim(ISjMg)BA&WV@Z(m!bzw~lWKv0Zo&`CTyhW@6ZRq{ zA(P*s_8|E8y_|d7`*MbXTfcx-281=aK|`3jfDm)?ZSg;m-V(|W3*aB+DDktTg>CJL zJPq@?%C9Rwjr09sT$gzo>~N`Bx5C5FtvTCmRhlTB!|?l21j(h=LvzHdPSOkw>=Rhu za(2~UG#hZ-J}qm-vqM$4U{yGw7U*Xzw|C$)GJT8p!FBY8U-WWQI)xg2H7*Fxib!I> zyYv!K_%+ik$>L>c*vmvjaAs2QIPRiyAh#wZZRS|LdA1^(aE);Aub*N)=857W5-9*F z_O9#IyH|0#k1kr*V`w~~cM_f3XJorlMKlN0;b!t+pTL^>K(B}m#Np5{@lAx(qfXP6 z4Zn7Rznox7sV1*U?blW3qN==bNbE@RMq6BAvs@SZj^}TYl#i!SL9lA193@l6 zQxG*_tIPouqD)~OIG}=5?K9XqN=EdrjIwIovb*g#=03ys)ZHrY0yVvk+J+T2a@X8= z4Mv~**$v8JKF-EeeOO~$#kGDWbY`e)D?Ps-Yh%IicF0P8^{HmxhWu;KLA*oeA1rxh z%h{>-O3Ar~`W)O+)sd1`vsqANbx|jLP!))t=89edH=$BiW)o>iFIv$muUakYSgq;f z&Nt#Nn&U30=PvQ|C`UX&eKl?#HGNS#3Hz7S1Y=!gGqA$IBgo8SEJ1Bia=~We;G7SE z-~D8ZmIu`lKD`wi4`+;2gtaSy9l|QCzE(|hU=;xqHz3wDaTK9az`EN z@&V`tW#!4TmQ{N>{P}2})4WaIMG*L-7I6!d;yDf*|Kmv3gD z3i8jPddGn*-Wr7J4m#)h`(x=lS&uOuZyi~irgl~T*0ql(9_!kvH^J?KIJ?hwT&}g; z;M;NZRBI~LcXPmdzzmQ;K)}1#N&k1)@&A?=O&h_=%?b$DjJ`KKUDu>rH|+Y?)Py(u zSJxCZH!O_Tbn-V`vDZXTj+Fl#NtYbaQyiEv?HSA*xJ&Fwh8)-=nDB(Z?nQF$#i#BC z|2c~tISYq2NUSvoRWyj+v56$GNsG+O^UX`y%*(>7$f&CPCRdSkPn5$>l$Ju1XGW7! zqWaw9?A&AB+=JKKrY6|ozucy%-eFMk5qmBj{IZ2sBnO@o^}@aS(@j2xMt64OJ)#RS@rR2%KavSy(7m z7>JVoM;_sQ68|iZhaBTEHDCUlbExesd#fzwFcrp}ufF$_Mj^O8zz%y#sj@i4P-3>bb5alz{)s9WO zzxoYI_7JNZO6-myub-y_rR_j;Glu$(qfP*<1Ht4VHWxbOjvHPeDf61anU(Jf<71Y$ zA>j(oV|s^yd@vtkQIVHQ_%N-EP7U2nX>xtGU%H~Yv>adN;W}GTh$3?hDY*r&T;VNS znyE5*O?jh*p&NCK0wcG$dYOQ336Jfc*v(lL5BVGmYVRTgEt6%kTs}Pr1`qV+eVV`F z)m&e}C!GoU!J9mH563xX{QYTmrn0H-q}6Q~aGCFV6m@g_gZ)muC8_tnpOq2@-1W`~ zJUi-jR;Bm>mOLYz!rJ*(=k0k!e!W1-@$Ym}7odP!T1d(96Mh!PkwU^1by`Ws9aB@J zoQ~vftNpMIV3B>uzY3k?71r!@Vv5J~8G~iFcF>*E^I%*n7)6P!?ME1y5 zd(qIJA~0J)dwJ>~WjLwES~UmAq#8w24<0iynkc{&Ij^4%k0i@pB)<;N|*O=4mFG- zn7QG`Jz4Sq;iSdOMt+m+v=QXocQJfIvPl7a1IV6H<7+H=yXL50$;Pl7do+=) zNLC7LG;t9F-BYKBd>lB4X5@^Oiur9q7^tZ6yLiLU2y~8AgP=TjH5^%{-s$(TM?%H% z+CC)Gy9Q@-r;O;J&Op0;ZTkhkv*w5~4TC^z3M@nO?09H&iS>RMsJlWcHLhI>gj56L z?ArhAw-Q0B#${kkus6)H_T3eRp~RDiyfhH%_(>*@D2iL-|L)+uTeP@U@a*wnt(p43 zN#Q0)zpWQcYRY907U!;kMjJIQQrS=3g`$S%&^^pc_1#g2KRQhWzOFJvt!Z7k4E*6u z|I@cc-X|9TxJ-hB#k22+Nn!38UMEeGt6i({rbhOxJHz` z|D)&E59ya``|tTW{eVA&pCFpw&R2)J1gMRD?vK@6JS0%AX`BlrLHH#E#q@3R*X_Rj zMOo-p%g4~03^LZNhFljW+R9myUQnzqet1-2=cO^QWnwu|4v=3iP$Z9__lAhE|M>!R z(_l#C5?Eq8U7mn7&9#x$?~!iP?f;B+xHo03ALX6gPwvGN=j@`UTU+ov1XGzenVm+1 zcTeMPopa-E&-xQ|YTHQKUOqSyUdTA=UUoS0@ANqOBoe4$^1o3d7-dn3ncFzzNII$I zXl5|k(w^7ZTApv&f}eHRik?H*&{^t~r)7u7Cq?Qd@9`&SX8y5dh;GfD@50XF?Rw5+ zmV(EQ?w-xk?BdRq@1D(Aq6`!-3@qgesU$A;*E}P1h1baYVs3?f5_kTvVN}%NX0}fy z>jcT7`y|LB`Q*r=`J~9A_(aHJ=!DK9?u5vqR&?i<@iODqe&^tp@Y3W~&wqB#e!g|? ze6Du(7ezl7zTrG32?xv!XaEl1W{ObI3&zN#MN=Z}q}0P|#MPx$lB!X*QmQe!vZ|5w zW2y%{>Z$T^`!Vxzf#@f-^urMsLd@qsM-3=l3veF68*4G&W{{x*s=2Vz;#_kOj(dlSzr-4`|6-lKm4rgD8FGeo|S|3!b&UNU{i zuOp;tn4Sjw+Zm{vrgDR-2}dukfzscD2iDzB5HW0`&`N9}?C#(LVeU7Ger%%B%5Nd= z?tuX#?)!*{`B5sQ1rXwQQGu)XbK6i}6l$S91n*&t{im~xf%DJOmDnHL!vS{vma}$& ziO;_);Xn9?gRuZM7UM*mfbhlwU?6W8=_6`1?!Fi=aLeL7mk1@yB^Np{Uy^Jwm;ynX zBwT|tosBBm7~pMjn@ge;_E1b6cq>W1nDvRI(i&t zmzyO5K0hr0XPAy7$Q0U=v|`yHoxU{u93Wy5lZ)XP5nb34@H$M-k$eb^Lt3*en$Bn* z^A6av@Xw`&fvi%bx~9Uz6G8@RHke<-MugMn4Fob!5p!fD!}*9&0}mRUr}0htIcDp6 z1QSu$gvX!)6@;u&tFYk2$$|I{j!dAc{jRg+J(4P@YjPD(1&Sipm{r(O!t_9q23IC% zmwtrl)*kSAR37m&sJR)zb2J;QadA>0Yl8z5rdUV795pv;oyq+83s2&kSgGj|mhwsp-*sr+DQ2;9HIr=>N>W2=qS2>hJgK zHmrSqa}Ha!bIxCe;if+JhX5>{^cp~L7)7SViamv!6ubpK*$Y-e@nI$Q5CebR+h60x zgz4r=1O{_axW*A6V(bJhlY6jeL@5JOPEHJC^)BpaI*h%TxE_e-Zx; zEY9!<3Gkv@$>l)&x>2&m^G0Xu*#Zol2=qLee$oQ@?yVe*jyVCLC;xUS=I(c6X4e7a z7SIku7E%tF=G2LcD=#d&p9LlZS;YqmLT3B4`4N-D>LNB-ku|7Tr}_LfTSf5we1-4> ze8tiIeEHEcvPTCQ1<{iO{|4;rpTRC}Fu3z+H-)CQMechIyrS~3Lavxt!U7d{8D@dI z1k(;A?@!!7aMP_J%rE*0dLO6>MjuLgzku_NhSF#6hURCHhM;HChQw#1 zhRo-^240$4`I*t(scGQupPBI8r&;!0#?*mpK#@5a1BSOqC7ZXhj`eGd2Kj4sv*o~0e=$c;My`6Id_)b6X!px8XE-aKB z#ExSDVCI$%sunmvf3~V-OSY_KrgS|W{B$8}t_iAYh6yr`08(gWocmmVyqgmb5iBJ$*GTJ!O-BGA5^= z8q%69Z3M0`ZMaQQ(g1vsYJbyA`EJOJC1B0M#i7pv9@x=P+zf0;Ugp=*UguhsJSVcD zvn8=1aSh@?=M3gR<&n;a%#h}Z*eJ>Bw<*jTAed&@<(R1k#F}$DXq)>2kDUFQvz%*} z1)Rg0!JJE%yPQ*-1D%_jd!2)tEu7nzeYh3rc(TYYy}32%pt49V!MIiFD6=RoMYwh8 zFtdm+Nx7BjIJ3wvjkvYx5VJ@xQMuLW7_%rZmAUol2z7}rSz8t81a!$Romw?2L3Bwj zVOv!yiF7G0Wm{{4f1Nb4f@5%OJwz!OY{txr|`F| zOUw)j#IUzO0<;Wy#BeKl#7O#FiGG({i2;mRqh0RVJwW6!v_sah6mZ}^v3c^oVOiQk zTu0tR%^IDLvKo_*u_;{-X(>YwO_&85?N#L*!kfYt z)0^Qjz7y$RMkku5*uXkLy@s81Lv&~KpOv)}iQTceSoq?P@MoHPWv{_%K>2V z^bZ*Q`p8+k{*=P49Zy#W91$;S99ZDWggM^Lf(7W!i@9{T>zoRT`zxtZ{oPyx3VI=S z+{k!Jv1b3jV$Fds(RyN@Hi`+-PyKX#FI+7_FCHxgFYQ%fFTz!&_aCc}7b{@qP&X15 z68C1Y#Ucax1quBExyl0qg>%e-A7PUyUqO?|Ux}0GzA2NKUzoZ<1LtPW)X6~o>7?DS z;)>ezkBDm2uUO4x@zdqRCdJyW-7BKM{}O z;kVODC?{ujV#E94sw%Az3&fDz(^O-#zH6Gb8RCkQw?^n<1C>#Mc8nZ$Jq865JrCcI4VaYnT#Ilv$+3 zB7~`U4hp?g{z@y7my2AO6WbIdIII1;hw)(VNY+!Yso`AEKBj$We1(=`$(E&Nl z38f>h7=f${JSU|b`Q;d{L;t08qe7CTW}>2$Mx$|{3ZX)*s*|LMuFAe3AFXCIZ{4U+ zrHs3P(I|JJ(zf8^B8jhF5~U)}ErMN)Y`xEMiaQa#ILKz?k8GHay(DW|%r=*bEoX7a zRFQ5o@teW1=#PnmW;NcT)|sD6KetI%J%jdARYnhWKwD@bOc^0c+}fxvU@Q+G{&NO^ zAG#nUq(_BtkPFceh+Ml!$)jJ1?%D6|AhS%OBO0kckh7~VdzDZXIZ?~*+AqWfGgNoZ zrV}RPKt5ItJA64r>IN!be{RwqDL*69T}MsD*Fr@*c4)c+Q29h%p`p_bHNovl62n%f zNVF(Q6k=%`XOtOxtplDj42`Zh@{d)Utbo(BNY}8?4%E4;_$1R8OV?SWFQ~&CuK<6n zOwhFjnmm;So*qloxkN*X!zO3Fsc}GznYz)g%}{3iB5K>>w$5sptUG5AvDN?H z=FSkq*x%wW==(z896GntRc}YZ)s~k&)fJr!1vg*TWQ{Lk#!n=UWY!;UAqOyH*cjmY z^gN7$$0yUuc7Fyu)2HWM#eMiM+l=dQSFkTUTy5Hlb^EF(Q?y*g+CZo3nl3L+F3v9u zhU%faJ-a=pdFI+S-)3=l;U8&0QZz$ zpWvaaf9pOcs80xcg-%~MaAi|(ap}3{tR+k9et8u9w)STGTxw2gRxjW`=CLZ7VZnG& zQsA8Vd)CH7ZU@I4x^Z4h3q%gozN?IHLC=!Fr>;kRl{Tg-xKE;p4}Lt9aHGce_Rzw& zQ*U*3O3&;qq?<+qwZsSwdOVoD7R^eVxiVy~7WJ`v(%3+| zJXp7u$CVuOXJy2eA)7b=?yo_Nn)b18aURBO*Th;@ z6lb94Q~@hOP>~99AP;RmBxD+ARZ!a;(Z~=lDl~k%8)y01ci|oc3=#!I(EjQ2d(^1< z&(-`d-!*<0*d=MpI3diL$Wc*tOwm==Mm#(%WRFkCgb&PwPtZA!_yV`MT@O6IOdZ(c z=BAt)o8@Ztt?ZT9TMcQXcqddt&Hd2~dv-bdggGS9cJULjBbSu>_pFZ3)GhCsUOsZj zzJ;X%isL!dR|06ap5^JOmK1rdQe}oLr|A)p#RcJM=B5~{>5+?vxh*Zxws~3Z=5~6p z(<1@Sz@J(4qUx}7b13(Xa9~w}zGIpL+Z5uOk<=W94UK8GPKRr8Vy*!HEKO6yP4ccO4v5~@(_wq1s6HAN1a6%2|7+Rs zymbEOxsH3?V8(mq&gjuIrgu}m)V?EU=f1|X2~XIv<)jC5*4I?aa~@r0RGrFs81rKE zm`aHU6WTXe%Xc0QVYH)hzjFk%tR%1+Yz6vQBk}bA20EP+LJbNz*lQ4|g{T^eETc7r z;2Tn=efZJ&NZNK0#p=f|)sz~8(q#PAD$dO=E3?z$PK}K@EXfc%v1Rtq$kaj;{`?09d(jJMtLwL=Yvif87{hr3Zu(n0{>;E1)jV>VgwU}^R@a@x zUvgM_D0aYt_DT-ommtZZ1Ty~Z$CNsiA-gk)e}kd+N=ob$r_rZuv{P8ur`oAWyyujD z;VJqEWcifR{L0Vtotw38VBs;U8sj=+-h7p<{efyTOoq$6GC1BqUT-~Mt<5^bG2TcY z`u(piaT-s<`-4H5IU#jqKiZ<>%)F%22JzcCE9@ZjHH ziHPXJ{>>~Q3gq)YgN1h#*i{f0gfnUxbP!7VF6>FyqoxK@_GoX~o;|#1eel1+M*4;v zTy#+Rp>sB&3V_z$|Fh=mr3N9mw~R3%GYeU!p!B1-=zD{y1&w5|Yw>`$x#5k!VWG*o z_d`wHt~*Qtt({znovj*YP+T zt$aFP@U}TO$;zg7Nm4GPM$4|qv`Cz5b;tmf5Hu@+}uN>nr>IF*Q-6~?BSrK8Jr zcoW#CF?LGp_VbHPE!L1EVFBk_!lAY#uTpK0tWQ;%efg(_Uq}Jv(ryO#${erOlAI@e zXIvQ2$uHazH`*z_e`Y7o>WNY~JK00oz*>Fm8sIIbv;-~+&H+tK;|z^C2w5w(#n`@| z4rDys1zv6d%aD0Gy*@`!1+pic^>{O|p%5X0v;<4hSj4cYlK}?7?|9XRdWN5hAAcy7 z)b_?u1u~nR^7p;mN8I!6S7Ayrc8+r>n!nIj{(yKEbbo$~gr*|N2!bs49o5erA&Aa) zZh#6IXB*uL*|3rxI!6)&Bn#>-;gbq>L(({JkgU(SgOdT|C44x0j zu@?{Vt$)Z|m8;7g*r3B7lT(8nBJT-F-E3kG@#%ZfE)j;%ceK}zA2LCfnT8WmG{}t> zeF)WWcb)naL9jnWHa^wb4E*aOr3km7#a*B2e@>vz_$wzo_DS9q} z`^aI>iC&BNgG09;;nqt=;ZHU&9w241_IURvGbF3B4*r^uC z5v?&V6n2Wy>uhF4BFp+=*5Vc@4ZmKgSVQrZMiR=S*!G{F3=#2C+*Nft)O^noiEFlI_ziWK{$<8fO+@%T|h} z$IHOO z9_csgd#)p1;09_BbcET*h!}0eiBs;^!jb6zh{7vUg(c$fmt}Hmy6fkakmI+NA3$t< za|zVr*kPg6ouI#qYjRhv<2W>jW7ANI-n3VnMS)-25$F)Ps64ZPH-7)2E^7s!e(xHs zyf(AWjlW;<2X46m3^(GaHz+C>I%n;!-tu1IVd`qh}2$Mw-i2av^xh7 zc*C8#rYv6UsC$qX)|GO(^(&W0K3-et&1#12Pjo`K%{p%^!)}bO6G1HJPc<_TL{OM4 z@rs4uQL&V!OGQ*P603B}PLIED1ZZdfK3W8cjwCG19h%bynF5}cKsX`#R6Z%H=&X@M z{5*wUN-A7Oq<~>6oTdC6aH2yIE`?eEPS?gb| z!33{a<*jyEpGz%|whOi~HVs}u-Hfw4katZ{Ky`P-gGJ+KDa!= zMEfa@ju8GAU76X{l?Qy=H>>SAn02@wSMB92BUX_JM5MAl-x7PzT* zu*lWQ%Q2$Ty0;v(1u)-H$r!(6&Uk|iZ1OgvJ3g{06AIkwsR?8-yL}i}fSXYAa*S|P za_dVA;(V$|#(=2C(Vt{t=VCR8eQIti(azE(Xp_pA=dQ>^spy30x_q0{8Z)MF@#+;= z%#Mb5k9r~KKmeG7TXjL0uDZ0Bk|gcQyoTpxWq%G}$hWanGA*=v;&{n%BW~ngB%G&8 zosYRqusfKz7&D_pSng*eCIiMnAqdWl9(RPSs!5EC&mD;^p+DO4O&8^SeZON$wL74( z+Wr#wrVNb~KO+?@8E%P|0mq+wP4mkFdp0YDDUr=k{jVG{x(XIGgdO{enFhRVbQr*XP{QA~SKd720wvm{><1!`?kLKCT~|XUtQroOVC&y}cWM1iL7{ z`Sb-%RLE(7Nm@5S9=rq02zcNG<W8CeSnF6B)g=2;pYiSy}G7ml?X_+^RvfOP~Fgg}&0E!bi1U7}La*(}LQVAtH`2 z?W>&+v4MVX_2h=Tbj#??-M1BS6_Ya=w?6U-s;Y)*c6^U*M$ZZ~Oif*82a#8ws(k$` z>h>!5X<^p`)sEstC5s}M2@1@ms^$L8@3CJT*fLSi{_L_|?7K1aaRh8B5a!PX-M0^A z*cYfNry(blkf!6mtW$=n4@FW6>qpbmWOUGE<8JpnkWl%RC;UuA&9Hnxg!sG1*1z@8 z8%zNw@&!&xE99J>e>AH}LYNGDB3Oz=Hna-2-iB;NT!Iez-g)-ePz4x@#%drO?p(90K+Vo-Zbih~*1H_E$0OMKlUEHQHQ3pEmBRnK$XXWj%S8Z3+E} zqf9ad_oLn8K7}$AhbPO7VH_mvV~sB_-e4#-%292rxVV7cJhc6%!_aXKOcGD$}5Dz zO3oeGRn79D6t5~#mFl*`+yQU37wWev5Ag%qNt3wXBNd-yb-)N0!O(1QpJX`@0&kM9 zCp}5Z8Bi_~3}6@AZ{!Hn)m!Squ?WG~rWKf-PaB@R*<#PFjhCiY$$gC|9&sAoCR`RDhK=IN>=HJ4qjS$K2fw$Qo$k3)=0#{5*J2OFbIAr$85)0)B1Id6pkMvpyuDUp@H!% zu*#+k%ntB^wRruM?F3&8`ZcJ=GNh2+_-pWG`Z+!=;Fq`><3_{RV45z5w4(UveFQ(* z=Thcsu@bk66YUgzDIZOeOnp*KoTpl#xoS84d>GMtQ6LIR?rVJofRJTpK9WR`ZM0c@s=GH6jt%p{ov?YU_I}xRqZ>$-#cXlfpn7O^1noP^e}8h zI|N^`BmsjG1?ykb{}BB+Vw`_;*R!I53ICiI{5cP+i$=_iRqFt@XG_^U;~oZ(B!2Li z$x1jIqFwUra(3)^+MGJMaOiO03vaYDWqVC?s7*-8jx{{W(Y!c6&G8j*20!tj852x) zKr#$c;P@4pE!yiq5gr&Tl`ZkwLrHc;BC@RM_+`9Hrc>c-fFrNAwE_pnO;tv2jf zHoLs}_A-YZmRqpr4t6erJHh~8>9mp>KVR`%n%iI3Q&Jyu?!li&`=7|g0*H~;3Hp;9 zX)6nposRWKid8do*$68vb!mRB#0ppCKn-)yQ;+2E2=U6n0O5?5AG3;>`uO*)fQ7-g zD>LlSc-PR8Ok7qhWRht+WXE1sJpH2FoTK7SAG9!QJLja9DhLRQRk=-!v|4@04s=Q# zADIsN1@uh^3)846DJ-K;>@7V1 zSFY((&H8O6RAp}rXdiV-WAxIUi+{cXTrc7mH`&s88D=GOp25#z2~+f~M9MxJw(_m* z37_GdM3IDkKFx4d4v*!?nIBR;W}fR(eJrFwVD5eG-LbnN?i2D-QQlAthRQ!U$7GGZIxQ`x7uF`M-Gj#^}nLXxlg)+qTh3$F^m zFW(*azWsmiF{)~=x#p^>x%MSx(6)>8+y8!I8bTr8pBU@{t2eD=&oznUnr4)01ooLK z#m@n>N9C65*894X0x5~@+UJ1NXj2%lNvvNyn-{jiNqi-)K@*oe&1S4A)Kn_iRaVOU zQk=QV5XU(vET#eHVdIwDrpYRd(x{nVtZ!&{E0t3REq@%!D02av{_UI1P+c~jtmLZ9 zrb++$gI!w;3s7uyGpdE0mmL;AvaaHfd{6*ps@}L5ytyP&kiJpv-fF%eJLEa(##e~< zKCjnV`oY0gkr!rrX$uA4lca;3-yA8LEn2H81P^(5lYH;+| zK{0j@A};{|ga<18#NvA5kwmagzO8*MHLPl1vEM^lEihDfU%E5h0YAu0$oLoE#X%<1e^Bx$?NiyMDz^~D)sr!86r0`;c($E?=kpY% z!?1~$yWwD!z+NN??ismTbWiZGEcPJzG@VBKGS8g&&BGesGmhG7J%HMJKDFhN>Hu~= zAI{~aLy|)^F=y!yeA}&KbdVgVxeGfI0V+!h;QSs@pG5W|Rh(=|_`XR(Ofxa@g%+TqG z7vb8z1bNDc;XD8SJC)poBrl34Ez;^@x1q^y=a+eD3(1S-Sh-U4F56e*v~;CU0;mNDp}&Cab$M6waJf-*6n71Pdo*=;3D3k}vxAb5Sp$L`*hDA9G|} zQ&ww~2umEmw#P@MiR?FhlDRUqcP`+=1i`1>+AjtEN(DD&ko)djA9VGTR5aAHM2JQ> zcj5P%BvIl3t4#iEw)_l%??aZtA0PEM)7i$&JoJy^ME#S|w6wg~OZ{{Hm)oopdp>_p zu2R01Gc}929OTX_B65B2b=nuk>BR42afM`kqv7V-`VRJ|cqfZ0kFy*N3-bk=#6%J5C%uf>(*Ic*P=MCWH|5;(>@c$PUtaU}4ig-9w%DTs2}J+> zJ}>}3U>Z9;b|OY~%gL1To$E*qGkMr$v`8rp@KqqJJLoaudhqHz?OMjj@*c=hsEjWI zO5k8tjvo!sV;f?e?^kLUcs2l_{-m^Wl&u!|OY+0}1?_$l!*O0+=3I`6qo$l&=Qp04 zP6lXrMa}=+q~sB)`#Gp_ZYfblEil9*jeu-H@{_cO;s3YhQ|_gG4o3>B6H({_ak~1DS;m1;c99Fh#EB5AIz?1`8;6$ph1Cw6XADD^ znXx7z{WnEJ-Ge(t9EUw6{^cjuB4%x^16x`L7marQW@ZPA5=rx`IUhHdCPhqiT${L^ zv}5AE9$haPjgcr{=yu*j&tR`OPa7RM7hpkKjDVg?#dqG0fFC@um&&|Azo{;DA|*gd zdlQ_4^u^y{%}7yt&i#uEj{Q8xFcqKMowK`Ihh^c7j4f=O7jggFz?!nh!^vN3dm@dz`W!>ey^a!{g}b;@Que(P|zSEEbd z5X5q6?X0F^dhyd{BO!g}5GXpkRY|xuyKanR3Sgq+hv0|2G$sQ*B0D03zdMZ^o4g_x z^2%2{s5*q;1rnCrFn@Cht-+cT_geUE#vPkn zwNtRFgUFNMreKuz8MZXGzTDjuj&_CW-Sc9q>w_AFAFHZ?nM{gl{p4w7n_HntvDFtH zVvg$)AvgcrydP?h*Jfkq-mz`Jox#y^+3TGH&M?X|aeHJ4U=|09OZf3hdTj$GY22kVAk zm}AXg_jzB`HFci1^x_g;h;oGJ@RUSFU$2h(mx}7@W)%GXPF7DDNR8;{DSn0*%$u<+6{JT%yYX9 z)6s#9t%3NQ=$ehP3-J}qf@HSsA=#Y=(R-!5D$#e9um|*lyYcG$#fXO!vek(+>#TR} zbp1xbM2WVYm%1*W*((5dnRv)1y6gP)Cy?YX9d=+jOv9qi;!nvZpo}!`s&Dfqw++DaV6mm3#c4+3im9`>ucLTyS2FpV+FOib@{;u&68O2N@pZ zmznM+{`{6*RxvSBK+e=eY6`N{S-pAdEz5|q?(^SaDq>M>)?)b4OsLEk%cTY+yTmWF zbaayVl%KCU5g9@{2;c1++n|cFVvwIvwW`H0hrQeF>$sfwczZjugxskQ`dH4hoKg4v zobDLwpyVNSqc>No4-YDj9%i4OLV7|O)R^V&f#U1PS;SXnI`YGNB@v!DamppNzgD`B zk^3LO7!2TT((>FL|n zXM#zFOUo>a8>9gQep()VXre9G>=2G#jpE0iKAY{RM1x)j@Vr#s2qNe>nNNmyv1>0! ztV(Q1g?wlfpwmGBlav$Y4sg=Cs%E1`v$h3(Z$T^5>R}T_k@7=T6xlxnxNZDTM8`Yxc z>SmhljI=pQUSpe(Lf=+2pYD)MM}W$M5>Zn`Ecs7h?d?#t63HMz{mjQ|l`I zloGu_6_dToHfW^!@%J>+gtYYy@Gyv2l$s}iml>{CKl7Xi4nDqVLrO2L?;v~Vi0n1+ z6#1rDQd4Ff_VRFuG5htSplQ$T`a9`B$I*R$Ptsxdk1w)XxyxsNb*ikO3LU4@rd0#a z`rGfaOHQNJ>SD4a7fZRdN^b<7^TTaWo6lV{+B}<3fqgUJriywGfcMCBy=;|l zrGAa#=y@x(+&u4xu$#rP&>T0lB&gT<*!hKFcF{3axvJ9Mp=h1Jcr3Ul=g;-dK%AF36eChlz3iD4jL>`Ki_=^h1B zwZ_@Az|~od)#PZDTUXatuv3H$$LR76E5pMwlDd{TK^`2@t zn>(2={)Gqm4?pvHCv1m+TFK2|B9J`U&PzkJukGs>3?V^Tn6y3-T%YUzZ@xo`VCjvm})?lv{s30@E zBE|gdmY8)7^$gn<)wKeWE4U>JF_Z${O-^ux?iA=R92=Gl+#+fI-`I0Qh3tV|r z#7j@wA%?$afce9ggpOx~H(IgfLTx`Hk=DRR?IyiveAF1*))wKO^Vpy5(h4AE>XFW? z{w`)STgz8)0iD><$}=}i8qwtAW7CSH>r!6IzQBROnzb~JLTYDoFH(e z;hv8CBJ-vYI=ytxqqfDac+91?))B-<%b&ZbGu=~#B%zIj^-2isbse0m27?dedlf2;rQEX|1TuAzN=MrBF(?2 zw4Oz^%*+&jVr&(qa{W{dPe)xxES9Xbsn=kJ-8P!Admp}3Aj9rG_k-3cXJWFk-j_EA0=6S6dLd9V1JcwZG>t+O_K-&Ww^6*zKE9BNRJ zE(x&(KFm=zt=MIW3>%qUyqBvrwB!g7ZwB;#Pk}`3GXbFN(O7#uh*hr0Z`c~8t1@~* znqMoc_hL?gA0-5}LElvE@}Cf~x40q%ZiVtwt`|Ie;i`0O zE$=V|PWLRM{*s6Ue10L?isMK@L=ZxxKM&Q=iuin~?ij!TGm=Y!ysHYJsu+mC9UW52;af3s*@ z3+l{8OPxu&cxem}RbPA4o43;aJFeXrcc*w>Q}Ec08j0Z5@cxqGrO%MM5m({%OG^QM;p{?Ed(P@oaZY=%mJlE}$?Cvoq{OlZ%{N@Xdd;*$;2- z4FrIMhp1nss8_x(DNg+}t==EwGkHBl*y0X7j9;(sGWy^)XH%Modj_XhfjEXmJ6C}> zWntl(Hh!_}8~>Z|(*9rzfbds**Tx2_?{?esi5A<#eS6Yx{y+mVFQ&fjWhwjK@8rFG z>M2n8OmqD-eiL8WD^S`bfbc2g2<_8~$P4_ep(^l2d`A7A(@U40JPe->%c@YvN~|L6_b% z(_y3lg+hmZ{F$FlVO-lLF?H=iDLUtw<$I~E@=f9n)n!v-;u^lAG7%3Kq?HsclHPm| zX|V>YGzp~TiB~?>TRInUfB_9WC)XiHUy_F6?zV-bO;jV8X8o*|k9G&i)j&)e6_^dg zQB$E~Z(3OXue`J??+Oo+7mG#`wlD3d{cqi}a>M=Hw)-srXcW3iM&h=}r>;H{|4;r# z)&iMm|I2cYR6abYyafblualq#%CUFfq~-X?xUb-qt%P!f`%LuBRgwF7|M8zf=cVzL zY9Q6|4a~P*`iiTs1hL&4DO_C~qZ>Ca#i+(smu;bkV;E0>X9+>$S;&Ny%2+co|9)uk zRlH@*LhsY1mF&$uC~DEEx&j+g8}Ghm@}9o(yzbPW`81=}4YPG--UKlPU~kxR{EhZZ zxDn|R*Dm@%4@=XOaGmFmZ_H4}1P(DqiV%Mvr^mGxF0Bhk;;S2pZ{V?U&;<>ZHyQ%E z4klW%N?yGh#!^n9D%%tok9yj|FuNCLOHbkiD>5D_~bWsrg$b7Z0Tl~ z!YFnARMar+a$V5J!_P)a6Vy-UE#l7;#+MoTzjNbrGEC{soNT0uuY7F0MNU8QNJk@Z3>jad1hajGr&l5e z?q28}T#M*ftg~IZ&X#24p)H;X+S?c`D2S;MdYTf^h&67ykg78mq#ET&wiDhLbSP2o z#dth(Cc(I~u=uYVHP->%%AM zi*pgT#Oj=xPt(|D0~%HRgz!XDHYJ6!Zi3tHqC*E1Zl8$vzI$h07JNJn3NaDpxJ44q z=EJbq7cD4Pngw%`5@eGZk4I8yGp8@C24yR1qIJu+xw*Y zzMJO7lCWYa7xP{e6|VQrb=N^MpO&yQ;h zw{dTF*057iIzm1L6B#b=+1b2cHSJ=^>G3gUq*%g^O>Bct7j6%^z{d8qItL;B_f=^VZ?9s`f%{joacve|jr;*`l# zZ0Nxwl*-s6eNj`BDvk3x8N-nCU@We$NESDXlD+3IDA+jKxz$u<##d0j&o{AG?^f2E zs7q$mD;uYeOtbZq5r+*uPUkau&%gkNJro^y$Pn*>e{D{$Gn>0+ooJHCf~nCi#p61n zIx*e2Pohyf?~;E&VwAvzimB~*(J2jir{t_$S!3@oTtP6gk<1*rUYfq%@tAM-iJk3^ z8vJKv^uq$<`vuGSTx}fJ^AL(IkIgD`ty%b3m2&Y$6>nhnlezaxrJcJ+t|~7?Y=uZy zK6NLoo0)wHjue8F(sxs)$L{ys@ykm7Mhvw8mifKr$UQ*n+x(3c76?nij6qh| zTVuAoU5$E=WJ?IGmWw! z)L>klL74;<+0=L_dG;{3&>S%cf*dDX>BFg)Bz9sj97WAenWDPl0gEsQXZXchtJ0%1 zpB@sMim1S4WHh#_X?zl;M8@SOLsW+o%~n5Y=G8tfBYH+}*v3-y%4JS$8qx?qJ!SSDg^B^#;{|B`6nLl;wQu&oy?)^M7#@(r6&kGA?UcIDz9j!Jf`U`=zy!~2LymO{WN z{==XmJ*U8gi3@}Q_>yh%|OmbGh^dzO@&(kQ&hhB>-fuGkt_k6z;=f+ z#W*OMZ%&(lPdpAI6fS?N7Tj_Y^spi{Dw`V!VaO9r0D`eav2vkv#~_V~MnD{LJp>`} zVO6qGLuA-qtqK6GU}D^hJrPb z|DN$E=m6E8g#(pP1Ii5^J#*pD6zw+W?I05?e$@twd0&5jDcaVYIUao$swO1SgfTh* zuKodf!Xe!9u{(3={4y6(Ct{##ErjgSR@K>b8xP!{?Ih#<^%es>x-=fkh0K_rcGL?s zHb9vi_}k3ZXb94;>b`hT>5l@Zhtau7jckaSb{i)}+vbn$^+a|VIjrNvH@Ar+X+;Ba z|1R$)cvXdaAWi8VFYyx!{KwRZ3>ixttjnZh&XKs)1%?Lz%{2XO<6z#!mi-Opo_xY+ z;B9965$1vroq9>o=;c@F!BT@@y3qn_3*?t`V@}iK6*4Q_YtN)NrlPs&c;m4XeVe*) zsQr=Yz&@n<>Z{o8pq4sOn1kY+S~QZ=4vZr9lYht8W$1xYHYK(!y!7?rXLQKiT7cO1yn+pt3BVy zYu8nvACoRg{94BPHShbUo#E5yqT%}(a678+iL`B40Ykw<_NT!hJeBuF_+7!QXMJWI z^#g3l=&v!NDT#OPPU;4AeJqD)QYusHPH9?=W`hvXP>~j+_I;)cCe_uRfM#4yG#;#4 zyr!G82<*?L=GKBAqG8Tb5X9f!tsE%0@>>1MLEhlhPxN7dfV9jA(+7!*SHhj}6VpGN9GQQaGtcZ)Q(RI=de*~nXU3|5 zAI<5N2a^NAz`@NQx#K~yF1f$<5HtN_XGs*!khdp%k=}WG_{$gV|5ioWYo|N-#N@kq zKH-v`uAd5;^iAkyIxxZ9|6`=A)AJM@&gnUxQBTg#b8_%ClL~0p!PoA-xd?>Xyi{Ql zA%Z6%Hsp6L!t~VWcR{`DE4*+oupO~P({DqN*eWjeQvMkN1IDk~f}piU2b7dA9vFXB zIEqMgEd#yfW=8tG1|dzU*-9g;0B?H4-j~?wj!)@+&mWa-JQeD=T)@zy=wsHDiW> z!YW7&lgDKWzj}x^*}s!fWIU&RaU9I-s+mD31r=&>vaCW@Qa7)4`zaJ)f0 z$0>E^ZFUTR7?cv%*q4Wofm9+=-O(g=F&v> zm$KYL#SBF~&Y%IxZz`WSfIaCr(Fpn~ku`?n&s>7D{rn!$H|QFDz#Nwa!a07GllCHz z4yhy+HQ@!WaVQ@WWz66Fx#>J<;L7x(XN3&Fr?h}aHov3fWN6XuZk+o!c=C*{Hsdd( zjIb#_kvAb#M$H@U5i5OLXD1m*|G)hvMhwk?6ERiYX?ayA{RaI#MGtR z-HPVWXq6{!Gkg>DzJ3lr$_h3FSLg*ZnX+z3Ex+f*YoTW8R8{$2;&P$e*4Bvi$l!)5 zgK8OVP?3!V&&EKd@Hg?7|1ihRz^C+$=EiW(U7Dw}L5XM6<&i(Zi<%RdgFn2?1^rU+ zh&+8W1Q)1~|1@x=@R%5>W(QMyAs#!iN;7O3kpaP2RE4*VsGr4ZV0j6oQ1a2Y{0r`n zzwL$F`jgV;3E=1hJ6Yj~iz@+BUI`z~NhA30KI{Z9#y)imPz&my$_v>?8^OA%Xzv8N z(;TQ3VpP*XN3)?2w$ejc`;=g!{-$m@kEwPT){<(y1lEN*RlpAc(`T&jb^?Zyz=Hvm z!a*fR5&<3-7A(Wbu4^vFj zpmYyKTKvR+@`om`3$BQZI8f95IJB5=_(3TA{@TQ*g@+^KGdx~UHCM}PXd6E|)I4?T z+hh(fc|v{*rMX0X1|dT-&ZJ&pJq^PB@C~n{-sd*N-D0Sg?r zklZ&LHFO8&^Tat%rB7G`Gqpk95FKq4gnQnKR^rMXJ)_Up4zr;seKc`;cHyIH=_X^) z1u%oh*J3DDzb!^+R3mkZkK0^d4T}js8i@K0-Hwp7z)Da8DlS8;#k_H`>)CQYDRkEh zLY)oE=tgK#5jr*KQt4n%&yQo2D2c)e8Snrc_NZFL&uq{?<(l{pbvQcsy=n4|kr z=U;$Gf&R1?M?&1sIVLf1k+6LIq_G_Vyvs}f2~4jBB;82n|q(Hc_@XDnzho`|zYkcM|%&hTCcy0#3~V^#>Kq@u>k+6o#se zL_!WZ;Dhr7x;Ig;*&yRpC3T=-DcG@Evf}mWwNK>ZeHm&_CfbL}B$9van-H1iRNPT=yvY$Vc5&)Q>H&PH%hz@0(Cfi1@0Z`f#*YA6c`@R1~;Q?L9Vb(Boz? z*@~zN21ye(r3PWn(0<@(*U03c^3-6im~a~#Ek^E8Q$hzfl)D|xyq3D9sl7P_F<-ej@{YV%n-jIE^V)W|f}UiDuPK!*N`=y&vJ61J|_$9~uB z9%lF1OUIct;`iK`vHdZJIY}c^1`K$gNi!C%jpq@yi!wnP3dOM=?)B%jYP^F)v1W&`Sq;UdoP7Gg1HPEDY4xa~&dzA6 z0qCYz{SVW#M1(yClfX*vW?OZ8U=jBZ{#+YIFYqs#2_-9jZnL8tA?-~O1uX=)2%autj%|r(k}rF0y%yT9<@xB%Zojk&yyII4;(j)!oz@+&#KCM`=GIH6ry&^gR^fB z7U1Xmdh1>$$I_Y9;hlX@q$AFPITk@ip%$FN-yaSm z2>>T(lzDD3b1@;tS1{iaVa>HJWuq1zIO8WCZ-a&B~gNA>f7 zJl|}CsB$h6Dci<2t<~mkar>ByGK*0VF^60y5U(*~)Z5h^Xwu(8vWS3*zP)<9oRKVf ztA^z0lPL;q9XPFCJ|E(>x5;&VPOUin!`u~o9f4Eu(`t!;_dIa89gDYI8kd}n)-kt} z-^8VrNFjsw&b*((lF}OVnJ`zNa2h=)%VO>@N>?I)B*1VtXeE->O1TNAH2~5i>1J z*~lR?4iWPAm0xXUjfU8euFW8uuoq$A5=};0r5$C^!FWsZ(kcDGIhj3!vxW{MS#fFw zbsYr@Gl#mMxJCF%eJvPegGu5`Q`;s*BqnTk6srQK>bOWN4B)j@5V_K-X-d@F-QV&r z2X*B1u*7YIx+3eYqgfMODuI!SFdB6XWNK~POGE!dI9=d6g05hpV1-=BJQBmA@_fHH zsfp}WbXsD)`4oD(ljjp9tOli;H$Vubky~IV!W$1dhU;;E!S{GPpMbXqzPxk}J@hbs-_BazmL{GC&pPk%Pk)-*@mg;F^9UVT$W{l1F2HVRJ73)|#m=puxj(*7a`7jK^hS|~ zrN~#<8;S;r-OX z*{JAOWs5X76*BTocoXUpL+1D=_2c?Dy$5=g(p!ey*>Q05vk|?*U@co&mhS@vu4dq8 zipIx|)c)ed+2PTabtUHn4q3Sf-og%3KK)utx-?{w&c@P<-)DH^Z#+1j;q{8T6`MN+ zGO>exP_Bv$PR&kHUa((fBg)Jf@wE7o#!sEWe?!_22a5#vIQJ3rhlM~c$M?pt70>WL zmI8kwS6sC88_0?I0s1cnFJ4B4OpJ8EGE0(aY?8Vvtzpe=+5=GoN*k^HiCcv7>p zre^Fz)Je@Gqd_%|h0cpOEwdBi#gfzR2FXgaE@2H=%w|Je)A`THARQ6`4%g=eoC=oL zz4YtuE91nYIklfvLb(yTe?E-Nl;8Xj8sB7F1#qCmIbX})u_5aKWXu+<4S`?S@anz_ z+?$i!;C3OS&8K>f`uFltgq694)zf+K&~WEt?(h=2p^Yr#{d zlnbE^pZ^o3k>|l+r09P7rmSx|M=2ID9|m{vJjA0qo9z%0^`XD{k%r#k z|D%PBp001t6^14}?O%6@K-meZTYf0fZWnxwDmS9NZH6sKgto{oBSgsONe0fQg=d|F zXB}i4rwXIgVX%4Y)`_G3b-U6awH2!lsnFBAn<8bhlfW(ZsgTScd}ok_8VEPw!Go_s zshcgxKok6a+bn84oL`jgV77%Ai4MgW+??iX7jX}5m}Uo(w8O&kJwExzyc}YDs6*w{ zFJzKigF`!lU`E=hHQJBA1E#nO>yVqDbCeA|If8E2YICM?L9I_PutQ1EfVM7h&ry*K~C0 z(dw$}i7=IZ+-JxMe|Uw*G>JKhr5~QPN^mT+0gbqrrld+)n#RE6#nNB;&FxCh-HQHW zx{G@y60JMq+0|p3?`>l(CTs;6xK$gk=?c}00|+MAtELlmRTrK*5P8wYB^)A{xHsLxK42wq;P~Z$;RdMeu8f{3G0b(0fd3e%OcGe;hL{_}H z(KGC*R-zzmf+4JXCR?(PSwlIdUh%llS?r|s8kryAESM~?VG}olvu;(3%wV44_UcM9 zV>!2YRiHlbd&gP>uOCfWaDj)tICGu&%k=acTz*M!Q$Cvb1l#ZCn8Vv$d)otww@l=!{ghu z-D{DA`uM1sgjJcUU!anAGP8JzJqsd-M8tT3L| zToT(fLOOw8PE#EEn%|8dUZX_%9_aL{+^;|w4lVgk+$A4H>1`5PnhxL#gjXw@%Ubap z4T7pXf|sgYak#Y@nHrp(>{z+Md&FS^Ql;X#h@VH&R$De(#GJ$RmC|RiG+_k5s;0P8 z0~Ywunj{)twlQb#BoHyK9pI=4jlD8JYv1xyt5W55#2Ji9h}Z|)?K-ltnYnm& zL-kPvdnnKe{k?Wo#*x#Ol$_O!c?$Zj@mMLIpjdVM5&Zc9!|-PIyCwAZ(#bE^KreT> zFYQ=Z4ke*JONtbQ!72d3(=|lLzzh((=C&6 z(OkqSJ=GVgIvN(3Z69q(WtrS&w#I;Uz~L&m$c&atI4qD;PnPCj)NP@+qI^-i_-{rm z2)V=lPs)C$PW#56e0ShSar7D0wcmpDw&Lx)?=wsQ66!N?hZW{mCB)`*9|Z#7T^7wx zAZmJ%SRb+tcw1Kj+38vqtWY67BUiHJ5Ed9U;O#a*=)4jY8f@ch?Acta8Y}Po5Y7Qf zJ?B+Qk?YhRgz4LNKy(?4bg1%j8d186$Ax6f$3HY_W30g6^C(lufVE>1l40}j%4WN) z*O#h&Iy0&@Jg)~c&mbMAa@zU@>H!Hr@}{Sfhvjx5+$*_f!n$1d(q~}3C8%_pGl>Ke z1bT_KTnhILFbt4le1=TyNodp0gF6CMdj5ghWY=cbwLdsxN5Uu)437j5yB)ye#AVcI znx&7CXxiC^`iV-Yg~pA&+aMtvRBlx)o&^l8?nmY+E6c^Q!vQ;12{}ceAJX@{+-D9i z2@CC=qY22>E0=fVVt;^Ao?eM8!vvcmxmSG%73Qlg{R~)eY4H}-fu<@&#F$y>4X``$ z4Zk9PJK`yyN}8H>uGrc+F?XD2IXXDd3of%w# zUD-*sae$IWMj3~TU;2mYbkS=;T}DIaYY%K(4?fnFu=_qN4GtoK3v5}dd3UWT*QWA00^5!N;=RfNsVQwlI(12ZU~CoqZ<)qnVl38)<^;{_eV7ogTK)ty}yY$nL31(Q|M## zv~;WN54grZKEu>#?$Ha2xo=Pc% zR0}z28qG>fy64Q1atvE^dvk9rxno4qsc?%4UQxg561LMLqf9P`LfN$hu_Gx7hcDWS z#YWY;pb5@c-3uzXGG5}W{~A5+hs=`Gz{q3&qu8REy_$U?pItpar|aDkLtc-wC*W(L)aH#> zzR0JIj(71a>ctOVmV6rfbY*eA{p|6i#3wQ~7KG(g4q7epTc+X>7H=jbCh3h> z3N@5SzN+6W7qNC&3{|A-<5~{@QNsh`?+`nH$7U+>tpuBp#+Px95LuY#aI zGltmpCxj=7vW3Ems{BI1Z`Bb$GiXphF883T(sImaU$A`EMWhOU5%(pX?0qcIhCIR8 zM&z0!XY38-Ef>A{5g&OK_Vr{Uc)3G3@Pg4|wqjOIdZQenKgF%io5(K}#c86xqxavp z`-+j9qYEW~Fh z6D!GAI=lZ@P4MWsY#gp>32T{4v(3PFI+Dnsh6(9->h8JyZD%zvUJ zQ-@OkGRKxyT-F+n@Q1~mpXq(+R8l|N1TkeQ6X0*Roz!E##NKoPZ9NXK8zqkvbqV`w zc2ZZU9Yk-&TV;S%Ikg)lsn%S^rGb1s(}p52&(gH@ZnrRk>q&=wY}5Kk)@_TV@tma2 zdY*>5r6KsR(dDjQE?4nH&sbM9Qu}=lC&h3os6`%kysKrf3`}P_UdX~e?5oHfJVFO^ zs%V;{(7+-sutyFomw(oZtsyn>G-ZT6v8lHFK5&wWmyIX79#{8uZ=*`*xvOH)nQH>Z zYR$|Fwp(b}I8W}ph_Gk0=lTkDFetRVq6M`OT9nDxsRp$8>iv5UboH>5e7(N4%9klO_MW8x#?ikW~hg~s%PW2un&3U zi1?N4(uB&c$8x-@!gxDY@6>eL3*KpiUCl#L2Di9Q2rZRF~N1;=_H4+F@x4<@j#!iVSD-;C{ z3QBS(G z@coOW1gjp|IofgW5~*arzd(?}7q6Z(Y`}9tv#nT=$`Qoc;gPC9mki`mz55S_*7REBJJjGP?`n79IK|E9K!A^a_G12Xb~1elfUX3u?9n zZZ>E`j9{!&e93~-{$BwL7g@x@l30}<%J@Be@<8fS%aHB}Vw$D6yxc}59t)E}sYt~_Vl}WikC&jb}jr#Wr za6xd_-#g!86{#P@QIRCHo*$W1Dw3GS9`yD?y||z;UqWAu4A(qoTH~{?Af{9TLMHV- zMcs3j6rWFK3%GsVnha=IYv9$2@pTlA>UdW$a-T6YH`wT~xkvVdW1Qn-+ie(7A+T_3 zQCYZ|fyiGrdd7)N`IR=co*6D7BUk$PJ$ zA&ub!+0+hvEHJybmWENrZPfV{xDp{Kqx{*DU&oN=s_Duyv_^TH>{=Qin*RNp#gs=^ zogu9%Klsy&#|Xr+Rr{DkVA zYn~0tV%!Jnq2bf_C`Fgk)^5_j5j)VLJIM4j)0WHi7QdU&ZK_xFx#cpp4#H!`1b8nC z$<8-mvPt{|_V$@?R#}lDH?CUAjh%bk)HzJd?>0$*TM`Xa@R$5N#;_9I@>ZKajOh|F zN+o(A;nTXRFg`@!ib);8_BOG)8mLT|v_gy5;oN+Nxw|rXJ~i z?`z)7+A2+Ht9~p_F7x?|7=c-)7Ix)NLcpB8xOmLtsEylUlEs8cNT66BnD8qAAGP6y z#e*N!nGS>=${=_C1f=jqKJL`KMzb6ymlzF<#{}!vN+%4@PRUQqn@-5vM3GoLay@sW za3~B(`kwZN{i)k!Z3);U{~_a#&!*Nr14@TUk+BFJFo z4h9xSzad^|yl4r-*5(hIlUmfHUm-T208;jSEhk6L-1bp`AF5Q&{<+6cUr|7iJdScWoIeJexM#*q5o?- z-%Tk`8%nLCu3>6b2*=V!ZU9oCM&Mnte z*{dhwkH!C2*f$4f5`67uQ4d1iS0YHT4TDdlj-jjzbeQq=YEE73cIIYqv$-?*vQnrlGg<}QtHga#Vw{A(wm2PEr z)t{P2c27?=$iqZz**__jnbk2yNapUy>P>Lrto3LHL^_sh*N0NqSzjY5=M(f2JK+tZ z!YW~4MUp<7O7u6dQ^wxBa`hYp2$5=Bf5_18p5mg%*9%)r9&Tk7*(6iX9%VFB)KkSM z1l(9O7RgCdP4`bB?=}|SKOUb2)oIOMD&*LU)Ol_E-XAQ?OH2$aTyNMt%7~=%;B(Si zTgT#*&=0{EIm`9KbI1elkjEY4C$TJs{m@1 zGBflUj>$lbuJDZ`+Z7b-KC0OniocHJbtW*q*%XMIF^c_S1Wc)1!;5*DngMvS<&uAG zWhO_?pRt)|c1^AZ&?4fqV(exz1r;)DH-P`mFLJ6_H-xLl!4ucj{WM4vN-S}Md4>4o zE)OEx%iSo>cF`Ln?a&NCO0!xX9x28vCeM9;_7|+j?rhdtj zPit15+F$yI8zn4BI3GuQ$=(tsHA2jMz%~LB1#q*l%i_m-{6`|+iGLL*0B$Lf*m;fQ zrzd@=Iw`os9CM2pTja@mu#%C&I{6b;9vb#0Q9EwyCc$WX1-I8VVfQB8)n;NCmm&Vj zaqIvE&bVx==lMzrDvP}&3N{X z`qT%~$R^Sc&NR_1f~=a7aeNF8mzGEOdph4gO!0t#mYus+#D^Kn-|B=pN!Ue&2i{{{ zqM!bShNi`HNlHnkWTvBtifff0z6ZBbjGQ#Ug(gqQqoH1d@mDxnJKGSU!SXJ#a+41# z6hAPkYWBQ97g<2pAV4GHYELcIQChhL0{af*{$~M40X(x>;}+JU3r*}3rAiSiaT%g9 zhG4dnOxYSGzr6qwjs|snH#jUN?I2eBreHa1q<4bf&2eEqdiG$?3IIP!nF)3W(1WN>4mxib z0nAh6TuU1d*t}du6k>0-wzCI%nx1TXPG6$hX^6u#>65@58~-k>NzauXs~Znmwk^BBdyLzDofCEybIrTs-rb@P)r`EF;Poua(9 zyvtu#id$qnM3V)cpbsvUoD)R14cFxfzmBt`BcFHqZG8?5&!ch?kIKOB_!mRfjr6gYY3BEP)lVX2eOtjWxe7YjwGs80lrlL)Z>7fL{6 zstS5bbQcD{|MpwREAuU=Y;dz!;>d$3N({R>IY?XDEyMHra-yEje`??zcD8y4rQvWg zIn1UwJ|gmdF#mcduT%9yFYO8nSZo%n)^9lWYFTL+cT0f0KB6%GAjvI4TA#;VV{N{| zIK z`Tl__X({}3?X$6Rvr=;)KfxAaybHK_8s_{k zFkV7_x!QrtoJ|EtFPbCQU)2?GPxI&geD}6e%qR<}EOcwjCQ6_TCl{&9R)lNfgJmYO z%j8-ywXZazR4dcKpTGz&p2*EUO1J9pcr=Y_zd<3vwQ_#DbdW!ey31Wu?l%MVj6)&f zR`&wc6+AYX=?JaVO5)X~=RQT+beO&tBSub|C#P7gx1-EUc*<+zqA|G?IeMg(ae-xu zDxAlAT61`|dpdk!)x6FLqO8>v1~r}>NHwUQN=n(qWH!Gp^J=G@Q++&Qb?a2mG7TO@ zR@}d0ji8je?`rf86-qz#MWs%TgX1I1$%3WVQaH0U>Y+SQBLVDE!!SXvV$60*n(rcG zI|sH(dfgP6HfL)dR%*;AI}R+M3oeeZGnuwWG~-vEq{ilFH`8`T3!O_5PlUYp37NqU z;iRSfwGmhdC64T$H*$BOj896Mvk!Zv+etymyg0TQO%iMq*GZ(A$Z}jtRG@pmL!Ed( z^q!EuU6Sf@R?^LUfyomHZhgd0)WT2{i|xfON;X39zJ_TtKWJOmVW${`DC0O9IHIG z^YSF!K+qX`(GoBXVD(z+-pElD{XmBqv7v|FL zK#7Wc2waJ*ME~Q#8*pVmVet0jRkP3vWsjISL8Wr(Ib7QziEEO(y_t3r$_n9L9x4v? zQnev{g4+w17ud6X0SU_ZCOd7tHsY3_tsjTCwDhmko(oWIw@ zDjJG5eb|^j?nyTVm~!)ObVD`Nxd=xOk@BiKXA6Jq=L~7BgcZu#1lSD0a3_ zI$44aS^&;Fo(w^OMJy)-Q$&ILlETq4Pgu5{7bK@WmJXfp{NUI}bbpRJ*8?Qf+9As^ z9(-r7=V^rn(~>i8!zZWPJoc$f8HBGrXjK1#UaY-|x3ErCqBJRD2@CeUo9i#$n?BN% zj+&?IGbk9sFO=fIQ@{yT#Sp_UT&x3^+Bwii?{4(bLRTy!5 ztj^f?n!5J|ST7hra;0GFx#0$;D7*1xjepQk?0VsST740|_ulLZcYdSgU6n~}du?fW z+mFtmAjEKZHq@P`BC&}e%u%RIO6{>Cfw%IQ++o5gHDKXsyWY0tvAUB(dq5I{w&wmL zC*l0r$!g{24D)ELNTDU~$UxLT+tJ6QTfX~rBb@@n0lBUcw1~=GlNNx%OM1^5ft}sv z?cuHC=kE4vAs#IoHtqILBC__<@|&32*b4ONn#VR?o6Zi)z6>%(cE>3QBb-V1_4AcB zt*FjHG{Gz$9f#nzj;`F2W>nRlA(NK@5t6o=w)Hsmvv4(aif}rFqB^AIKZ~>8u8h_2 z+I_~1$A8&E8gHtucYWL}jQ|rnav~d3CX9$vq{OwLK?VqKd``drqBH$bmNzW1f30ju zKi9&-DzniA<37NmX3H#AHSxjc*8xV@VMeK|0+wQhcpYGHpdK0#7!ZK6k}J>CZt;oN zmQ82;rf*EIzxSWGq;A|isg9}FsCwgKD_c0QPL`#NDQzowO$Z*Vb*!hN>^)}E#d70n zSn+W_{mlvSH5qZ?J*8TAL#4E4)220-T@SL7PF}4_U5^-UXcQw)l>|!2;YB}*BYb~6a{U(}%FUkoC%Qq0fd#al zS5s|g!Ri|EvmKY@P>*E^c`ckkq5$w16J_gY_s)faPw8WV={}TnUh_jqpTPHRKohm9 zQ~ETFUCD>7lk3kPq?v}Oby86(LA*D}!LOE|CvXja4lRXDdDxsQBHdKJ!q@h2lu92^ zo2ADdp5?{{og@n6_@u%sF-+6n26CpzfaQ-xYWiFadwC0?Fqza}3T+N|2I?=70YEa% zK4#l08J%`U=hdk&X?0Bx>DON|SD0FiPK)uEl}&tg`DecOKe}Qo-Xs`VOsLu5gsp9; z-qwL);^jc`>CVWR>#Sd=V!2~XdJoNu`f*tWXpJ8pxX0iE#Wj?;4wV8|_SK(O2)=$| zk@nfEV?%iO3#D6q!2H06WU_J(fTT;Xba7fM-NfpS@_;*R45!MhhNoi00L9|j-f4@Q zx_jB)?wJR2%4WR6KU|dKf!VQxG#kgmw4i*@v>J7*MBh4dae24XB-gRaNJ+KXH$mSZ zUP(Bhm}V)*Kk-1v%@nf=rPXsPCNrS|GJ!JMtN^(^FA^(D|Cr<4UO>&k+8W@ma7xwW zM90|PeAnhd*4_K)O6B5J&XLyIJGb>vFh(L~ zdK$AM!4OA4dJ&fS;iRw_P|L@`y|v?Qdv~bw$Y*Ku=*cC!`*)I-qp$n&6y0Hr*<>7-81v4lOF!d^e|X+hO{faAMcbk$94n%I<_oozZBEQo zhv1mcjIpM!ash}7xc&Z{yxeSo*;j+AcbMnT z7sDC#-mvot@8f(cYn-jjf1D~|M*Jc2?lbUGGMcB)I&ayry}CV_cnKgJ4uS;hR819) z<5H<`dP$p9x2eM{YM37_Mm6c?p4{zGc&~YYLmV^?ar@Dyr|{uN_ZO}yI@^yar#kDS z>>Jr<$-1GWnxz`jT*$G1L}9=#!qMwGC<6WXOfDbyVy9VJK$kQf_ZPc8tm}Q(J9!h7 zp#C>tGO2HJ9ouwXpaRR@Yfa^!e>sH;O**@m_YY85+R{+^18sLGGS^XV}g`3dtDKlyw`YGl>Zb2~4i{K~L zbMFg{2b3{&Z?r9YJM(VfU+z_Ay?=7<0Hmjy;&!&ovscKGXS9)2?%4-Z9RqnDh!HpV zTWwrn``wryPVi7KXj40U*wdL$;fXB)mjl%xCgdT^YV(A6qG0=w@O6dgqEeuo0yY?b zo30E|UPF-;vB%_sN_iH=WfjUxDi=H#_IMTwCut8`N=S`>hYm$xD;y3!Qj5khH(%9K}C@k1P~lRLMj z8Ph2;M=FgnSpCKJ-O<$Tej`_jL>>c(Ew)@)7_eP(FFJ&fHPTTpkA8lVRK93ymHrD__5fNk? z8gFbp@6+fubUXZz-YUWPBhK$1hni(S_Z;7CET=hq$^j_kabdD>sG{CXKchgfDYD9^ zbdiBQ{i8EUZy(y475qDUBhpVb8n7XSaGBma5?1LUG2G4BmYHU?UE$n{5W7vkYUJkY z-s+~R=BYb&1tm!(@i&z`1~Rb|ib9r|^VrJUJvZ}vj%43|Ystj`u(R18@A-j{kn3c?`qf?4F|B&fH&EQvepcWT`}u`v`dmGUdP9w`%c%5s%_zIop! z&xWfE7-*{+#L%~ea)9Jc`%dt2)%-nUgU_T3f-y?SLhFPO?;z4u0@zx%U*fzBvw>Fuce>)?+x3-z=99%x>N}+Ap4M^H#F1-afudloYyGcCN-%A)8x$M(7Uws!h>y(+hiXRvjmxE)@> zyMuqbyz(ERDqv-L6^?oaw(l+9V`r*Y&%R>2&+v!bEli)NF%d*pUKaCWIsIBBoYO}1 zli{3Q{H+msH;az8w+pu|LxKxdW=BE(C6VpN z4TEig(;?S?PUhYlU)KV&X_$m|3m$>Ye+8HNTdbO219o*Ga;VI58MIj~LwMa%W>zPC z-eS9Kf9k5aFUa{({O?oG;8>DyWLxMKfXU4Mw9k%Q=b3c9vUYsux2@qu(A@JTq~7m* zr2Uiu_FKDKy{Pubw1N34#KBEsu5H$LP-P8=ScVpY}LpKT?a% zlq}`SOf0DC;psAb*WN{0bx;lXqPj%@0@;8%-+&X*PVSvP{kF}QSZq4A?yDV^xrD`! zKf{@PWQ6s`sJgMKOsnzfz?jTl0rcX*t}cO`X>vESdVv=@-yaYshVf+*db5O)u2jiz zurBe52U5Ejgq({g=%PwVL9fV(x8Y(QaczVc7V8VaHno#RC`Mg6=Dq0u=vWHwL!+z; zY?sp{BkL8aoffiO4)-gWhD0EK?i#jE6{(%guk0#%H(Yons1jfs(RMa2Ny#pD3AV5CGR8rQL;82blIb5&3)e-tNeBRNu@v!Y;S2f(2)e$;gL{?X zw!6cTEiDBCQbCUQ5U1c>25hP%t)uVK+PaD)sTMo*qWYn?LT-g~gzV$D9~B!gxkGuC zfXoNd%|5My9k!e#Q>g?np_pNVGBr;|_c9oWxb?gR(8*O+{zdL`>e)v~$C$E`bEFT3 zW?Stl!)cR?(csAn-n~=&+2ujr)0n0Mr*(~tPS$kns$MQ1_>g+<+zRy#VoFIbkbZLEc?+10FCws4|uqeGRROe-8ld+!3VY}!F|`}; z3wbK|EsQ-;>%FA2EP7V1ft5r>)*UAU%FW*8B=1E#Gc3nL3ww5aq5WhpRF$j(D6RYc9-flhcl^*-Td-MZT2rJ; z9DVHziM+ycu9HUP=XNlNkBof?5Dl@iHz<+*d*mlU2=tA zgBWjJD>3r(6t^Kk?|({lA3x=LFa^>{|-;b_dn zJMq~0Eq~sV)=6*iJCSe=IXNvaEco`+fxo~)V<3@e9z1`hbrEW!AS}L&r zKDSUD5vs$@CO5{sBM90PhD;b`uyy)5DOG7ys!#G*^Cfr+BAZXosXdEx z=c2*g!AS4+iu{xR1P*)wWmN_cknGI_#2d&s4T&3zPOPp=|wA<~qV!Yvbzx+?lZYUlkx@;4cjZYyw-EEV9A{oB0x=WQZ6 zV3jqgk$-r}r1UPYfIBbTUw1Kk`^bU66T)cih=SP_n&u7fQqak3@mvB`TMrQK+U&_@ z#%I)!)4k*deyJs9+;6`!9rmfXT;**vEdkhFYN@ur)%cn`3U%7^QrAM~6MZvT=V&oN~H8h0ZShdrwxg)rMxN&64~y2ty% z>k?ct-Y)IWIPxVI`gK!E*Up`=a}PH^PN;53F|N~jK5ule7SwCn;at%kJrR?}uXS>M z;abVzA+^8nQauACYSaEi+2mZkd*J6t)aY411Ui=eT&}8pe9&B0IH$tS5LKTMs}W{d zjyJh0Mn9`c+Vi*E`Z0Y-GZmat^$1URwaS=$DC~oKk^ht-W&B_dWcc=pbj|q2gJag! z{$g^q5Dw1ifIC^NxiCfLNKP3`zj|?UdQ`s|B_A@z5*O2Rr47xK9GxE2O3K0e{cfo+ zoPKG5u~2bl2@~V}vjB>XO#dBVn_zB91hghE1>5lJlc_fBkvwt*&~3Yey0ip$otXHh zCp@=u+S28qX{EEZBz2%Ak&&`dH`ynoz@FXXznR7IS76Cf$ zAuN`nn445w$e1$wQ+}?2tjR~pd{fBh?`t++E_)@GcAs@NSaOVO zG1;CulF6`mK4zX#EWs*Th&Fm%Gg|sND^QZSGF1m-*Do}>9K`$eQHsOFWHuZI?$sqX zjK@G?Pe~{i#EIT|u2Wh&ckz&awvPH2-24a`6yUZ6JRiDJLX<6TPd1t1rVRvI(4^VR z|C09i$9He;#tL38V1qJd^f=c2?40EO!F}1d zannEQ{NRxw5DDCZUQ3nBmvs(YO$#4JR$mb8UfLibv)+;|ZwaD_MVh2&7H%`V%J6+*{_g!qsXs;Z^8v3nbqX>K$@nN>n+a@5w{R*MrA zvNlvwIaUF33X9O)Y|yo`Pq|7FsVe)3aK$%i@p7j zD=ytOuuQdVKnEkRKX(^@MX)Y0zZRWX^(x5#xgHOdPSsem+sG}byB{LbkDz62~FqU=5!R#gI&vMry|tkNQ}> zJ++>R`(7zPraRoe>S)0S94vW6>~L@!rhM2yr2!#|$nZgvg=An;nVFv6A4u60sJ!$k z2?TTTDT`8C9#*pb<<=q5V_!x>Z2bTr8N!(Kf%qsneL=r<)A98j?gHSY=q}aD{}J;n z@iV(aeZBLpMy=||+bb*Qs%oioFa?OuFI)cfjj|#&r=h|%*;veVAVm#}49P_Lm{R6) z`GKID<6ZVTezh6OzYhqtpU78*XsGp4&wVu@&>DQ3&-O5xT!(+>`h>S!^hQMXxTMKv zkxJng;iei<`Vc*M+R%G%fz_}ZQv*g23}SoVWP?A|Tz?@jj+M@R6Ab?NPr_7GM1Vce zN8ot?`2lwPeFkJjH)r-ga?^~S?X&B178(z10|XQV>^uGU@?8#W!bBM z{}`n2YvzCEehaWEkF~}{;~G*)#NZwJ`r#(WPW8RCOuY4`sQ=J*{@41r)YY6PKM=;~ z#}hXwrs~#6P=w1%{0?MT^?P8w*GUbfeC3*uLHU#rg@Fjem9fT%Hyis?R+YCK5 zQr)a;i%s+kj_v5azS#|AQ26D)%F_N|QA3#)^}?qaAIAbxN&ma=Sc#phH&5b7NiOWJ zFBQbD54695teI#{j$)oFGn7~Pd8Ob^xG`MMTE_9k)NxQo`p{s@L%y6HFJ#o2G!nVT z6K#I8v=fJ!f3132=OI=dh+s@}E8=@UY5giQy2E-?J>9t0^AXRA;5E-Lwm-{^XZXIHmH(u<+I(Y=F~px^KtVbF-tS$WG2*;a);@)>Wz1F^h? z-)W=0MeCXODvHvzWV1M@V|f3jui>sMZQ-sneG+&>p8rT+ zuN=@0`&XAdP0jCkpx!0$viLgu5$$>yQ;Q$@7Rvf5k>APDG5x&Nr0Fr2+5-}|^@eCXCtxPzu0IoXfHNcU5pv5N76U>mL@A(x=P`;};; zA7IVwPG_64sEb<`4T3!9IbvXN)-QC)Gv zaO-+WLRbDq;F({3>qMI6-;r_qhQ=s0?J-)Kn4^=?*ABF)mmdJHOJ#&2BjvNlme6y)ru#m101Q6Gh%u=U-2%jrmCOz}z& zB`)b+&-!abmQ}RzR#dWD$kGdOEwZAKWU=~_B}a4e-dc2_55eimibq@_syZ=mt}+iX zaX#{A7xl*Xl|w}bb1LElc~zeToGX#ejd0ei|C~)xY!8k5<$bY^#;3=K+0EBY%M$l3 za^w|+8*XpH8CPWiis5pWo(3YGXBL}MD|2Pv?3mytP7%m^ z5}ebl)tH~+!VWI2z_ow>x{TBUQqKt9KZ6yN8m-v^>dXKq8lP^uMGpv8cg()m4|1pQ ziw4&1rsU9=4o=T?0USlOzR0P4sY;c|itfq~yCs+JwDaQW7m!3PMDSS$WNziPBE@10 zh-;uoJX^y%+rz)0Y!XYYKs?r9d%+M_1Q0=bIIhO?|9eRI&-Oy`d$W0|m7KKmMYUvM z-R!#QWgp_k*B-pNfNw-!!@k0fH$Hl<;%>$Pm7!19(zERyZJqXw%eLD5b?-br* z=g$RhWS>vpslSGNKnd362+gpsV0S=EYA~Ine}mHpUMcvfK(dNmDB82&%8K31S~cL| zi51VV-a~f^cQf=sk`Jdj`s!e-4^Q40`9O6OGD<4N$GH#!MxdF3Xb7!G;GF_9$d*Tq zZ?k-g`I1xZhysH&8tc%a(3z`!awsa(Fm<|?tN zHoa(WYhAT>jLH>3mot8h-4=G4^LC8n6|R>lz_ zs|UUlL*s*BhI~5(U6UW_tZ?YAWn2HJJ#E*QHXXlAzW`s>U+%R2$zuIlBIOki3r!aE z0#<(nFik*T1Sl2YSU@iX=ow&TK<|2}YT$4|Q+jx>fBC=+AQZr`K-)l{&lX;uwBGZ* zLIc9P1oZQ-W@3&p474N+P|f@|cMLf2r-H|K%vuPtf|qxUpYcE0;xT>yVl~CBW7=*o z>gC*1uv0}-<-eA&az)eSza6u_Mx$)AVD5#tz}rQ0?{s;9XGI?EBzeGW#mMiJKO^}@ z_{ED1h||O;u@KryxHE;y5Y~@MIwkRt*pJGmhrUu2GNvb?7noYgt|ht^08S*hlIRMo zPvpE3^$Ofiq+eMv>5pON3?{eFx7CxQ(2Nc=XqO^gjn-EU-Lf{#rdP-xW61Ynsk5?< z4hKC=^|G4}H(!uGl}V8K1Vv>`&>%z+7)4|dodK*Z>CF}KOd!<% zFE6jD^W!UFbQq)vuRfJ?gvYqPMt0@rIpZUYcx%@N`Xy<0aLo0^GvhnmXR(5w1qm#g z8Vvj3y^$#+T{PNsSo46n5`<-dEF3Nu?_0wQsS+!H}f1tAo$ zNOB%a__1RS^B;~$ydt|&ODA;9D4qX!5-Bkti=d0^?J#*D^F>Z?mp|kCM)PlHlW>j- zIK>MUuo#9)G5nNpRSIDtz4%tAKanH}BQ|w`=Y--To=$&x8kn?1X{{a_4>im$Slp1> zzscaY?14@Ea}z8Gv{K`WSwdFxn3bYu^XLu47ot$}j4r=2h3Pp;ai=VICLG~gN;jnJ zjvpP!Th}+}^#rHyUcF&DwSBR(?{vE>`ImsF*|+@QlmQj~s0}da5D5MEhCCUFS!ZfZl*#EG(v8HjW@w1V-Gbl2jfoMG7Gf2WeKq~&zjP3lRr-S8d|Eo)DKTQS3 zmBtyzAy6Qd1z;27P%gkf2<6Y>HlSY!AI*Z@BMtXZI@0N2FZce@-p=ws{kC=6f1jy* z1N{;@3NTA0pe@B96JAWnIpw!-D5Ge^kn&4wH$5y484Fi8Gc5HOfEtRGWlPZ3{*C=y z_PotqE44QBcD7Ho#VgVmfJcb8!jE;y3skpsF5!%eDY&E7J1iq1Aqj{yA_UYRCk4FU z+kb-1X5icUK`?(N7_ia!H`c&C&ilH+W`57H*xr+L_UF~=RDhQcoia{*Bb3@OKYn-|_$Mq#%`>$q`N4PBx&qXdn{tmp9{naXQEAKyTXsgISm1(P}Dq26rdJX;DMt4u*p4+_W zdf4?^?F`Slcz8(mRDaj-_3h3D_Ga%B+;u|@2B7yo8~CKs(4dAp2ynb~-}Ntkfv8fX z%6qIC8<-dv@D0xl_w>h3^}z2FfuTd1fzYY{*z;IRieuFhWyBOgxLlYi?EfZ$Zyfwa zCc$9q5i8L|E{4|Yq#l(t`+WH=z^P>z{e6Np|hcjj6P@X_Ycyazu4{Y1&e1QwN{et!T^yyXx2Q&(smTwiX?NS|7GbU% z*n+0&*&LR_&mKpav9yE%D{ps`%dk`Cm=&kM^iP4k?6;|H>GtSUGVRe!EtE>|Me2`~ zxhAW=uQV5#f5Yp)DJz{#Cb5VXJ~m8Cia)^0x^4SFzI_mzh_#)8;6fZ&m+y zwt#OLaSoSG)V}rRU@s2Blfes!q0y7r-eL|VO6J&=B#a}8mn2GJnHwd%8yzPL(YYNd z{v#AlQ52|TRZ6v~W~OCP80E%wTo7UBbzB(Z3yEnGYAA+jnkKuXX*dP~miCxb z4cOBLzHA}*-X~;#?5cOaY!ZB$^y+^;#`t{d&6^xHHPOfN%9QAbsJC|#&z$LEY5Hn(nQyEo_Y}v z*cN1j2KfcD-QJy9X|rDS4Je@fZO?}?!NcN7q~oY$+hEh`OvdA=<$YZ!Yo@$#Y#K(* zv~3zE-MI6}%JSBxBx?TipvGxmC|s8jLvdW!2}kk_moZE84A&`744p{9l)MpBb=0;~ zt^1bC;D56O{dTPvawMWgB;r;DEoXWKtylgb_@3us#aW)0K`DBk7g5byqPf4X0N1m{ z5;17mLG)d(hwTI+W+o!Z*>M*sz|ZHi?62@73e_T=ASu!c?$wV*J%|^T{psWdDCIOGSz7v&wbMw2!_BLeuEkDGsbuhMV|L=1BSly zb`8hA^KJ`@0C2mCp%1v*MBx9pUC-9IV>kP_)6XLrt)&nxYtRUTJ7F>zi>DQ@;(7Un zN~KgGQp$8drBbF;DOSn#fX!kxS0P%?cEROxI#(%P&G!Kbi_K&+P{O!JCbLEajbB0a zJueg9bysJ*jO!RvBlSApG-PVn(fBX%G#bLCX_>XeT5QX45E-(&fI?PcP zXF4u%9_c#FlBVc7F0y`qO9JZuQTZ_n_i@A;V3e!_*s7e}0qG-xGKS`66w6IK*l=UFc_L@EL?05f2#r=*KA4^4XHg-#lJeg%$8cx^1 ztvB+e2_>y%V;i{Dz>H8)6IESQQ5TkNTu>9&eOOo)5RPJ55>cLHS^f=gRhqQ4W>K!2 z7+rcpsApCEH=64N7r|JICw%yZC2Kgr1D)PwR+WA8VMdw0^I=w<{{xO;=6~9lD2D&H zd8wadT;{o>t(o~9L0h}PG+tRVM^#=~yTo;7TQf`c&$f1vZT+HVp053(cKQFWH}ka3 zn~ux8PrRWhj<;{|`YR;~2ThI?zxr`-$^tXhPx@euMrV1a@!caQk{9C&6KRGrJ363t zqR>AoR%qDH zKKpUrKbdgclhv?G=P1{xR*w~JW!to@?loEU?T-2%y30SmnimhumM4!syvR>IpJtF% zA=FkvUvqct$kSC88UC2ze#dCmZ8@x?A=D&dlK$(?x#9)lg-%{RB}(`>UQMgB1;zQ~ zA#qaHjw~m#<2TWBkd_6Kq_Zac=T`!mgS*=yPn&A*E!tIdZ>uq-&RL%0t}$gSL**R(*0m6V#~zx z4wLAZHoCv*6uRenKGS)OhJB~%>1z7K-g)(sK0e;VTFg|aht5dnv}^|W6Ec0`=k#XzlVz53j6x-H{ z(mtU{0-N_NRgE1^i;W5u+Xa)sD2%mfR4G?5#Bd2oXtO@YH6f=mAxiQvzJvv{?u8`r z@GYk^1Jd^UsyunWCzq|_z>92hn*n6&f>x>jDmAb3MPs-}VhGm6a#lB3kT!T1$ZEtW ztC57f6!Y_+Zl{D=N@SL+r^7>P&G>x~P4Q1{=_$P04BBiG8*a%JuD2`EzPT{Q`oFYM+ls*oSXO_zLjc5dsF z!{xqBL|*LG1O7!{*sI-Y7BhwdyM0Pm6FX+eouo?=s`)e5@hMnxdF-JV1$)B>ECIyH z8phOiN^Kh*p`Ib;9M;}t(3WjH*9LY)X=x<*)2{}Gw=(?CP6Px zC<+qK3wBhacB-~#b0%J`p=n4}#8^c!{FNo= znAj9H>8Wl+OAKqoakj`bbwX4))jst)FD*18ctMY`9%B+*hebq(1?56i7<+0w@Irch zbMJFHZ<@`Q;J)Q*>J1G4xt~t_DdG~XxuOM9ZKEzPtYqZ7r12mv_3yl0Y(=CnwC0kL zk#K7lw40uzaBVf4wyiC%@9#lTV?jcTTcb8>%KKRo8X8WPmnT^T%BIna_iVZnV+-8A zY5#PZWy@RjI*KmB>htLjoRkq^E_e)2vo!-vC(26;voMRd4u)fMhN?@Ov@zR_Xqvtp zM?V(;d)x+z-UipYhIxlHcld#K+zTSc;EzSK{mX6}?H%Ha#-o~wgoc;O5`y}Qnt%RU z!*+(C%=G-GD5cE4{d2=TrE7iK>-}wKBO06jgT@Q%ah~gd>0{=86DdMRNfZowF42sk zyhYB!QkChQC-cE&4Ogs_*?qvrYFKQdc`Nv*J+h$$G4_055leoShF?-AtDOF%>>v+- zksaku-5bNPcUZE_Aijo7W5XZJo)XGEkTOqq07M;m!bQb^*Kk zD0Ntk;AMp2$x_7loE>kOl!hm~D(;?QsrJ4$+T#Eq3K)~`n@`G-D}-m_pzM z-hpqPbHoL-g&{A<`Uq~4ATG!XeT(lSqi=zQA7dh z|9uZyOHu0*p40h1!7O>TIZtF%|0$9_8=%$@+$By5XCcL$J|B?Gpb)S%jr+`!Lljw% zgYywIo!)BS#khy>wQ^JQ_q}0{e;-7gh#ybY0BZGu!d>og7%wZ~#gcpw{&qe(2G67! zrS*=1|C?%gB8Hm>;cgFpy8nHFa5t&yg_YKys-RU>jd2Mdh}V(&U5zhCmNV_0fb1dY QW@+8U2fxE?-gc1x0SuK?W&i*H literal 0 HcmV?d00001 diff --git a/dev/deps/Source_Sans_Pro-0.4.8/6xKydSBYKcSV-LCoeQqfX1RYOo3i54rAkw.woff b/dev/deps/Source_Sans_Pro-0.4.8/6xKydSBYKcSV-LCoeQqfX1RYOo3i54rAkw.woff new file mode 100644 index 0000000000000000000000000000000000000000..ada806dafc495907468970d6ab6f0f492e161ffa GIT binary patch literal 74348 zcma(2V{|6Z7dDJW6Jug06Wh)m%*3{BTNB%y*tTukcWm3X-~9g1^PUgqd^x@LzIxYH zwRd$@_3G+XUHw;9L<9sB1Ox<>*a`&U`wSL6|DFDi`TsdYg@i@E3o?G|9S8_Gb1F?L zi>REe;VoL0@69HIlAE^s;Ddg0`gl91O#~(1cW?=Gb6uER*``j1Vn-LJE-!v z>gkj%x*1yQ+kJD9ARt&AARw%D>~>v!rdDnyARrb4ARsZtAfQ+lTcQ*8X2$wPARw<+ z-+t`>DXu@ko!K|}%@us7e|;+{tRI|wlh)!?hFX%Lxo#NleX*Bf@utXRD~_1$et;5P)6xGY_scdaJ#Y98$x zXh%vq!7MeOs;uXGv^a<%?ZEJc72l&RT^)Np3XT(5aM2Z~9MpECOu;%7{zH!&2v=vK z)hDY-NbG}E0i{tVtFTb6Em|0GSCO5-(GawSw!$q zXTUQG7_cfq7>osCcGTYeusxNo?QBjS0Jw{uUvAVUKlLH=`M2kLu|_}GbM{hflV%6b zdEx*cS2(AR_6&3*CB3++ZrECYOFJ@KQ664|1or{1%Sd}n{J|6-q**sCuE421;qK7n z4`!XGGuPp(Z7&~R*>@PeJIv?Bt=+$0(fl9DW^v5oVZ-rzuJl|K;!2^gdGC`f2RKGU#pdyD=178iTSR@m4hXH==go&Ll`f_@AqyEv0r{HUoc-L zqQ?ft@b7|UU%9wDo$84m~$?KW8e_`F`<%Z73QG7CSdn%X%nhVr81qNXj2u0vq$+JP_AKkbDu+ zy_Oo);nb2gvT2vQE?e?4WI`P4i#kKWe=06b$}NhwbAXG4W8Q>0CQb#b%!$aK^Y;N4 z9GoTpdNn2vBb7;(vHuFxLexiqumJ?^Wop<;C2xczIg zb^6CdE#iU9W@kp>_LKuhf`M2H%OR~EFdcb7YL--gq6AxXU5h!H$*L+HmlK09Ot%N7 z)rYv~dGMOEClp=ykJIIR(^C7vYLj(&(^^eaWlj^aP5x>V`aGhAlnk@a=0mj*3v$3C zF$R7hDmSdD6H3)F?fQ%`X-@fZv<)#bVxB-F{cBq|bxWAVfwG^@aa8Xy3EnmpWWOY5 zk0yL@Oo?B$U0}D}A74AcoKVq!*S~A9{C^sq_2KR3;z*o#H{vp~;XIKW!=SdbeYu3^&rce8XtAY=FO%$`H zk5aGeSu~%0IwRe6s%4(mwg+1)fXNr5?1T>s-NLPl_WR_IxX-4ovUfutrj(&qJ3T}8 zB-=5Q*+Z*noF+X!YD0N&dsrclk)}L-DLoKQdc>&6y`mh2T8G3zZWDsYcd0Q37&Rcqw8m5l>OhBr+PK8y z5o#5p^o0r$7)!N$F*?hcu#aWgF8()?1aK}fZ^{shPe#PK26?=~5w++x@ z%E?8Q3RO7brBeSvx8PjLYqAB*$~zxRsA6xNRN=W#3##Ae#`N9iXTyGX7xfqjB<09& zNb1C1coouqti#pVNT;`%NEOIEtfROvDJ2xe)H2p0rpdhtz2I?EmbJYJuAUI7gCB$S$l~f&Pj9h9e7hM zhopLm9lWFUL!Kk_-XHYby1Q|jI)~wR%2m{g`2u)bK^fmhKe*EP1 zgR0Zpe<9R8Bm{0`F>dFp6g>9h#XOGQK*y<1e@q~QTd6_EZsJ?lVdL#hFbBQQxMt%H z{#8f&Q^(UK-*xW+;mfhI*KYisDPQ{%W>?!1N0%Gs*30F?*M4ywT_3UX8l%!Q7=|1G zPGf}2>P2Z_OhcVa&A7Z`U`zHC1H*czE2>egvB@<;Ra3G?Xiz&Ce*f0EpMEK&+zw-O0VCJuJJQPTx&Me=d%wDGcgfBi{ptp11+wl~!n1$zX8;hfOO&)MB{et6 zg&-J#5dcd$u3eTU>U5!hcNk7~OTT=4$ zZWixqx`p-Fujw(ofAv$gkS}AO9G1;GiC!-%PDM*PwKwf4Wy zZ|=s=sgnZ=-69W5#U@`^tL1Yqy>Y-i=)Yval`1VQ4xMhU$xr4#gAg-c`!bZX>xJMd z5tEkl&YW3bhP=7C6QZwDu{0|DGHj}oj6EgrQHR1zK4Vn-`D7?8`Rn31trL%5I4if^ zrxirCI@Oe#=HfJC)<~sO%h;G?e!TG2renNif zwg4&ajKfC~G0Zt1QeuP1_BBQsgEh2%6LE^=O)|Ip^R!U3y$#PFWsCSQ=2@ynHc^%B z0pp&`nK_s57=`E6D6am+uIW>qMX2fGSSD(_9;Y4s!|!Rs{|KGh=qZSDgNW=el`y(A zoSI6lHKmkQ-5ZX7bQ#0$@mirNZO(9WM*7)$@x@k+wO_H9PO9m4H)vtZ=Ik`TYYm^d zx)01VHJluD*IC9~Icp|fi>?+t96i5GksIK5Tx&`U$t!{cXb@oqWmH8p`fRPvIWx0e zl;b-0ut%SR4#m;J?mhp#1Ss2PZIm@_@MfLfGjO7HCnH2@;)4p za&WNCI6Zx2lk(&K3WA4lgOFog-k&j1{7rF~A8I(^p($-_`v>!~S7Tz(eQw2`hXQdp zy}M}}=Om6^i($^Biep;KHgWF&ZJoS$G_|FF;z3}Y1T($LZ)DHFoWWP{t{&tUA^=^E$*;j zDp5=PbyC#QsK>d59($JEI+?3YLUoh}e~u}&8kL&}?w*oY0^^j)J(6~I@17Ip!Mjse z5nzoL>qfnt>Unn#OHQ!Pp&7Op5gJk5)rfW`9$3EMm`iw5@{b^?iA*6KP`tq0mA>Y_6ZsHJ zuOXSg5m@sVT)Y7t?P+taL(o3|_3?}CJW;-n9@}D?bASCSZ-G6OdkZP~h?@VzYwS*6 z-4eXGa^S5RK5v_P(C6dzN#o;}zR8NlM*%=Yl+MwV%T7J~;a?a*JFf9Cs4Q-l4%BD8L%03arTFTII{BP$pQT zjloVT9w!KM8;8lL7bqqjCj^a9U1*g_%2(!dhkN5M*#jt?XMt3i%zrXxu$`u5$|=(% zrCE^#)sdF^FT4W@%%Acf%-77MO&u(0@ii&eZWS8dT%a2Z5vBEU;vR-}pd|UWR zkk&rrz0klHgN850QC|Z$vgb|DyHu7|yQ}7$AB{V!MAzMGM}d=VKf+3IuyS@y@+_8< zJKHepOUls8EYg>*9`dJfAA@JkDj!u038I?e5RdAosS2#|nA!Q#;{PBlB z&}9(b6sEdZ>lh}_C28Jffn82@_u@%>(K5Jyk`dAkblqn{NG(xn$km$)CeoDZ$w4h= zd(v2I$>}P@aV=+iJ7fElTObjaR-apdBKEvCepAwMeeTOs(3-WAmuuFu%YI%Xwan-$ zMMKngFsC|)BO}q2;oRhRNfQY%UFDnHw&@!O`qQTCDeVuT7hQXDz-_gxup&7Ik z{qc(XXag_i;RfknHnA;MVQA7l2CRh$MyzlvnKlElizd|zG* zgP7Ijd_*^S9iceoa8XU*Wz)gGTDm9txC+^y7u@Y@Rf0WZ4YkaEo+Mkuz(t6PNK9*f zqvhnD*ISNVl_a0@@$SXs-=Fbc75KXYz!XIQ?-5bW2A1ehc>M3AN-9xYl!XeZIBD~m zqWPTul^(}Tm3WJ;%}X=QJet)cm(`|*xu(L*Cc29T>oEGRe+CV7u}j1EOzr$tF(gyX z@->q$2^-l>mlNOYb^g=P_bZ`ocn*H$Fq{e*O@qrukoWqo=@7QtW^ zCchwiK9g5`n0!CL*Yxy`v8eM5tq}5}LTRNRTxKaeY^1bUwyLs^2I(m33Qm5!j9hJe z0B_x^MMz&V53u9H zzeuPlV863YcS;9A-QBa5`#x_fvzSDcE3=JS|{U=RD375pJ|RMWyqC%30;zJt#`ADzret@DxgRoT?k zex0plk_Py*KT&|6%4mL=R*LbZ!{7Cd-%U;FRjpdjVtT`2Rw_)SxCmwc7$IB z&NUj-+##}{G$$@Drx$EKAyAbJ9QHqQW~dQA#U8w(^^oTBeT`}Vy|s1suzG`?%=mCM zL2YZ)frRHBWkqLtuGLxt+(sl#tu&1tt=1@`l<~foP4|-dUAF4Z@)|ADGc)qRgsJ6A zZ{?=JtmjqGE!tg5q%v1!(Yb{%O9YorUGNJUbE~qLiw6V$rE9v1L z^fgp>qmYQBVnXWs)ZK~K(QIbpcQ&rOvIL;B5we4(?(wLf-wBZ3br=E(`(xa>-toK_ zX*L~Cl#e(?tBG8z+n2vzHH_)!G&c_~+}9SWX4-A+%QyeFuRY|pujj|CAMtsef+C%; z$hvFjx-UAu2J<}vhNB-kk*+~sdqZ9sKaNSf3cMd{`Bb`}(Xz{Qy@IEvulUwDj*+$w zJOo^n@G6l8<(Vad5j-ZTt=98JkV2&E_=fX6Uf7R^^WSccvCm5g*-nQeOm6Z_I?SLM zEP5j}Zt}P~N)Q-uOv&7@k0A&)LPV$bX2f~81Mml3oxozEkqaRF(MZI=p%qa5Swnvz zkcg2$&r5G`gtQ}2*&>Ha&l)ZCq&E!%--Z;B zWy(Q{oSVWM`zPD*o=YSf_1H1;9sU=;^zq%VRTlrp$Xs4HPT5F4)9EA9SDsM5;qyv} z%Z%UNDCad;e`WM0u`9Uzz@l=02RzG0ehoZ3M1H~Vjx%*-^d=j6a{18?pO0f*VE;~H z8F4^8WC^8`CE@Qky9G;I_apzCH|k~P5a-|VEy4btL2K(p#N4+MPi?BgPWyvS`-Lrz zKk(i7@ZH$(-9Yi(c=2BlmD>Duc%~y%XCh4JB1G?Z)iXj4bnf#kxX_JtZsQy}W1i&c z@L$}ojy{w`rL%@p)kPF_#1y-ti#)-l-H4>!!jSItsf%eD3TQcs%QLzy3cX4I7~wHTeAuQ8m0t zuYIOddsm_LhQsJakI)SptRC21GPprd^90A(@*T7t-leE{cA@n~j@SwwWH7i{t9gc` z?E;Ok?b)TMeWs%23+pSseq#O1>cg6Q_JDPhCAp$1USLd`X56z{7?Q*`|^nj6-5)wgH0;6gYm&if71n#VhZFXU=_{b?7 zr>5u6A5zni;!mpHA8M)F&%}G(qY)cw?aP=iExQ`Rn_l?e?za^idU|w_VWTi z*UZ@rhM|#K4%6jt`cnmKV*Fear~H$AiG7c3~fh!qJd+_}kKKq$aa%;;N!AM=fKNSV9er8ClNG#JDamd8X zt(|o~ZGO+fPhJ0=b=mvJU2henk`8Kh2;!3kT$U$}@w;Zs0vVz0#5`_CNNB=al7Ju8 zo_v|Q3M7aD^e&6Ze(*P-5*&*ysD-9S;9Dyi~^e|4c}4N>-d zKA2t436107nwTf+R8n^2@7ckZQw=WvaJ!*~_@J|SK$MrXxNZpJv_2A2ES~7A?-o&vEmf%?Ms~r?L{F@ZslPR zTl;Rr!=^_C1LTMp>UTB(vE4i{cBi4-||}9-d;`%z2uU?BkTP1JTL(<~LzpnreS0Y|^DSoxDds2>{Mqu@f&b zI;Y$wv<(>}YT_=supjZ~cVUywlx|)9&ea26LaZ|t88Lbsn93lN@wHi-_A*on#)^e#4s5 z4f0g5*;%;Rih$PyxU@oJMYj%v`lTk68Oo)+|Ge6F^!?fl+7qeMzk36me`3zdTxkb#mhZZcy+yc4)l76t*Dx%XfwQE`-CyoV@mY(C zHAnl{TRY-~FbxiueY$OkAvyuk%EO+$t%>r(Y))JY= zhY&{Om({|bL;>=_%WKHU z1Nht6)hxA*hR5!<$2N{MeliY;esPiaS?0HjZQ?^B0-^!*OO5qSfgR%fHip2!05{Ar zM%VM|Y(;yv=B&RD?6^vzAA=Jm)-=p8Og zjO=T_iWk zGA9ZyC(1H6>g*Rx^`Tg02!)kDdy@d}k|3_C0In{aH4oD2HFfl%h}oWk*&egmo(ScD z0Of$mw_#=oCuG3VU{BIukJ`WlYpn%kt%YQ56~u1yErHrr!Qc388-5#Ih^xzx)>`n^ zRssLB5v?P?tN8O@Etd}^es`-L&kEklm9a)8|-=i7yEyB(DaRJ$)<5_6n)=Wzu4nzF?T}1ALKiOYW%XzMsbM4!f^X|^ z>2OIQhQ@`BZG5g&y=o905J8zCh?Zqd&x|R~ySY3UI`YzDV47M!xu6ik@rdneXu2Jx z9ZlmB*4n>L^)PUW_g*tM(Rrvt_3bM4!wE$7{Abm2tB?y~)v`Wyen5*si2WeqPB=dM zRElW`Y=TpN8^($R(3ed5wSzit8TC)-4Yh0+TJU-rU$X)ZHG zo$VYLvkB~l9Etg2lm~H9uUon7Z*#ijQ;e)lF=`i$kr=ySD2K}2><^B{&w?*pcV`?D z1z&I6Uv=QS)0+auNM-%6LZNZZTIJ+iZF0nVd~mx!<`9iyhgw%v1Qa8&g0P(G$SbHcKjWNBKYlm^W8UF2U*>#e=z2~=`Dw#aGW(d%m4SgPQ4gDPJMTSH_~9w z4hVIelfU6d7CWM_ai0cIKIY`jkcZ}s{?^jR`E^p!P>Jy`OYk)Nee_sg?8EH*=l^};X26j?B)~HN%rd*ztl=YLM#4h7iv`$-Am|uPZxxe0l$7%TklU%D^ zbttmFTnYK$T9x8VQ;*@GP8n2^q*&M$#&*xvMB+14OZ}g%lU~M3t*}unOQDcP3qdQ; zzHc(f1mWiaQ&QlAu{e6UFtwIwQ6f8f2{6OB9pUL@-Fi^{^2vyqhFrl*1VHZjqqm8w zJ!?*O?~>DQooSp$6(rN{9J<`rWdUcTV-K z=nu_6fl5!ujp~tJy7@D=*VDFeXIG2hIBpwS5uH{S*X@Emm*qS&31_5Tn6e0=d-2Wz z8ytX6Z>s(-;faGf$;i3(qt=fv_2Kj3nVG^7vu-r)e3y}%!vq0QQtiEIiz+<#XdcV3w@Tefwb@$rZy$gzG1?kf5)&h6! zZ=}i{fAA8LBx(s4U7*JId#-zaQR);;rkE=I4PaCic&(ah{Au$^k060gA1~q<#2i>Z z;XH<*F%cyJuaStpP7^WtF$R%DiE#W6-2@<8dd}u`>oRAHIO;LsdpOSjz1={PuWIGS z{MH<1#7hZ>u6U>Dgsm~Pao%K6K3!c_`A{M`;)vQJvaEz&Lr~io zfi1BKl_F7Oyp+DID6b?9b_`ufPDK%*E_qR~Chds6AfP-CQ<-~PJM`Ezzbc{~pi1T( z#5RutEO4j^AIoC9&LP8_vzi2YOXOYWc-~>(VTbMhUK8kg)Z$&#O`r@cS@vA<6wb5D zW4>d%a}E=T7|RhhayhUvlh6IQpTA1Gl0Y*_u;> ztNhXW5+tNAKJ-5JE|K@MkU4br<*?bkE5E9^5+j{Im0ujK&1gcG6)|r=af%!#&nTJZ zm$dP}B38$+R-ruCqo#k(e5!^Auwi{!k*#A|Wb)8T*brq44^E3(jsdOmd7PI`zw_(d zM9wT6%UhL~wrp&YDLu;~r5;zVOKG3yv9C*^J*koS77(*7NT;-6vcr3d!?zWYpOpZf z)L_{f@Yxn2vOl&J53WmHo|Rz!`Pe;Yvxg@UC?0;RLLO4f2^ z?3Bv52^IwC33sKon&7o#zG{<2tF;od4I!Tzv**YKD!0m(5Ykjh5;}#hsUfai)2yS3 z8jFh(tzF6aqKPHSa&^w-@Sn;BKcmt{bpl(JV6Pb#Ki0yBT*nB4x|4^zoqWy{Vc6rz z*q(9V!c|GpJ0wzyCDHf1qHXdmZ@8+aTLXQj=8|J+H>fve+&%xTL@a9pe>+B;$F@V- zqUgssSD-)kZ_Oq5N8Dmc$QA6Ty+56+m9Sq1Qcc8w+afRvf;@7RWi8CjPtrzkhb_-@#KuqCu zo}uyo^_mBf)(;&2I)H#8I>p1RqfWQ&95|xNLQt0Czx=S!=HGm#yd|GY^iQpto2nyn@MW&!K}V zN#C-5s4;n(_u=@W`{fspO9J)IW3kimR5bmmSuofpCgcU_Jqr6#z_p<1bjY$6IdXqo z0s?3B!gSUB2c~oj+hWaC({#f=T)X?esO0)3-}81hgpa}ch8~c;bE@?72?g*{<|8e5 zHJa~~P!FejZI=~z*HF_ts@gRhURs@rFC~DpA}L|roUE|iPd~bd{pH4^s+hf*a_^Si zuCUcDn82-tE|5tJ=_Wl2@u3oZBseiFOQ4CjdU%b}rFiPq9plxeaq=&L!1_zRJH>Yu zA^M}U;(}z4>i_^+s%(-?aC>_1(B0(tHFSLMbl=6fFub9wdw#_9Iz0Eq*=G2?#P}<+ zZ-WKF%Dl`-BMq7s8uI=!N%^qtw_bxqfI{?^Ai?gJkyuLq^~n zBk*xm{n!!7lV6D%Q0JJwJaKuxxmuyPAvSGDZBH|V`4VMNi`fR3xNL@rJ2sXfQ=5~g zH3vwVPoWDk63$)8Rj!-~MJ*(m{fAymT?3VPJc_TOOr^>k8+d*+;*GpA75hP4mre4f ze18O5rz;&qK>QZ<@56>__D7wrV6x2t(^mqw^=*caL_T{*Id-ADY$_Q3SLDHQd{Bxj<)RC`U zTi0nisnzdc$jD{iXau!fQ!?%s5TY6pXuO#TxWJxZ-jYDnV@^LZx=z8hGJ7y>{(D7~ zTNNR=NHafVpYa(m5)HjD46Kvu9~yd-CQ5zqP7}YE2tN`7@s3CQ*c@_5ppr)XqVcd| z!SUP2W5H?md*b@|e8&pK%UuOo8`eX&*bO-zoN z<|GfO`Z791#VFoB7-GghIK{Y$HD*y692QeC>my^jdyE;}b$b(?PiohshN z@$WL2ELR*UZrzg&Zy>3e^yKS=ENkA8Cl8tvm4s9A?X`966cq`RGdwRiCJThs6lNp9 zf63Ut7#uS@q%hr5&-RTWQ$&2u|M}O(F~lsfFcfIlL`G1GgzIYcGvLHVz?#J7qGM~! zM61kChoflN|0oVc4tKH2Lr&xj6m1|u#zwJ+2{<19MSUy?xRevbt0G3k-klC-)9S~; zkq>t9Bof4^`US^SWQU;G68g&sS^(jXYxu7~Xn&EPC=k8BprxVv^dbI`KpX!DkbkC^ z{dy70RGJ3$ppt9Bqws~6{e}?B{)6!U0MP&nl5M)guNUt1+Mm56Clb@F;J2n5Mid&} zZ`jC0(;2Kks3LY)B-2=b(7(a2HjXx#$sd};tPeWN00I(!`q;OYnfACR95V;J#Ww;D zqQy4^?)iU^1Q)ptHrdhxO+Ot8m(l+NICJ#(%b4oZ3kesTtkZU)DC8slP`0Dl@CobhJ>BbFc|T0bKm z2_s5ABMu8AYCR*aBO@kUEp$XJgk&xJxIJjHJ$|ztuIvpML%;w`7qoeA|1U*m=>(Pd zRP|4D_STg27xi#swIp=)L^kz^M)l-}<$sgQ85he@oy*CBoN=g}vGJU#ikyjaoSC>S zvFRd-jaFwf;po z41S$wb|lBhyy=2x0usMwC(?xLE!ZckxLAt~9c>VrWN0`)T@aNDL?2QJmQbU6Uz0Q2 zLv4&&!5BT;m6+#Jto>5O9~oI#_DuAWjZ;!nQ|-Sug9oy}AMtpLtfb1n-&?7ZyV-os z_2;gT#b9LHs6JdMIB!+q5U4;t5fh=3CW+URt{99qk)bpcUYifRhJj`x$I#8R&<*GA8z=WzVF%&y4BnwH1iZ)3(MVWE#K>1?i!Qs?(?79y@_?B+hmIetsqSa)K=Gz;wi3}$?7mH(B)InGOcf?r&x$=*MVQrAKh^jlbLah z3QGG%D}W><@8ygeRdYd_k2G7y-ePRd9j!n0qr{$g{pxwY%br+N@k$g$T| ze!Ec~$U`Js(1SNGbH^N&B6<%vWP(4vn)um=HPkY6nXby9su2$|H58w>byJXwPK380 zlf~a?`te4Vs;qK#KFD`I42qZN{!~FC?dfhE^x3D92T9a$#xSr-H*W!DyJ%kKBNBe~ z_&%1kSpFEP4wv^=c-|HT`BQQ5wy4j`u1CVI z&(gHrLY^Uu${#Sb>-fym<;#$#sE|SLln-Tk0tmVLen_{BVfAn0Gh^d$qz=%c-SDB! z(Sx2PAAKomhT*VE`YNN;R}Qcngm$?&T^C^LAp=GXXnP$hdL;1kQNUf&3*=xvkIY6* zg9g>gLAgG@sz)TzTQ#G2sHQ{F%#|b>b?NOqk(2GPRqfE17>8c$2N?Z0$(e%8FH9Fc zv=QajL~UX?`$L&-kUttMS!J~Q=O1E2JSC-ukozHaQwGqAnEGAo#q^sB+ zm=*qovlftmr;Z4)J1`=(jtKI>%7qf6J~>H8UWndYH_1>iI)=aOv9F6MSo+d75h1DHoTQlV*tPe*-6syv;V182zF4K zwIOBC$H#xZDyO5}3)Kg+mok8z>sUxKJrPEUi}hD3Ai~EU5yGg84R9L~Cb*UN6+p|y zBBKmK@`m^+RH#-AyHN6n?o=)Yk~I%z((Dh->UV#0GZMnp{EVoqGeTJJ$~R`9Wa_8(a`?*8ZO%O~f%49Zg7jb3uMIjmF&VzJ%E4 z4WP^#6x>YlY3AUoL0YtAC_f0c?k856_&+x?VyE6yyyMT1hU7&1{*M%boatBRNodRhMinH6_}E0u{=h%tL^MV? zq{6h=K}Je(^5P=7q+G;^rWqBKBwVQ25U!^AN=Lla@rpk-JhLps#p1J$1Cxx8vjzn z28+*wfj@XLJ5FPs#@x_5C3K9d!&T?X4;F|-Qo}E0MxK60_p{Ghy6IV zh5l`S2?r^X7UseytT-I*y=L^NKAU=v!~~KR?q5s%jCa-UwDEDIYb*_|1^Y2V!o$5> zI>r-wg>`hzVyLP+9>P3xPxca=!n0pTn-WhsQA{X&-uRxr!s0F&6^q8mZ2%OS`ock) z)amXXYOm#{`_ZSXf$HR8-sJlq<7}yRPuUJI+Z{WuX)~+z%i8}E8RJYtvgKoCvdA25I1ZxMUG9D?`BRqd%IXuu@g7X z4De=fd?Djcs`X5+zGDNZ3X0zTn558rVI@5H=$KnI(V>Z8>lt^;CB3%FB9G;X6}^-5 zDSXHG>HTP>_`B%2uHwCYxQKf@d`q>|#BG;_G{Lxw6Sxt3o z%XdMpXllsg^2$*VQ_8NK537_GE)O~;tWE_kyuANe4$f;7W{%hQ8 zD9rZLX6g0Y8Bap;?M*daT*BiBG%}g6DGB!A*}3z}+LUoPYthU2(JdFUVx+92L<3IS zpza>(r1Ml*Ke@&`*;9G@F0eKJvS#h9sXfZ3QSdTG)k^Qjl6Wvw}@LO)w6ce2dpxTG6xOf4{{DWN@y?bp&l zn%4B5!>Wq7gA&cCw-+72xV|Fspia)Do%+*xgf-PnKHs>ca(?vhZP3H#tRi>2W7GGa zWCfM1$-&%cX-amg1r2ENU~%J7$rW*b@<;{ZBn^i9R zZUyJ;HTs0_tUs0KT6|yGzVNd5`#Y9?xVCd~JQS5iebUGdJcDv>Qs9SNLZGA|PCz$- zr;k_}v=N6$FI}@8LB;s%Z)-7Ps)4?PRM5jkIrp5{%?6Zu&RSONAk-Ow*Y~?2WfDly z7k`xf$O2{Xh1o{Gi9}*NMcD=KnkvnW@M8+iAio*1oPI+_?I}6i_Tr@LZNg&1|1>`) zo4(l=pRmJQhw+B;At9do%@4%{e&qLw?Ma=2t=_lY@q@5`3bY%<3GLmsC*Zo?pX!;5 zfS0Lia3xHwf61=MKYItc3T*L?>d$eE*DT{P^z(`lXq9#((KV6DF~SEdH;Q}P_Dnz* z96ucv#GN0F{Ue})C0X`WqA5iN?2G%oAQV0%+7}3gkBCp^s{Fi9&zeiF|ZF6lqH10PZa*#ybri`~1cXUzzQWsX*6*2##hT#Ta>YEX%u3!D!M&$~n~ zcC{okL#WJ;YZ%lppYLHV@iRWDYIG*%oq_{CnW^Bb=sq4<%IO@TSHt4Kb?c=0bILpg-N`nIC;=x!VCdM^g_4 z;L-PesA1-N)AxRWC+}Vsj@OhMwm#14Gzh$z>1vdIH1bzI^7ES`xHwk~%0xTA27HR0 zIj11zM{x^?&XAukFPEV@6I;)zbB8pYDQJtdU;j<_aO$io?ran1nBhBbSgr;*LE%qp zx1}SV>TF1cICozblPpWxqX8(QPt17*haWn!isRko8Rn?Y{lt2*g6o&_?SNzsVaH&n zU&7Rq17VeL(O)uOZzQbT_db8$Iq;7@Z8O7+*eOX9`e;trJ_P?<>ka${`7M8qq(fDk ziH50Z>fz+PSvBAnvC89W))SE&?D=dS=$A`{kz~TjnYOoM{^xfN8FH)&DXB($thwNy zTsrhd7X)r27s~ISsa;nq;=%tJi=qX0FHUqc8?ITd;jC$_nOFhT*V==YzZVi*VC~!5 zY%bQZ;<=T#NoKO0%9g8U8XX6$&V($rH<`0ml;jks3M_>~H12sVYud>Xgf$|NqeOmQi&?%ep8D z5Q4i~aCZ&v?(XjH&LX(GFWlYTA-KD{y9HP{Job6}jC;p;47=f=Hpcljz?0?R z&!_*m8C^;j-W@&*ejd=&oQ)AO_p~QxBG06noKucr)xoMaB7tXAH)^NZ2g6CV!C!bTpFoSs(dC%3QXFr4c zKwijZ2;ZeiDDdPY9#2jlVQ%8SDhyItU+^|d!nTHyiKk*REuK?J$5A%Nkx8^<)ALJFTj=0d)J zK}$RpZ+%FR*+Yi=mim=SFgQFT%TfYko?t{uF4bJ z8|+ghgD#lrD{LF{(#V>d_C9kK+vU6IOF}mM>=+i znN{EnefC{fg7f1lIYnqQM&G$%4Y&N>H9{m~)+{sKs+eTvioPVx@`Gn~Q0eDtwP?#} z!nP{AO1(;9nBtzA{=0|J;Q5~DZQYa9kQAMs7!q}bX>?`sq*Hq)k$F4!e5NG&>Q&P1 zmLMWT+*60Md?VVC$}&+PtKEN3K6>Ps*D44~Q1zi!A1x6n)GBL^D6;BkSGD;!RS@mSPVw(1 zCgQC_ef>ir^$h=k0H)Kvt~;vAFTZE~;}LS2l&O}TkeNH0L9)V*$*06WxI2hNg2)rp8V+7HC0o1ceLgiTeQ5PEchl4S9Yv3|c@+F}h@z5KuZXge6|XUMj^|ShmQE}?IK&W+{;b_m2g6o!IPnm={_Nd>T4PSeN^EvG z)BVGEBLsnh0|BI~$*pW#-v8~`VY_a&`?V;s|F`%F;3?`mimJu3xSRV-PR z9a)tRS(Uz&cW{+A0m}hG?|)TJQs6d~a<#2oq+{%;W~)l0N&d2yrv7|DDbQ0|kltHt z074facUuWm;LcD(HLiWD@)D>ZoT2{Ni1WQFLZE`A_7B0F1bnyA2PHb+kI>Mao1b_D zq5b_19%u;DYn((rYeRLrEbK7|Ie(^oZ`!u+9Cd9fQTR?fY@U*$i~d3xKK(J5h;8NV zgnIR6_-y>kJ+e#h)S9??ZT5&%v#xOIW+djcJUsO-3i&1m`6dYYCJXr{2l*!H1I67( ze{-?nm!0(*KK6v|hR@6W7;Ap~@o=$G!-x6^o4#SN*?K*CW?lc1QVIA~VLx)lT|ahu zKJ+d@o|8C=Y4Q*K6(G5Z7EzYrlj{mO^YYyy>s#X%n3g+O75|?lB7t+{TvzBDC;PkM zgBPkcfKW=#EvQr8j4*Ch+yq1v!Be#S@MfxlUG0BXRc%$1VpZ8*UL8SQl|NRKc}1t< z8J)FdP|~7!=nC>iRh`Qp^Dg~|;@vZ`b$w&9bvW87MNpHg(2Nz#?7y@raBiRL$~ohO zXQ7MG$OolW0$#Q3-@Tp}m%W(tqNsl++*O9@syE!Ezuu%b&Za-l_A$n@X{TWqdPwke z`DdH{o(Hjq&SC9GY*lvXIu$0nbB3+Wj_qHsD@f)#1X!(D$g1&xC3C^^#@q+38Fy_g z&(B(dkB}$aJ^Qd8qW>9O*VSDqNusOinW~EwsVVVRiEsXRstla=da4YOgxt!G<|&Zn zDQI%g-fwfn&~pt&=!VNuQ-B{2??`Bk^Z-SMcPD8`hq-PSxfV@GRUCLNO$tA2iew58 ztcqkx4_Jz1$_>;Xbo}wbOt_W-rS&zWF<>@#2E(KY5ulD3qj<`QwuGCoq}#+OLK%-( z(*BO72y`@Yh=Sq7RsKdH_$n3vN`|=PhF(iWX|yLh=}A%f^H}m-F5n0e$ZzqH`yBY6 zfk#^j+jqHw9aa?f0z(!E0^waIJc51?t?TttKZC<;2qSh_`E=DM-+X<_?1)pTXinYp43Wo9TUEWW7R+<4p>NZjW* z+!X_~3;Q2#xKHyM%e@twY}9ZVG3_X;J;Sa>m*j>Vnk$}BP1Y&B)d+5`!T2YaoURZb zv|GP#u3f@4UISJzF+c>y`^Az-k5m`g$ZokUk(!IkfJHO|^r#*faphoD#*Z@(HHt7* zMso0n*qkyh<7L$q|Jwo;gQf%x$ngA&pC#Qk!rR_*w$WxEFz$4Ccno!I5~`0G<)ENPK$Tuf71yk`Qvu)1DR0-75Q z|6yjHl-)YK*u&HwK@rrOf36x7z?1D|i|@!GsD`Y_L#T$d$oa6@?HpQBHP@SqX{ljH zM*N>B?qKQi|E z^LH`w@*_$^MBj5xo&J0ShyK1ZvEKatRYm;Y78PHSB<@0IyXK%ZdhyT0Qh8$Dt*ER<4$uR zAETksl-8WALVI3|y)KgX(wHCW_ex%jOHu*;zQ%F;K(w9vFs$Ex=kB#OQ9s!>9prV2 zZ;RE4XO%nd&22~YmhG6jVSWp_k8t5Hg3(_itUeN4%>S@8!F@#CoNn0KzWYe)!QA2x zQjRkumB4%|1bT_&e~S*2OaybZ5Y*nA%SIqAX3>?DlJ|-a@P{Kt7seuBje?8wXOcni zDrQd1oG?Rp*61~Ysf|)aGvvjk8chK+U73o>btWtcTx$4s=9Dchc&BOyIqB{pfV+K* z%Jq`2KRa&!mi_T@F%1V&_cIRjdxGkJTmK2i5mAS2t%J(6Xi{w0d^#~g+>oAXic$OP zoYuyWUE^&j2P56GTp@sg6iaO7{_di)~YH3)}#X~XK^aG&MKFz%Ks0jj8!&DRR={>l{y70|NJ;~ z2OL=Q9r|t^m}Vb35**ms9ePzC7)>3i#2iZ?nCZKji#MAoFPY1#nQ3B}3m%!N6`MDmUQ;jp*06wi>|7Q zrk0eYl`}2Z3X7tu(!-X_l+`&cCuxg1y7D&21_i|46fh<<5f;CMjQ`vAzormmcea?a zc*r-y|0245g4$J}eji0J%iAuxdm zVm6}!6xp|Ag)iw#x`8LW`5x;4we0Y%!~x>97CfW&$9OGR10&=<9!73sl5cU2O?;eHnB$GeL-iVWS5{nuAwo0aLl2sWe$}C36LEB>oZ8bHwnZOvIOm2&t%)SPY>kkUH{BH$RQ8i4xd02Sfo<@=_K^&V~MipdGbO zfh);38x^5Oj%y;8{j3?JKQqwEWcQl}mI}*;4U@sz=5{at@Gv`Ik(5?MpL>n-lgZun3R<^OE_9{iLLR%+p-kpS|{WTcE!vAsPT*f38 z>gHoAp4mnhLDh`4!}F}7wV-QlM(1yTeeUC2?Bx?#kB?cSX;c3ZxjwYQ8)A@D^{AiiO?X7_g#I`ig6SI$D}lK-eiqV5?+>P zOiK?Xtm5`U%LBX*zG?FRdpC6z9X03)2Q$q$nri5Tk&$5}C;}Y;EB%CBQXJIV_}cf5Vy!XMnHAE_D!f!O3&h8Ecg(CFeD ze_^2R3Mth%_b?FB3{0|XJF3#h6010kg2Ba(m|`w!yXYdY-LR(WrwWu9T~$&p$nv|> z?T>L^nCbAT5nBBr+0zUIbOxPc|07IH+U_42r$s}>N=9bHTQUS_eIxo9&Ix8$1#*?l zX@VVH(A{S@OM^ZdH(qV;4;Gm?&n@d5AAzjH3%$|W-f!ZS4&gFRIlM}%FmBR)Tg4(5 zx0jY;&mh)9A8+drd}_7Uf$z9@jDppN@1o=?l@8fDsW4D7jDP8zWyv$msi_?JIu0(? zO{vZ@p540h7@R8;UVf`d3Xf4&eTn*iKKu#MFqxwGKOB#-fmwo4gn@ynfx+4LIXJj2 zBp_2vUzj31<=EuV#Khl;fq{hH-g|t?=?O5%7<#!60jb?jzhd{#)jud4Sdi#gSjT|} zSo$oo-$t1j!NKs{;bs4aJE9#0N5a!a6P;b2uQC2F(2us*YS(>%$2&Urs_L=a;+gLj z{&A-GiB5J~v-2$so;|Sl_f~l3{yRM(z|fL!Rp!sd-rWq|9_(D^-s`;1Ud!CZ-t-*L z9_no89_) zC-KIJCyK`MC!a>(6QGfc>sLt3p7pHU9`4N4p7lIE3i7h5kLsFizE2}J`7c!Rh#Fyv z@EUoF$QtPq3A6%!AQ*r6w6q^aPvQqL0QX(>4dW%_>GIzF7XFlQFJq3Mj9Ty$Wjjj_ z^Ak6Vs2eSdD!!y)AT_UH@UhUDlv?sQVq4}o+)wV<_?tJQE~O%%UBc+{#OQYN1m!mQ zR4IIH)^rbQ_HfUygk~VMn5GWsn_Z2ZlT$q?mefbCjGZBiYQt1ji@rV!`BlYoF<>Xt zPjE*K0v@lJ19|~?Lp7YlAAG!47`s?6k@9F^<_x#YH*-tVoA^TkdZ?rCkk8f;!*7rmN4WGI4 zq-laVQnlfHi3a?>^nDndj_8&KUyxXh0x$dB!x7%nWR4`Jb&0ilG~8ovZRUv_6D7=A z92LkTL0U~GYvV)`-U?zZ8;vyC$p9q zW%kP|@-=>mNmx;RC;4a|_r;6T-YIQV%(8X@|^aL2i)b8bQ{|u_flciGFcc zl(7B%As`WyxWm7uAE52>2jX+yAM0f2ilfD|1%mTkOlQbFtdlmzLUiTLOnhijv zOATPtC0Dd-|NeFjJG-dS&x@!_0ifHA%G!XP=~@}~#pk6~r1Fx?II{m1K>;5Of4tXi4SYHu6w6P|V<<$QH3FX1t@=QqK}Lc8Ju>DPl#Z zq#3LkMp(wE%UXAut?jvnFXr2)VR)e0JJ-l=Cu{h=bPwRnAd)VH0VwNs?@8VU=tcbc z^e@I-+6T^Nu~Dog%#9E_2(xJFkX;Ct>Tu^DP|jsJ3~)POH|gsHT|x&!=CW1>31r-* zZLl^YeJ}X#;|AL2Ns5tU(uX(=fjdc-5zfWw&RazEuf{ltlB?S@CX{0Yf{}T2-fXs^ z)fY64p+P+}*(e{<;u23Z_*A=oE=fT>U;WTNw< zqHN{qOFdz}Oa1M*w}vj6w23nVPm#1CiZ;4A=(A_Bvbk1y(#;~5ivh-8t6%&FtnU2U~ zIv5n0jtpWt7J_tZ5CIcWj8tn90n1mBu8tT(+Rs!n9l4q`&Q|JO7_Z5JL4K6#!cU+_ zE7>l!*ZP1vy|Z1oX(8L-r{HQiZ*qhNB#^uVm zh4?MaNz2}6K7T}xqu2P7$g{2FXdYSrGc?GB?dbf444`WCuGLvRDc66#r!sI zw{T}FW2p`qTv^scty31G5<5%5p}9%rh2GHk@kr2GuT08kd|7>Hx>`1h*_ax{;cvs{ z3$df5)S&13cMZxCa7Z*|;o*oQi&G7yUT zS;v7EcnvhinfZa*CB{`!Pmp($wugc~Y3wKIiZTwqBAUqV+ASqDYUCvx(SON-tj?ly zZNyKucJJjj$_1HG{5ZWie8t}(S#dFQSzl+}0KPe0MOZTTKzhlm7%kE^!a2ou{(sw} z;JLU7Q2F)Ofw>t8Pz7pI1UN3i1R-41o*px}UJz$#2l0aTCyIT3jPeLvBJzS+$vnI# zP`o5h{7316>L;3|7vmSXB{z5r)T5Dk;|ZxkqqFt7J$Fu&=~~Dxo_f$^`W10{(-nCp zw(xVeo^(kYRl+ZPHK7T8@Dh*5(F*@sp-;bcVN0>M{L0F05gI*ZFC@HoqfFoQcM0Bt zChO^l+nVXft9;~@2tDaiSlZ+(guMflwj6*Oq zAT^`>M4j}k1Iq=gAIe;TTS}B*FO>YnuJ2peg^DH*x%p`t=EE ztdbzFJ~lRQ;u6}b^Poh*>tF6MZwNHbd0?x z)aesSrTLj8X&4}6n!zvZxrO<4Nt3kv6f(x{7wYr@o_z5Z^da#PEJY6x_9OcgBqQ<5 z^PBV}DIb;cX8V`(A?Cc5Kik~qQ}Ww>`AI&WSCl(IRPn3S)ozXYD|r0xa(VneCNb&B zcck%(y^H^Q79bT~K`!;N%MHJWkKb~So&4V;^<*-qV^1&-vq=vO{Z;QKz*?O{NEUM!9=R7EXLsk(C4M+7SGr^uu4mAmUR zPM6;foW)M22Y%;geT?b5QM_kxQphdXxwK$fBaST1WcO8!n4Rx3AsF&_8O0}WqCL>#g$^pKSa_}Hqu4v9Xf+g&U`wt#2C}we2dJ`6|*ypX! zEP8{y_jLM@i^+DF2z`g z^}E6PVd3hA?2%D7OkQv$<4H^-Yk&k@BN*f*xziK3VEf62~n6Ui>} zKaXb@e+mHeJ_UhgpTfXW-CuMwSNFB%mJD9&&W(hH!D~6+Ks@+xqj!N$kiXpPF+$Kf zeimvs(H3$y@)WK&F`IB%*p6i7V+yZTraF{$2{Y_#c{k||M}shYq2}n{v064a%G%ji zK0f}X8xWQR$>8(iJ5gA68|0Ke6J5><#idv~qi^-Wnu8xYo*LvdGdKylY> z#e9l8c~`^*Z+vR8uJ~C?jy+{oG@=}Q%;NNc(lkzw4UXpt?i*n(318MkU62AVjkuzA z-JtPNFW$KLRv=x3YR69t4LWR9_yT?0sJb{-=$EM>19Zh0;N1ju13&$oG#BaR$zFfh z%E7MNUe#_A_}T>L$x$ZTRaN;Z9A1QepKygkuCJ&3Hl>2Ujc<$K-l72RUU~;@CW11 zkUmN*a785WeZwCUA;Gl}Dg9C_-??|OGKYfFAe3{BH~|qk`y5ZaAO7i#h$;PID|p(* z?ib;{Oehq4a5~}Z4ir~|?;c2q`-(i0j+D^8qN1g6s<~pUf5a46Ws6r?b1>$q*Ce4% zS#=A~UDn|@J~wRa=s9XKw&~7N9K_p^uZ+ZE`XxExz430$-*C-bhJEN|NT3*w-X1D*l#P_h)%=S=^l$86qfO>5o49=|jmr(oYTUvActOZxbXSof^xX3pd6SugFeD0Q3W zDjC%73Ep|f_f+>z3UK02&e<~mWZ|#SU#da-tFRUq6fk2hD8k5{Mo0^<_TxN2wlAgD z#Bi}+Ip`RX|I_s5(0>0|j{YVso7c~75Z|@i4bbFHznkQ&#fi+I`kL{RWwVl5dy>j| zN{88f0{jkQu3Kdib}*M!B}i-rW=(6+ju9#3uS5mTvz9ByMCf4cM0s@}z5|$CuCZ#O zp%&cku-b!k#S84mt5Vah^kR%!69=f@A~T4^5&h~(U@@;XDXF_SUnToYSszCRnKit4 zmPbp3#)A7YPuV4=dbTRHT(i=OphD}ZirT>@X1Xl>ndBp>=aBz5KjzWdMvAwyUj+_P z3~6d(f}YApa%F<pm*j3{6=IWsi8#-CInbzL8`)!}6_0GWC0jwc>bq1= zQ+dzHwHjOG(qf2O)1~#Iqnc~IYF3%EOP}=Og1zdU7i1@jTGO@mqKO*YruJe4gDOk6 zS{C{QYzhQT<(XIo@V@D+jo}?L2nZgBFNhTKdI^%95c(gJ{@(zmYdyW;^4vxCqUOvV zbBR_%&0cjzTh-4xm!{IWcZM7X25uf1;LkolX38CE){rHCXF)%iznaOk5JIj1dA1)0 zKEyO|a`~%(+fRED%T?1gO3TI?w2sN#>al}@3zmoLiq@y{DD#UU`}|)(G6E4GfATU%D3{Nt{Llpc%#l38{w$$%134_w2iJTEN3UJ=GO0roi!Ei2X+yda}gCy6EW~gCYN&H!c+3^FEW55! zoN;RCmCje3a|LOE3(o&%l<5#rQ%L4bn4FQUc*#91su^eEwO>XqMXzN9WBhN6tnyS#zjt(mSEn@gX0a9HabLAFhHw@;mYi=veM!Opo0aG#?2w={2cxQ8cEz{ zK{6_(C)vb6&UO~O{|=C?}=z~CHRNE$;;;SdqLBTcOi)0WGa_evM38o04i znXz&s>H@3sYMk;Sg0nKcvjPvbl0Y+#g5JjAlENe3P509V7w^Xv$E|-QS*Ts_rFqJ&&A+?GdabF;=>E#cBq!6bEl z>fPTJc`8ecw91PVZOp%LM-H5O$JUv5m4>I-jOdU>j^3>%^-9~p3)fpcMqP)Oq4f)zjztC!HuLf3JS+xSI zQz|acTFI;1tj~aL7=UKKljA3GK(*h+@iPUW+wTnXD-Ax+?+Wu76Hw=On)>v!XF>eM zly8jTaTX99drRY6seictX4Nw^objgBU&C^|obiY|@g@cfNF=+>pex%p8hulfwu7~a zr)y4bURzofTQ5}dDVp=Cl6or~d#j{=%TF;;r*SGJd0tEwIuk>NFDVyOkTotVa9mjQ zII|>%XAKVl%8*PJ2Aj<)HCPt0-Osv(SYsA6g)*&;Yg`&<#xRPCrNhi9SnIgO?}?DO4w6E@i@A43e>uGK0^p{GlW#eUe|~vdG+S`Fpb|fIv%9zA8VJ zolyW6yHpl#&g_RZtguUH(@Ui5ODOzHYV=F2>`TsM`#1)#VXU5$0y3TwDK!2v3l`Q- zwBDVL1AOcMp|N?FzW!PErRqzyuh<2!`uIlidlGxf**{Wek69gS`eKgb}-Q+BlEiUC5))4oS|_1m@AF+5k#Qebiy4LSU8|bHnO{ z9fC7(eB;890g7{k2*Ek1AoCEfrFD{o;4a1e<8YgtsZ4XiitkQ)M=qx3kXubw(#E{~14Y(rSIhSrU&8OH7)bt<=ctb_K&aqh#)mc z9pZJ&Z0=tL0eyda=XQGkK#qZtP)CHXjIFgTd254S?cLw>UfMhU=XiZ?AK�(OC7f z+rS?7?z!eZ1{`lhk{MPo!r2eV_d#gDr1)3$O28Qxl9vV7X;B4ym4hn5XwW2}RLop& zXfmL$1|x*d=-n9Xrj${k0SDwYwYD9eR#v2Pb?I{&bvg`5Imn@9O3_XXlZUI=e_u0hoi3n?79_$V+}T< zRFa8S>|`D)Q;2gy78D~Omg?o?wZoKEoO_Z!89Za_4$zU$HEOnFR?$6rbdOqK<5-H_ zfqfAu>!K5;v@EYYnGoy9{0+$-piS(6x< zN*#=^0xev@{nbCEnPh!D1m2XI@Dky-*xFrrlWB85>10WbzPnk*{6a3f$MTZ=b>m4O zNa*J;lwiVqiJ`(eECFs)-qNR+`Rdk-LKrib_ZP(<`mHDVkqm^H>z$S;!f#Udzbnzi z-GW);;UxR8gv6co>F9|`x*46GM*>Oe(ywoy<=dfqY2Hh=&1#f+Q-SH$^H zPOAI0nUoPPl)Jw<+}upKuG#@aT-a)|GZHzU*Z_rF3ezeKt<=snIy-rpi@i7sZ$K5l zmBMs#Rb#sJ`oRp%@JOZS90U3>TltadSR?COAM+dPh7Fs4G2@!u;v#OVhxmyd_dUwM zDVxozsr8*Z^~0^)wp4_|S2?9_+2ypjN=2-oG?bNMY)&PoMx_`qL1xvep$wXsz!4Qd zKwtwgecE0}2X#3R0>YLR-O@4yt4Xe6O|M)v;?d^eloiP-Jxxht+;QG8n1>3e(4>a; z4NZM?=sog&ej}?@^2$sK0Zm1Ys^n>8b2ZrOq7WgqFE3WQLqm$7F!C9cGUCv{jUe_N z;{-gsu(Y-y`G$1!S?uUV-#z^i$2e4EW}OtD2&6#+>%L8=&Qst)_XXR59_IY)Bc|(> zCEN#^w#72?)OR%0c3`KGJNgwA869q7teY(?)lpz=%+HR-X34(4%iidta5-PD&1-4P zYj=PqW}dc2M=#eYC?1F2D`LNzbtnW9M-cDwTJ0VOG$bc~#X&KsI03d#-#0fkI4nL1 z*lcN?4UkPQpJsDqqBNN%5=tRJ%P|xuq-anyRdnQVr)t+6OVxBSFk7s}Htv+AF3gGW zml^w_Q347)qWbzJ2 z!>d4kSN&>O+(xo8!*JX!tbrx`uGdVNvrUGR*#_ZwAOuLwI?b=T{e==KnWrL#8my*b z=c=OI^(;EL)u~r7{gwafy*x)20>tZ3SI<4As%Fq4aa_}uS#{%Dr)?-cR>f=;3VwF! z(#o+_OHVS2ET`MKa=XJ>KvHBD5xKclutQyVK7Y)&zaG336HC$CHE#?+95eiZ?fgyu zH*(P}v5+hLe7C1^+2T<_u~Z3Z(d$wk)zyf=PbFl5j8@d;OPWE2Cwqgr?{YYd&?ub@ z9((Ck@9AeUc`C`XEw`2q`SIbm(me*Q^N$H^N+s~ahgtx+1Do_ zMMyfHdsJu;VUU}nY?WP7G?JNz1&N3`!R~AyY3&F2m1cKDYwo)dBG~V|*|pCaSr)d@ zFb-G`u=p!OW-@;(h*GSJ0-MUf!i;xYcI`MPmE!y^;W)W;ezmpS%7*UR9pfIqK+p=Dvl zCHm0G?u}x`Brv&W$g3VV-Jl{ayfIJdO4x<>k&(JaG$(q&=?uAB2ydq{bk;sMC&Go- z0Tq`C#V~p$B1y>yPOV!|e5wHI%~m`orc%y1nu_AJcJHG*&m^zRe+JWP7-*ZI<|nOQ zyjYRUQFaO+>Uizd=u#ucmOi8*<7EIFAgpu~YEW|DDZV2R0-i*gF9SUpz;BMMeU4cO znuLaXNcjk#%S-tyWgcH4F)8sz|CYDD#-=GgRk^0Yw}4%4Z_cke;sIqQ%-SNz3jB1O zx*@AB)l%2vRo*RKL>sjkO9(Njiy^|-tRU@fYX<$!QC$6%{ICS&tvV;hTf>d%fGOAl z$1+fl2HD)6?g7wn&pb%|7)>yAmkU?pgld~zkX-qmtbABXor2fa=GrY&V%26@Hc^!q zx+0%U!v)lOs!$Mlw$Ak-GkaPlkV-=Uk$*$AG>}l{J+0x~&|b8b-^-S;qi3qep;`2t z*OoK4Lnj2ENvbSk8mBoknd2%VK=+^-dw#PpI2p|8AF+UM5I`A4{F4x$=$%_%Uni{_ zS2klY77{uOoh2zVZ$Ujv1^uO7OPN2bf7R|OPF##kHAoJK^OIunbB$tulKvTNXS=UB z5hZUP4hUkWjb!^vOY=EDJqUiKl|Cj?UYSiGW;fcJr=D=Cb2v7U5HVl+R-MiF$$v&= zp0|48f|0ave5|s{>hh4GWnax8Pg!^B8UvSC$+f(mDNE{FcwEj4-xwy5EIpd6=O-A6 zzj^Mof?d+TyN3Y-$MrjpC4<&SEr8J{njekZbkFTTeocZ%BG6e#xS*lPZYtB3mi5nL zh|4o7_y)_!o-@wux%Z#~^&!Ct;nP0*Y35{mZQwqHd>JeM5lQf?w@HZpQUJlXE(i zP{4=;o5b0>$HSa$AzGeX9_1K`M94d{s7I2Fi#tMi9On~UfIhrnM~RRW+iJ%7Fg%jyftUdB16lxd-O*ClWZSeh*!{F_cdjMv8 zZEUQmn;AfRmz33)hS9W#G%8-=$HwpR`N$2e)d&)RoDcT2fPJJbYl= zMlEpy zZ;_~=EG>>B(!33Jd0FM*>~ZqfjSbxv$!l2YXZ-jk5pXxUmq>PmQRULfYwQG#vEzjra&EYROQTZWKw#HsbN^fvTioydsE#8 z`^J^ka>t@w)}W5n_`l;AiOP1bWIkz8s}U9GK{NHnjN~TfBEhox66sQ6Z%@RVG5;3K zoIW(g>Gr(cTDV4R1)PSf8hrn?q5Iv-b?dptGN<1p*tXB*ET_Hx-8Ed$hEPODi|XKG z!xqSipOJS(bxW`8*EAV*3fvrN#Ek4xQZOS5ipx2i+NBKBzE;-{DD zgtM7r+u5TFM`h!)Mk_k<^AAUi;{QCs!Mna!$b?o)>Gb#v8FN@TKN-dQ1u#bdmfK*{b>8!+#*@d4B1+*uL5c$pbC6GzL6jFwt zHdq+>f)Nu@Dw4XSE2|*gsALRTM=l2;yf@oS+0N z5s(yU>(Ilg3w`ufi#q4b#_QDqqB zmYuh9d(5!E=}rZp53zIzmpxwQRs8a%Nkx>DBdt@d#mrD-zeeTx&PVC-orl;1$w$fo z%0uOb^C@U&InW-}2gZl*vRr5%Vn;IXjrb{Qha-@%BP<8$jq-`Aj~@XbwoRDE5j?4F z*3NbB;MctINg!P8h``fR5()iK=!}lie-nW}k!ERPiaDC-s}e1m(F z){EL{LFC;w@?m~g2Q|j)(ad6Ab#^>fwCg0?BjTLK^1{K2f5$ao-2(y8YS%i{mi>kl)Zf|)yI)TB zFo8NPY}Ky!hJq_kpigG2*(HDT^C@>ndFL(ws;>mX{f{_gY@qzlujdr%s#+`{@q}l% z9AfsF2YI3F#KWhK9c1*yI$q};x&nmMy9M}Q08*u&`#a|M??Il*E1iOVmNGJ~^&Hn; z8dNwgf(qW@h2Dui3;0*1a=zU7Sd(lW)YeY{f+?X#hTxy^Qfjfm45*#KsX-VQFBk(O z_L1BhdQAy-hGlH@rP3GEscke!P(E(G5Q(RdK}h&<4EzS-qD zn%qFe8^Pga%&(ws z8u306ewzIEkrWW-q^RhnE~Mu3{On@A2io9duYZSz zey_bYtm1Hi0=Lqfsp{aGw(R|RY}JJ}M&aoxqwD6NKGNci_Aw<+p?p4c$GF zb-7v#!13TOY4FO~LB0{}L)}5{`|Ks(3=*&*W{ym~- z(06>=fN)Lff49VVEEfj#5WFTl<8z(!t>wBkOm%0GZx(NM#7Ai@loYKOArirs8zU2u z#o5gW0eDYytBhz{uq+$2d}QJ$M->{Y{aL*ZE&Mzdw8U|`X(J}7-2Hr}x%a&zVD#O7 zcXDrr78KrISzccq4gNgsRny_#iVodqDcpJj27)y77dZP`wEc>H_oBt) z#q_CSQ|Y?)R_-UlrEj&BkFxebL5*UM-Q+F31M6MB6T z4iXxt)8pB>K{2GASD$p`K}}nB3a?Ah-_ADK5CT7I@u3eBUH?tBHH8aCj|whfva97u z=#J#_G3}C`%-B2qDcZ54t^kIB>7UtPu{+3DF!=Z$2_OGf2}%+#yVn$Gcw}L;Gd!PP zh9x!m|M_0kR*?fd1UgdQUcJ_VbMiF^d_GR%73VCN7o47DZmO4E#u>9SiGY;B?t8Ra z>y6Q`C2DX};N^ZjTSZchCg6rZZEIw_6%2zgiel6J0N;BzZDC`;OpTfE)i*R1;%{wvP%UOS51 zbS+>@nIbpOA@Yh{WNTq@h2VEP+3Kq6nCKYhYH6A8uH7_bS3@PN_-6a%j^e*;(>?L) z^^R)#fBt=mdy}>^zTn!i_~T>X{H}q{8Z`3yjtkN_oqB-hh+CvO?m@tNsu4MZR9yts ztUg*F^(-I<)qDJZt#`PO0-}e&Cu2u?hZ`d2dk*HC;>|0B-;Xzhz8?6GUeU2_$m$s% zu$w{!0J2XA*WU^C1I9?|)VU4?F%*9QS?Y@yrZMg_1YbuDqdj0g#qcy?L76mmCt%}y z+f={$wE^X3C^{&s`u5rd&Gb&M?+YOy)nbR3JG`03o^4y#) zCzLwtzgYMm3={j|fx<)n#Oz91L=sqvrTXtddSYuoe#Lsv(HCJ`*L_#u7u2!<`L?oP zcKE^obNs~GM>BowSk6=dm(St}4U`1&qUvjGO!P(SRZoP8QuL*D+nxAwXlG#zy;Cwp zQK%&RQgoUImo$VEM_BqK=f{~c%8)!p&m_0urIQ}F*K0pX%e3fmq*Bhrrruj01x%Fa zwpAst(R=H4DHw|4v1bqcbyaST*3uBuGEdKMnwaF!JCjuwg23WNxEPdBPOK~$tYmm@ z-8`*E$ak=Ej@wG?Vd*Hid-%IeR{bKQV`Ja72ygD4NqxQd7MK48gA4Tx4&Z0w zuuIx{2b}9Ovk``mG)ezk4%!?1PJciSBq8b>-c#ky`Hu4r%p~M@`TVZ3rO=S3G?&MMMXzE|9iy=%nTi=cQX(5W^oGKs>+j^x_t1af{0Qn4<@-<6RUb^ zN~&tITerM)^@~_!NAaZML5-tcnrTx}#h6Zao3%4lb+8G|7C&%(G2lB=PyOlzru4tD z>9v0Twszbor5IM$Coy+#e=FXbq$RwMz>Vw8?<_x=7dVeht^~`i zESENy?8Bw6Muz_nTi+O@S+GPoJ#Blsr;Tabw(ag|+qP}nwr$(CZG3Hf?Va~FHg-35 zf8G0|BC77KtjrTxndh9~mefx~mhA3>VD)$XMZx_)%G4T4;JK7WN;iF3_NFEvbL|g5T2-SnYO9q4i7VX*o!2k6@ z4NTk11&Ix$VunQFrg-c{^3o_XMfWlrEGAlq@k#0wp1k~MtI63Ni{2v(cKO^Z?ML74 zqOjV@>!nVeo^;^YE(6U;S-VK0DNnp1y=dgBb+A^6%A9~{{NvuyZLA_{sGi*aO`LKi z@oQ^Dubf&t?LmFBB2AjKW$!EI#OK1}Sa7Gxp6D#zjd;(Sv7-Z^vd!g<;ZjC*=5p`Z zH}4dS6>uy9x*7$A+kk=bR(0ZV7S9^11Lzp~rw)R0eCxhD>7Wk~f8BhogNcp&TJHLb zUE|hzx$_)ZJo?4^i)+cpIPE#oc)UR?0^&=xKBVh|;tS^;ciqhw7Fn{h34)gZsD8`P z&j*TE8spIRop8Ex{lR9siq)(^-PCrRE7jcXV0HP0E0Uk$%W$gth9bdEI@-?ZFfn=g zz-nTIYhomuR?g;!2-^e0JCto)FcBKQ`TAat;a*+|Gkps#XCU_GLk490FNj4JMVUpb z5g1E#4PaWi%`CbUf3jc#7r=le`I?(s?O@%+LUJfm0#NgouTam0*HXxZXKw5+K? zc@h8TK(=}%yEHYx@ejUm>_s#{a*w{m4m6AYGxt+%;OyO(6H!o33T%IAd#JL=q?ahd zm(zzu3k+-dKS{91-$sJ)2iN5`_WBjt?XI02no-VDteVd1>G4&zD;lYlEi=bNmlBS) zzrWNclus%bQkdJD>PI%#%&N_oYQSq*7moWY4J|U8C4%i$$n_rss>ghEh#7 zG)ma5b?%=CxvQ%swcrv4s{x5(e=OUm0?7Ie1L#mgqih#!7<^$vqi%|`5O?2NVs{-b z!M@fb=@No&Yyn;VD@@X={T{E;MR>uZ;ySTi8^2+2;${kI%D9;@w#0M&9-;SHpQnh8 zf~9o6ii9jZ!nCHlg0mnV)m!8?^EJ$BIGVcr@ML5E-u`j+ASs7o9p6lAbmP3F_`ppr zW4K!K{s)2wE^Ni$Ka0F0SrM#ZSA|>c^tpARUqh0P7TO%dQ}@62PwJ7Lb6=vKYaa;j zc6+q?R8L8JIDMh~rT!g^(tiQZgxd|JSFAN;&O_@Tf1N7gg|-G{E~*#0R~UO0O_TOD zY@4Lo7t@|Sc`d)Y+qDrMs#p3ulHh{WLTMaRX)x#OrS6{jiSf#}$* z+#c0lVn8p5*IzR=h+WzwUC3NewKHgte-J{B5cn7(W!!-NLHsMK?19xU2XhU{ z2VZk`BBuY4I8S#@?PU|iIkEo)_#AcdYRvIi1Ce7^N8l4j@y&~uh~y*X85ejh;sMX+ zZztieOr>jhz|I3uy`F?h@~WPmW5G1LD6b@x9QL=Y#86V1^Wt?iQYqfwZS*=(&T6_A z?_5AF&%R0^a&O1jeQIHx2bVgZmg&0J{HkB^B~yz(oe^D%X^C)Gp+B*ryQ7DU{y=Ub zcM@s4nUG)AYIYX$+|3e8QQV!1bY6ZR-+b579F?^MJoAf@FU{k@?91$)nK_om20J-7 zL5^v5_G^skZh``M`J|WB#<{ro{E1k^W4{MGM?W&}n%T92-MLtQ7tpx4j*O!z`Hvdc z*(kzQCwB{xz^5Xd^;SGCZ}eS1yWZ;NLmNNj?FH{GdZeoMht6^Q7bK%(?r9$zyYQAB z+g{bzD+)K3gr*O3k`eW?o6nxhBqV^13_>YXG&sPq`f@1m!0D=<+rfD~WhXs{b9s`zxd9 z$KSW?FL@PEPk-hCdy@;;ZB*@pMP1i77dK03x9!H$%}nf7z13a4rfgaop!oc=mtMGD z2wQ@)_kQ@od}9}|OZhpoexvz#BILP6$IXr=3x1F2OEZVJ8!PseS2u8pl|Nl#UzY`R zbu5js68P3}npxgCv2bSi`_vWG=FiM--eLn+gGw@~tdnP|K~8H9Bp-?nsv0;gta?g1 zREL!;AEHDQS%5F^sXW9rBQqtUQX<~XOlz!l*o5J^c$~3QWp4$ip?@7VfkDMODpUIy5@=%5TAjmA0*8QOdCKoVz+svuEqUD|5j17`o1h|+H zU$%*|H_ZBNT3oQf|8!c+eb^ppl^2Q#%jVV-d>8S{qu(`P*Ejy&HGt|74&8CA z$?yK(em8LsEEOZ4f3 zz~8WG(dmg_hM6Lr|8h|)jG2?ALAvl<_~N+#KCOqg@_)tUpS$hBvME!&TK&?0d zsAJE~+35{h2nMOJMZSnixi3?X0_}Bl*^|G5W4N>wTy~&hY6;HFpWS8-m-;bfB3pf^ zJkE#Ae=i1a1s8wn3Cbt!>8N4JzuwOBSre zQKPIyI^qK@5-Ao|UUWr7puK71iZ2_}0|4JpGW`4C@-pvaeYLJbVs7g3%;f(%rekSKdyIgOg+9zjy2tM!ohzQ z8a~BtDmMY{kbo#z!7iAm$A9%_&$D4l2^w%ah1N0ACNifX(XF+l+TgBxkCU;81%%w= z6jK?slcQ&X6CVZx>k-bmrXZ4a<{vDr7YsF`h_zx1ggfX_8m5at%k2x{^e^pdOZ#Kb zJ1mcxh}!IS9Y=?SI~%e$Yp%j_J3qZKAU9R4w^)rmUzzqW#e0$P@Ff*L2i{6AYhU9y z^HoP#@Cyw6K&;SWTKo@-)SRg}{j#kbw*5=!308FQesq9fV^1ViZj$_Lk1P9*4~Njn z7RO&il4gEDT^(YDM6A8r@Joj_XH*!ozrr?aZWbmKx{65L{eu7vF?s}%ul0wq%oT!( zgSoBmaM^8U$C9rbd2tBl<&o{TbYjVdqhn+zC?Ziotj7s-C#$)1GWZkST>#bVkOq7E{uw*{QWY+vfwQ5qgrT6dLIuufdPPB5-VnpXH4)5wU= zNhDX(lFy1Vr|nt6yqYh^J<~w|NOmAVf6(KDB#GbaLn&*->rm-73ek>{O|gHSyLKi?=I&VBWrSbwG@9$T(`0hO4%=5+fX`T~ z<(6c!)VX9l^C-mfS@KP>&rqc7o75#?Z+;QM+o6#nK^UJZpRC2zqy{c`q)iqH$!HzA zJtI^3FB#r)C=g_gdsrX5Fc=sGB`wR^tLYjt#Y=TL$=kv@diOH32kN6hrAd4!re_eX3M>B6-R83$?_We1B7=)S$@0r$oWp-S<9Y7T`4UWxRt`Q>qjD9 zEn&q|=}M@QPHH555Od9al`qlUrCq5(q+qd+_=?V^#n1e6f}-S@+M%tZ1kD?l$8@D+ef_JUqp5OX z*k<*R*z}Dduq7NH$l_kaoaTxYyhN)%@QSjw=17kJBwbikBY}qLFT-@IzKH11O^a`J z_CaC4%vW59s{LJxyHz6i;fuke!P``EyM@=YqClmY^rWUC6{+++wIHK{>!!$)U^#=a zUW1eC@bRE}zK&X*GAaZ!?hz|x$_tbC4=K7i0n{B}aeQ0Gm990oAa`fP6W8JW{q`AR zL2!mgZ8jss++{iOwU{eIYND~NblXAL**&$i=KKDlLme>g^xI&%DCl()`w1(@G3XF6 zr>KK(bpzJTCRRce?y+{Sjc+3QR*qOOb9gEW1r6{bVy3~k@1ppNfA#5to2;i4SO~+K z!xWnG<~$lu(T07Cr62~mGVIi@nXx2)r%#Ps#((P3izX58U6)SjN0M0iRP^9bpw{;j zMsI0io+Vnw;if^v5_4lhSeGtCfMt3eiVu#!owM>e&UP42RxxYzuQf~jdN`*XP_t6$ zZ5iZaxzuuVluli4elD!Le(}dLpL(&!w8l}iyQzx45q2^i_QHNOLFW-h-5Qx7Gxx@R zdYBa#^iFPB-t)vaHq@6L`4&;*9ZaPLvIx%o`R&!4x20PhFk|5i5_EEUsjIn1FRr|| z`VIew(yoY*z1`~!#Ph;~s|{Ykg~d~&_WO6u-0FhD7@YGb_i1AmEDqeUQEuoeSD6;G zdEB%`9Fp|fUuceE7)~3diX?6Aj=Z`pd`*l zz3BSF!I5_18KwjSUqwyOqzU(n7T^MI)gUaZ4 zLHoy)JD9O35n$UPl@FP*`{Z$T$4^=pF)dk+tdbqN3Cn2iC?l07hAxtlkZ8TNEI+{-fXuw6;wt!kVC z=9+_7ewISChGZ#3A7{Xwel;BKj|Tr^3N?|DWCRq_(GV%q2R!b-Ij$YSVst6FJgm=G z_v4PTy}KMzq|Z0AZxMrup@oh9{Q@4si)(<}sw77z@)?;0e-X*mLPQyVoY22mb5c`* z50ucM{-xhm#SSgLhI>}OzksL0lq?`R%F`vIybnk@oV=Va)Zx0_5oEE^(RgzEi2jgb zCT)6XxxdR-Zr{Y(nC$RZ_o+MfCsO6TjnQaNgyDq1QGWt29APd9mXw3gBy-4Mw47gU zbi>-Q9X|Nlu?K64(>p=;RQ6V-qv675^jeZhm3kE=`XD^kAzE3Vt-eWg!}KpV@HI&g z2Ywh;HCeO!(J)>?Nca5;CpEYO;hRGGftCXCHxv+Q9v#Nw{UE* z2i>kP{jCrOE}N+rqSwSC5))fcg8yH&7K754n-Qt-M()$qXK~wVFA8Mu3dTXa&-iJr z76=X*$an()s?3GRNhU!{f_b6n3?A5u-pi)*3N$hQZp<|%6JlZ_8F&i$eS3-M3v|>5 zjsM#VlC1&~gQ1@xa7FZh3tWA zlC%Q{8NXZd)Y%67!!klXN*&e3K%-c)EN<>xh&5?mEK-Ez)V%2=gQtQLQ9W|A+9MfW z7vjtUqS zTrc+Vvo)s^x4k2bY4sUx;ZWyE}N zP5xOxRI`W$FGC}p4D9<_{K*7R1Q^E6#ZD`8BV=gh-cN7e=(`yS^wel%C;gh^}yNy zq*Z1K&%NJKjs%>!!Q`61r#n$_#VT-g%rK>3o7c>}iPrR%IXxFHc5D{DoP`e8KQDbh z7Rz+hNVHAd2*6rf<_Y`SP#9%SrsmeA4g+LVUHzI@4(Llw;bXOH*MBr5)4F!;I`uM2 zl^jB^2s(Oo-9@OtfI|lT=#cMq;0jKGewpf>_b52cWVY2eX(-sw=a*FaMh%$rf|CGu zvPjj=fyg;&Oh?5I1bBxv0P=#5iat;Me;o3Qk;q4{?1#YEa?H|z71>Kz0Bmk-$imo8 z+JDygE`yIxa}!=Bn?neBA1!%h7G-a`tY5QAPJg3FMrHpP#aaT{;X}EIlyhB=JLUed z1AmU~vH(YnW-XAW)1f9+c~VEZc{*D>ko5Y{lj{eXn%La4w4st)U(`h3GV675+NT!D zp9qD(SV_nT7(7uh%HyCOI*F>LivKEw=Kr*{HZeh5Lj2Sy!mqGe)R}FP-(sLxsO(O< z7BdglY1Uz0CoE|alr_}3>8n}bbaaD+S0iXw#*P4gzrSd6?@sy~&NZnc57$@J=vG@J z7daK;8>>DLyI3M_)w&L>RTut)&NjWS0X=ty4BY&bpusq&8j|IJC;C0(3q3q1# z(0|M+?~C3l5^>W5(P|QGvmiDPcU`FT%~Fnbyv5%A@yyzIC)heGM%C7k-P+un%thhw zWniS$J{k*ud*l^-jonHcQCBCziND18aiFAi>vanm#m71)6hAh_9oBf~FjfttBFP2W zFDHbq&(l4L_gB7yx1E5}h+8!_U!dz|6m9DKk&_Ribnia=)63_Cb$wg8ErP5HO(2=x ztjj#h->wo*fR#OiVgs>^FX%tISW~stnH+5bnZmtF6d-S>LW z)PU3H+8l&Xx!P+!jE{JUV&?RJdXmxgG2KXt!I2Yi@LUG4rrF6on|iDLQg}O4r=zBZ zF2R4vn4Y=0nG2s>D3&_yySHvdH!rtIqwVPiC(V&*5BU9eEY%;_ z2D>1&U8r*L$epNA-9gLhOcBweWlTUq z@~6~J`dB5(sa)D3_@Hp4Za`dFoRMxXQ0ziGo3mbjsWliT>QH8-l%*Y0C+jO53xp4dS-e#~F4X zRbj6Y2z%D;5*g_8*n_*A$S7CQe@+cYfy41Zy1pvs^RS1&ui4k&YWtbVHDJYJ=Fk&n z=3;dxFLblt)y%scG{9++D?adfL2~g*Y60CUwa6i-kLc&%WQ*prjIW1uA#-Y1pa#}uIozE4 zWfI*FD(E_?egyxh6X>zu`Nix)_Z*Y?3ddhLOTgpP)BF7a^uL1*9tggBxlwkw-^2y zTGEy&oZD2~NXY}_E&G7T>Ex9xBAECSluXy|M52HAbmwzr-5&3$2y+K`rFr9XEdl~= zB4G?tNQSgtKCdrq897F(`6pg+$5j@Ud#JJ$GFKQoiG?f-9DtEwt@mn zhmGyIE@)6)a6&8NZj(J-Giq?TzOKnbP6W?aN0BycGq^?H9}>ITQKs+(+NHs-<_&vB z8QSiF(Sc>w4Fl!GvgDL3aB}3BBlnG=#erDx9f6^#>BZ7zG0K?5W3Q;f`~l+auE_wo<_+3;Rc6NgVja>|o#2GhLX+ZeB-aWzQc zR`&OgQ=%4fOFRX8F1cvu$DHb!Mb%1X%fJIK8}izxOa=khp(5gG<9E-J#ytCy0H>(2gM0q5vHx8XE+DrH>dLGL-_N61A+K0*;XMP>(wNeueD zxDnPHc^L&Q>vE>0UhC&6BESy6FIC%)w(xhhtANq@#^DWEuSw~BDZ7CI{q^I0LT_0C zbhhGA66Elqh=*yc$t0^MkEx#T@b{hDL}DkXSi#10#JJwab?LJ3 zT7yM$?+UJGQzbcWgiecAq8Z3LxuuSRhO((v{TQr!bw6C#7rJ)P_=6BnxpYdMwJL_) z^Mf=u7ol-&{RbF(j6Fl)v~&iW{g*#0tpYr}acz`N4^<)z`^OWVAGmk1>pXri1Eh@5 zDqrJ^I?N7`~CFfnd>}^IPc>R3hBUT(Z+Uc(Rc98*oKeOmI6}?^(ghi=R$g#1OUBc+`hRKTv=hYzXzorK6QAI)^ zk-rASyB0v9hz4UJbOJY&>qB-o-`O+tP+EY%d@(wxDJ}t1@nFzCPBAS*(bF*i_Gzg# zRqF#mPFEF^lf@y{+iKqFh9+|>2H|$}I@+aQakIud^nyK)*!PwjY9W1DlC@@g%XDBM z=tU25B9q6(Tiz1}A)uhMu~Errp4!PConCpD3gY$v{p$HG_Mm7S7GlkR9pDskG^4e! zQD*+dfs=2;E~rdf1!8;UD1FQDl=Em_JZWKe$|-0~CXz$+df-cI=Anv!XE*EP(c|)- z-H0{{(-w0Rdda@g5i>Xy63{QylraYcT@Y@G5k>~7%>SsM79H7$bWoRWv#b)Ljk z{c>*Pk)9Q&?l|{(ffr*_{iGceUu8;8edLnrm68Uw2mJ6Fs(m@Pzy68HBn&`^t*B;# zQsYg0xPSRxc?j-UfNWe3G=F2kiWDKfV^nH<_p+2Ueo47xEYK9YyLbzqBG(u7^x#r;8^!H`7yM(&g?f&XIc zh4an8bKxs!!}P9HX#g00w^4r!lM2~3G3?|{+`-IyR`UoSn_5cYB+8DR>+ggHpZkYL znWoJ3`sZs3%HMX}K_kU@EQtG0J3oH0Xf|CRbwQd_2U8#bhd;kq5mWlgaeZurG?fL* zaFXW2bEU0qj~($eQB|%;$w!NlkA%BxiOVANG@VoboZ|}qb)-aS6!v1Nk+HQKOr)-Y zKEV0ln>fJvm=U$V<4Kh?!1;HVsU}$Dq7P53ew`SRQ_LQ+Bt?Jm&n&l)z`pB2pDaW% zFhA*6z4|Q@F4Dx_+ZC#tfd(-c(=!Ey5eW$k946iO-z}bUdL)H0_)`Kh2nwu*?$i!1cXEVWN(U`m?%Z1KUJ(+9Nm$Jgo*!vsI6{lH%oTuH zk;78RYWG0?7M!s30|c?HqNWsa$eX?Sz~kr%w} zMRYdLFZoKeGh+slwJ8&De}@90<>x^gf6WE;p{6UeQRwWh1Ms8{OX7wv);pPF?+_pE zdhoKP0%>$G=Uz(%OKmt}!ka-XQ}ryCK?+uRTT~k%mkYuemQ8opS|^k6Nd~^hH#mN* zHwY;(XK%SOuzFZ+?*5ljAv4(aU$^%6LL(scDr?56R3{cTP^C1%+r<^~l&I6S>v?Nb z&NG)E7s~cDq(N;<%&hm%BZ9RXoTI%sm6#0aY}Hbs}<_R6QK_z^chL>FgF%ld3J>c%ye|-_1-{ znU3VVHM4NiOaSt+#wNQkkgRM7?D9L;Z32)$iv#c!(8(}UO$2Jf90>%syImpe(&CMi zqKyrKL<{+157@%DACD{MmA~GRTa_bu!Zj;~uZNfdS7nUMXL>;RD1vgYns2T`tU9Wx zt!33U&_O0pl#Sbq&7XW9SFBCXKcu!M7G49}l8Ya(?Wv?rU8ety^Ksa-iYD)*wF?nX z(yn<=oqc8YiLKDfI)30^;A7^QIQ1*SKeHH>J@Qin^#|4Tq=|^kGr}dCzVSQ4K$5%T zB6tnYXiWBj{KJ<6ba3!vJditht2*uF-J=V%9ovD?V(Y{b>gZ3twx05C?v8PEd3Z$L z4FEo`u-7NCKj5&b+{^5|EOFCS`7HV{(n-8gNVHjsoO^FB5Qi$8T4ec}>+ze&wywGi>UnR>scdP|i<+4HJ>OF1 zEt+eni=Klr*A>@vdR|A$RnTA0OJAaeEvkx|yQ)KL=^`E)wuLK`Bx`i|bkyG8?hR!< z+bUrpwRy^q>U!ooGH%;F0B+hUikgGk06Zt>z=Xkf(Mt;st>LV{@c(X=t;N0`mEZX4 zjsOaVAhmq(sb88t?U^}QGoGZ&%D>Y173s#(xdmg&ao9-oH!;sSJ~ zKGadaVSvsj2=SQ&^(B60;;jdovIHnm5Bb^()nJfG|p0eG9 z6Hj>Vk7K%?!4jTQF{1W$^NJ;|t?gpT{%h8ks#4gTByU7jm)W=r(nN1~VB=6^lx8mB zBt}@T;Q=3nZ#*!Q^o!>C$U9Vj(2+})>3*b_Lct1UE&Yqkb241$@H34$%$ zUhF4Wx2;%5jZ!~!z$+}qpIi9+vy-k~BB4u$0!HyH;3v%AJP)kH*{tIqUIAfSTGY1)aUd{lNXi{qB1#T{wKD zS=Fv+pYEqT;?H77)6_^^>+3rtuKC$%sjT*j1AJFgowHcAZu6M0&t$~$J6qJ;g4zRH zl$*kDWZzRuF9xruFDb2))PEwGbO((860wnAGFsQZUE5hU!F-rL_@AvnPv1bkiXNAu zTIYpThpj__t$h-m-#g@Vx9hk4x8t|GZ_i&wT;H>IA9UI=p4?%JPc4UBUu^%Mkvi_t zbRn_jrc^tWz9VuIxwl+eFLRKCH_5wuu@!@O=XKdmYd9}%NUm<-Y9VYBuwJZQ^j?fz zYC4CJ`-T_m5v>RIj0fMgDt}jJLJ@(_+Y?sS(|_&^O_-1xKf?b|#dr({}aL<=cB7 z5Aguu|K5*@|NJ%SPkduFkU7!DAln-ve!(~?acE}3IWP*m`$N?O!MW$yCBaBdf~D@1T$! za&=#~*pZuM?3FFYUrK{mTQL=W{TO%_eqqOn@@_RYz%c_$iof!R1Z_PU`^u0o4 z$reo#5$yT&rZQ<~m(EvLnxr#ImuamNCk^V(lj%>0*wUw^rK{GD_+y{U#XK81g1yVV z)G;vXf66-EjX7YhW(H26@<*uZ0a-sE83G06yIwRj>8e9=WwM<8di%ICr*8kwRTX&A zJAPBm2Ws3F@(X6=anAky2_~qz)HSR1^Pm~D(kgKg_a-&zEn*@9UF9NLDgEv77(N4D z^Wy!X!&*0+qdmTo(kRe=r8f_pn>N#zxK2SgaFl$I1ALC0v(K{JcJZdf4Q;rAGrvxV zbNnQ5_2>ARHtk!Y2i%`CZQOyUrMg#_^Rw+aU4m-exnMmyVrV|yqQ0x#J|>HRoDxiN zSWXB_eH@|~CSe}L1&`aH_=4@2Be)Niq=oIqTz-cz4RI%>pKTHi$ilmDd^x_OowqS5 z9+InmgrqrZ21^Ar`1zLoq9N&~sol^z0-!ws9!n^WGG)b~v=D0cQfn}ph?=wqDXTN@ zQAb5j@TR^XYToUP zwwLD?BYBR1;}C8?VfH*x&{T#;I6GA4XRbuDmzi$rD_isic$;nzsd|sS<|3W*R}{BVD!)eaDB28f zL7k*A4t>_tLAz0(Q9~b!p@QhWbOo6jvb1?-6iF!> z6Nbkrh~{q4p8P8uNpI6pI%%8$J8aY+M80C(z7G}Ywdy_gwuCDIKgGEir{`={gOF0% z6`;G1*o`HQ1=mOd>-perBm%91v&g~?4;Mv_Wt*otO`1)(CPmKg6!U{}OX691w;j8! zs{ovKxwMjyQv|sbOmcxib9^P!#&EuIAm<{bLbg9Q=3M9Kz~zIDG{8m`k@|0k{?Pvk z%)}@FEuz_Uihj*LUY6}F?%r8g`>UuoQ8A5MahXX;yOgOK9SJ+BrQxh1B66OwK$JG6 zwZDW0+?dEJ=e8F!Y%FDuN~a%mH*J@uiR-FKSnj710pbxZa-{d2{^spE$b5d+i3Muo7-X^G1{}J-c5? zkkHz6N)ih};r0~ilZi#^<#}Xo>IsDLDK#h$Kv2K<^lEH;ThTD2RrJw5VSQ#!5(szH zKxV?5RfFr{JEHkAlzVrYH|~Q*vn{9-UI;P$Y=5!%$}(a1(j&LYUr@9qr+ruS3uxWa zAA{LE=v|DnOR0>ik>CN-aCCg2AJ=lGvtQ;Xx*@6&{jNG=w%G&5lt-bLH0SiWLqxK0 zkhI#Ib)uj|~FS@^gt0Pe2*<+^;xBS>UE)1az zC&BXVXv*#apZp+)T}DD081(>OL{5>HYk{lj)ic3AA>;wrIkN+^QphPWN63Mo(MG); z#B{p)_~p=PGU_Dd0&yd^u%4WyrPeImc=A)yNHNCDVD*V8uh&^_>|b^Pk0Cx}ZFda* zcDR5swv|6y&ti~dq{U4-NXe?4v+I1h^8UH^HPECO=fd5tj4MvR!!Q@Gr@0Z zo!0&ns=t-Bm&KS<=)FUY#KkH5$U}-CW@r7fmu^Z*eH;2L>vS3Yn}K%X?c1V)6ptK1 zxsvF9}6wzgxwC9yAzKDlRUby4EUCTwOSfE{FG_W8>iXurec@N0K`~;)2X%hM|$; zxD=so7~WhoaCLOxRBKKTc=zvtj0f|t+7#Niaz#mOTJdzyg0V%+{i_5z+_NalMFWOn z=-`tBr4ghGyqzhcWMkjKPFZ#MK59I~7Q^;Eb?;v_ru;IB`B6Go%mF$ePpLPTA}WXb z+5XV{IXYqr`-V}^cS>j&09Xcj)3&J|oT&F=sAs>*Nxb$yx5n0_nMo5TCTST=Y7GKu zohMwAl8u=V*pr<@(0Kk;%(eL;v#{Ra4w2uqv8@i(gD2yeo5%{yCMFTemMeQ-;k5Zl zk;i?g2O1XpWrwMqG3?r-9ayYoSPR%qE71qOpKLaPm2+|HajRr4+R)Nk&PkO3m}RWi z-rZUSjmXJ?r`P(L1VvaRzxp+b2mv=90uzgUtVsoCPA)`-{LI)KKPl@ts^oiP$zz0e zNs`cBwt&aRD<=_`79t+558o05d$#f?`sjCb{YXDZ_j1HpPl2kM*gBuT=aykmX~q?Q zsyf_p6NZ=h^*$hD~8Lfm~5Z zcibSZ*hHJoTAGHSSz%b395v}T>R$J$N3f?xLYW}odIbFwP}J}(fRI_5Im^wsuJzhn znr1qIF4PGs6VhamVmDC|4vCmifqWU{io;e>FndL`bx;IWv>mnS8kcbfXv4i>j{<4I zC-ro?&w{8uZlchQ9YQs~!y%00f&NJe><4my^V-Lr4gY#8#H0!wm8-j*&w$FLWqY|n z`~r?PpZsWop_xt=O&r&O_-b=;asn8|G(z8Zm3FlhkOx?J>zq(Ft4_wfZ2@qKn&17V zUGg@Me)(U6)sAQ;BxN~0$M(pqG=m%&vBWniD*Y7uB zC^QUt!4UpMALo|PP;8%CBbXMKMioC;U_6NJJN`flHTkqFjh@9Xa;It#oP?qTs!7B5 zXAN{?>&rGOdZHjP0|EKHQ(o}X4GDRgsL&?3>+_iZ8esB>(HN?{YwGU&R=%rP9$~XG z2m10n4vy)}vM26ho++i5l&lMQrxR2!`1V~ejZ3lWvNfQN6>7Z|gjC2s(tW)99pRRD zT7o=pP|;4h8>%Yt5_P=2vd+IFJ;{UnF z&@bdJXdE1QY%#2jSZBR$-P&c>6d+gJf!aFE;f*){mb1m++>=YyMh0PE(oTWJxf<(r)#ML=ebk&%Z}5hlWPZ;^SLs$W&(-Y zxY=niMqp!C!d#dBvEJv~E3p*gt}zuD5~zMm@(ArQ4IC)b*x%!#-x8i@hzP&-6!c{2ZcM zv?%?K2u@CXA8H=U>~J@$pxx}Hx2?#{i=9WVnHnkR?Ie^J*q);a^VFx^>)HkfHDIBkU&0;k^D#rXDIqiQHZT3-9h80m539!eP(@=P((%`NF^F0b+9SVbqZk zyENAL>`&zQ^XWY(|Zjn#u`zIlNRfoB7i>s>8dc3%ciH{8UgmkCM2!H9xKW7CyK>MlHtOOYu@Ve#oH~% z5Zc0)TFp=Lv6*+Blauv`23_NUX#%a&fdwlxB>e%PXf9?u)xxG{-6G^JhrA|$qa(QwRAs=nQd z6}IHBg};dRQUsx;;UDu3<^C-{YS~TI73Us`D_woePyK-NV)dZLPH0r1eR4nME&X<* zUZ@hQ?zeSNbkH*7*QY0EcYn*QPjU5*!HlfvILgeCd2|=;8NTvDHa$?2e{$KZxeOxk zqO+qJx2JLTX^#acl9I2~Ru=SEM6~7^h1tps3;sf@qUmvAOK=_#>#0vppP71l`t8<^ znC`id&il~d&nug_=qa8)23%p!4fPx1k1r6Hk z79E~t=8REE>Ma9>nr_{f%HvFVx#Oh13I$dw{!gT-hNZTVH7g>`d+Nk+l<1dvt{2@) ziQ&}J9M7)mY7#t1$l_`3ai>xc4Z4o;i#ktW4wP?n&}EYA96nU92U>= zFY7F-9V%qHFH#|KF@p#19`~mw>o_?Xkl9V=T>S>++14EUO4S8=Xu350?E?z zzdr*KOh;6)KSE=6fc$Kwi#L4=cIl_>+mgOyoY{+X-?-Qj4VPV7r{K8xI@-#}bE6&? zI$p&keAdzv-YX0^VtNK*mFmk>$)=8jJlPr)V4!=4$|#@ce~#k|$#GP0t^tk(X|VGs z1=U!4JuzP!zLOyZtm#X7T!vt zAiLAljsJFSv94DDt+e^!^7Pi1@ zv+lb4A%q!4QTBY>XrfYwWUoRpniBy+Pd86}qUje{gW*V<(*EC`XDnuJat>Y-o}?`# z{JSL4BlzA4z$(3b*v&M^%*)B|txPpBS3@8EJrRqP)z&kwAeYx!xbJdT$FH|+F{y7#&sL?ubNv}?%Da(~_xl}oZn(nrNm|byU0@`7 zDvbwTEL(o;fRA&)clI6WIpJ4k;EeO+W$7S3-*p$_8ye%|AH!J&#^=Ywmy?eh1YVJX z#H#AaXXwG%yOt2K8&tDqe7>JDFKpa>FH5X({Jzh?xY_4`z@Z1#Rk_iVXjFUxjzdxI zM}!)Ly&Z>qd$Mc#%Cw27t+9s=^oP)#Fv@@=j+)&QQCs8rJn&!oP>|ivM2r!{JkOT3 z$*vnw$Ta4C#$38ms@T{&dZ8<+g(<~GHfu}^xvawIgen7bw`YOV?`#5P=m(xZUWBpE z^R&o3eyrZF9G(SR zqs;2^9dW7-ACFkC_S_2g{>Uz~(_s7fX_vr{_btmz)KaBlk38KfA%5MauiKyl{^fMs zoF7@E+u7jLK|-~{T<1LThFP$qPVzFoZ@V1YDhN`e@`etRYe9pTE-+3-0KObR%#<*e zwZG2)>GT8@oq756;1Sz^+%0zEAspL1Hmy2CXooTzwAVf}H3_}5%FzYk^Ud)|yTT!^ zyKHFKWozf=3^p^o__J%bkB3jHqqIP+vtFkjT#;vD{|kyM&`u6FC#l7*Db83NgKw4_L8d#71lE6305 zm=zh_YlIQ5gX@7fcHV6c_ZZRNQJ4h`$zkX#5v&o|=K9gXl>XYN|AVu0{H_D&_He8Q zO&T<|ZQHhO+g4-SIk9b{QDfVUtrMN-_Py`@3+|VhHG5{wnlIzMpI=$LvQtOehkBcD z1M7;l4Nke1Uci(*a5*($LaBF2$Q$pJM3^I03p{<>>btp=$bv9E$s$uCs((m7!KJoU ztCpTFZHB=)uB)%s9I(&|5?t>X*WH(yNJ{Yy^sy)2>Bq5oWsx$(9B0KW&zNCjWi!;y zSvx6D@1ehu4I`D(CT9QsRCd-@IpPpR)LSixIfgIBw{mli0uwSwl-s9EwU-o0a6Y2Z zWP(+`5p@*)E4Ch)Bl~cq{_+S?EA{;^o|3b|@c7M*^l*OahLH>QrlzD_EoSF}YOEWw z_r}#IasAAylY{Go^^6Tt{0PA+P(Q4Jq3$j&^N|Bs*d$&p&(-?0H>LQyxKT(`?(DJ| zCi=55x1P1q871fH$9!9!a+X0u*Gd^XF94|weL9}GAI+E7Gv#ATQ&hkWa7l}$eBp6p z5P_l^qp)hi(suet|5x&+^CTGdy7OfIsL(Zoarg4U-k|S&>wDNERc@d3P4Tdw8F8+s z)yN2Gw-+@p%lMx;17T{Qd04ocNYhJ+j-ziqIve$$X ztEo?n-GG!Y*nyFrM1VauBBz*o^^EAr+TZZLbT36>hkKl47PhAhm`>Rgz5FRh^f7z! zyz)ecX=!tgR0H3hx*gv2ZGQZrCeXj<(ZuH)n95*w0HUkMRznqagjUA#GG@rN*;XDe z=Wcf~KY!V*bP9}TM8rIbjwB~}M)9u^et}HIavfR2n~vii|Mo}kIDUk@z{Qg3UJw5O zcf|YC2(~~3@8M#q9!+>1b}eo~w2c`1(#2EPN(W8W?vF~}vDGKHK%cMa>JBgZj=uB# zUW((l+ni^X*M`QDPZlywKO*eZ9EC?HBPsqQy)I(odrz{JiWVNPZB$!{?^9k~{t}uQ zTugYAu@&0(fn*$ec{m72Ra(u9X{(}wzIa6^+$pIc-djJ*mbVoEHW@nZQ~dR zcPh=QkE&KFHB5azem1xL`AOhi;71~;U-~@z^{TUroAj})*O$|Nr`gh#tU5-E4pm>{ z{Uz#00-wv@;e+bgeiN6_-G1Zy=m+X+eCj>?WhJ#z{9RvT*>-1Y`6LQIFw^xt;PzJ& z^cy9^RrD|(w-Z8tS;OD0wm5F9!PPwLLHZ<_Z~1vgx=i$DjAa%%pcz$F+l}#^)eGhEEuZd{rT27HYSUB zAF8}_UT3bnR?-7DcW?A7U?Y!gtMds$z5hfNXYg3-k7 zxO!$VCuSuFLV&(ox#IU(S1hV|w|f}if%S_HAjYk)J5VseMbgriEG&jpTwRG(*aGd< zPoG+E)tua$s9adx-{a5g60L9q-?Id@@7#{Nj{f9)K2>7SJ%Y; zdik>#cHzvC5MXAw&MKj5F~E#DGgoLm3R$H-l)WTsbDy@R%1HH>+=a_&9)TNE)yzxK z#HG|&RJ)DTk8Nmc9&N#-5tJq{JXbLQWV`~0&>lE}KzF=PURT)Ycbnr!7AXJtE@&oQ zIE!x?Ip3FI9v`fGblJ|LDb-1qGmr@ouea7c9@eJg585FmAeeUcnfLl-8W|c)CHKxb z-mb>*ITOGg_ktb35Gip7d-na3rNC29IUo|yywHb&i!(sPDx{P<#4)v|JI?`J92((Y zQ2%HgEL%mlMWTY(cyvQ&ff|Enj+%QRl+}A7)wH+SwdPzZT7TJf1%tvYKH)*u?g#)_ zgv3-?a5mLwsr>R!nA%sWS4?m)p|i3&F&H3rO-{0_Plzw6e|qXjb`wy4efL~Wx7OOy zHqe`)9jll94NpN9+B$0fLes-^GcQx2sQuJ`fEQ(%K*N+6oIMZl!Et+B8`+aI!{@F# zaMNAWf5QS0bUM)8u8neH!B%MTfLxyY_f9|OXhgG|+dD7#=Mi`aQi&2fACGgyh=>0mJ?o+0)7?T#5IMcE>M?I* zG&&#`^x0(tASsndLMitS8*oT#wmDevfha6qi z+%Pawn-EWbihSF&2|4XlF+R3D)h*?^wGz%KtUlEo_e3jcr6{J^suHg&o(D>-r-S@H zG}g=9+`#mYGm*{MH`{HSg008Iys<_PPNfTK$5dke(kMkshsi#LoUSp?+w3=*{zl!P z)1&vf74FFKZq60~N0*jMs!6Q;6E&xC3Xf7y*Za7l^E={8{mBMI{*zijLcDUOlk}8G z7nz5Pkts8Y9yTMGm6UU#3QD5XxaY;dWMiw;x^)AuuI-vbbB@>=#}J*6lR{0pc=>YX z@o+03L#qiC)3)MKEMqR)ikp^Qw3)ShI%U%;ZV5aJ%||v*kxbG5tM)kQ?o+x@1RJWu zl&Q+z$@a?Z*1lssCq1H3yJJ4b$-X8P2ycD|es_st&N$%sM@QRBNb?dDa8p-@to1}# zxSQEX;_J1&_m@3i1!aZf)?uEhN0)Ll;gKwt@GpO2LI1ob#Fq4)f|}yq94o5@2sNl1 zek-o-;O?v&ZfkrH*V_;Dm&T8BwA`v`!xeTwTJDJq7>qFAlSFiOjIq4^eu86D{!5-h zoWw}+0%7KH9B8(LhOE2gC;1i1j(>s!@edI^Wi8ByFJ2G6E#M`wfoxS2MGp@e&l=LR4Md`v zR18M8EsPS&-+?bdmj|vP7nQy+?gi~YOVdf7$KfhQh~!E@){4)IxgOH2-Q6ot{|gZ9 zK&|uy_t5Sh#GVXG)#^`bgaQzP4Y8`Wr8g z$HB#Qe6TDC#DM*CZE>~T5-&aS;D>Qw4i8atb`JSRs&g8l~Y3d?#rHj4Igl7+S=-FB&sOr;z;ujDx<&7x?3v1XmHT}vIgQZ9~V{^)G#-pb9JqL&Y$ z&cc_H!pAq=!hm_BWHej+>Iyd&Nu?qRkq59Nx~mxV2SH~`!=N+KWmjnrLm~$*S%Z3| zMx?d6UVneF0p}*VPp7T7HLq6u~$ zuM>lHi?(}4rN!u+bX|cV@wo7*L-Smn`^cq#G${rLjpg4&ph=-N3n(V{ocA+cY5A3d zJ}Mzy+q84wM47rEGmtQjz{KN)RhUe3L48~ONV zqSIBlTaL|CnwKS8#`C05E?K8@sc$kbZ?JZ$Vv~kxD`wd#*m0hXkweha!Q}ilI)kLI zkuh|NcYPoC=rxqTh$|x7916gRtnc?Y1FGj$9g9G%FM)9FlLV?a;X9j>A_G^Ic+eL4 ztz%Lke^EyKmO#cuFGnPhtBM%S!K_#Ep!KNkLMNTf9@VV&QR`kl{+7e=KDzfgm~xB4 zu=_H~sdVrOy;4j~x)GPo!t&EL5N2T;C6OHNJ2t9N-98a!3*jSLt}S;Yd<6*Z@H?zC z#0-vzdj~?f6pg;AqBEY?sPEp-$xhgDNJYU zslV=jZw?mrh|jJo<* zC!wnKYqg7#qU+B1$!m(Dfy!Q+)Bp2z@uJPm;}L6fGv-78h1UZ?tEl=|>ySX_9FD3x ziIq5&Gwtb?!H>blA zuAFkSL8<2CyM?XoFq&13t@GM}L`47>c?--vWkGi22cC|j_hWKT6~8J3$6nz1+OZqR z%jK=8U;g#$VS5Ul(Hiv>@tZ{1aCA`0LvL=wkSo2IJy4&xV7<93AFW%hdP=#zX2r7fn@n_%B0jlRo0fq4nb6>vSt8SC}#UD5<7+ZSiv|a1$@0=NdK-e%&`X@BWyVtX08l z-WJU|rZk%rbtTu}TM{$Zwg+%vf;7!Mi9*J$G!JLJ!i}Q!%N0lmN#HfIl?ihyAgD{GlMQ5{h%xP0v*PI8WIs!$RwuZ1 zY*oXA)v3FGRdaY+m~}Hdp+p8*@10uS44ti%Olt(7ncWs4oghj4XteSdQQGnpnv4Xt zG!4T~PN{0o{(m={6lYtWTEuZ}W#iPOb}JYCI=|n0S1mfF7H&}@4#I*RRP!}D26Ay; zMChw6kE1YF6Oo4#;v@m!&k1=P{!jA>;a`S`*TIi8r2DH9C&0yc^^u*&h%o<7V@3bL6yR z#UBpZswTeFW=U1N_ME3CgSB2Yh&`K9ojEhv&5?F~KMgcft~biL(dZZn zbs)s>6-MloW(-FNMEi4DL@1Jcv_z!?8N>YYjg39cC^1|`g@n13<>m^abM5XW;+cCN zk9zOMSKsQ%d=op5b~EBNY-1IiAplz7NjT^2CvjpAzuWkw|10wIFqGBdZ2@Kin8x6CEW{ zR_TbwNrNM)D~8t|*kET+uvk34P#k5Tqh>sD1lLaGtc}A*5+O}L1K({rQYWh!3**cn z(=X_Adjb0+W)eL^2>^)zU+GBZU#G8!(-0?vO{{B3Dw#11d0MmpPA|e8PG2s{nW#0I zh>SHa$6o#-mS$U_I{Zg8U7?l5Li(2^227r*obeowbKwg{S<8e5gYrrJcvK+cfc}gt z;LCu==BM}TNM<&@OT6--Pa|10o*>x*{Bpuc}rS6~wl85ghPZumzi!K@L9z~QwW zQuxA|QbU>*-TAH+`>p+`z2Nw`Myslzw}f#Rk60{S)lk<2s#_zpg5d|Q|0cyUn!33o zARu^EL$40?Hr=JOPDP{RyRDU_3ds-l=xp1g9f@4a%vctGw&M1{(3W#qr5{S&L0vv% z#|R4#vEW+)CB-WWaiSPXmFxm}zpEV;c?LE%?ZUXr6{~^g-E-tP+C9=RZ_kJBtu_%e zi&Zw!9Bdr2W(y#k(xKB?p(?Zr{u^eABH50PkF?C+V(R>v$grgD{Icm#PJ3LuT_vpE zqVZX|cKwCwsphtSvYDj>z&Kp7Z!30!N39oglJ}Xj#%&0%D$LEC-J~5so3pxCb)2$_ zZ)O&9hLGmUP#~Rx`j^rUvp1`?fuFxgvG$U?9JjmPWE3GCer$cfJ7K7I;Dt>?ZzotC zEHHPcroH+=xU{Vcw3ux$6z5$18e3ZOcLD=kWH9#U%W|Uh+`h?ladD8SXDLp1E>70M zXxL}w?zBuf7$Y%B`oF}xv1NZ=Zm)as$(~X#!2)e^9T`r2TxJ}E3mf1D$;sVunx(v6 zwTjAwhY`p~zWykf;}-pb4pt@?e>JTN(!f_Eq~%}FhOMJXl$lL~K|CmAGu|lV@mTg9 zQz-Zd2DA+k8d-zUj?$H<{>wNub5uEg2zD5mq=JSMk=5GEU)pG4ji>o9W%q} zUe9mJW4KuK9TAnsmX7LIT;G-4H>W%UN z&o{dGJ~EtAl2Z{c;r}@acgBXqlBDo=sk^zt_>QDhIU5)aRofbOCju#@B-%ThR-9(I zo}(LkRLJ$yRgYup3)N7Km^YA(CN=UW7fH-a5-mwUZFr@lm*AxaY>iYv%H`wBY-G_>#MqQrQJx;T4MX&y_U$pcAP>1)W_?WjwAoEm8;t46hp@PA&idg z%+){s|0dscF8e|AhMz#rvSdk_Mq&FIlzAb98B!)wcr`-i!3cRWn1Kn6WT&h~X$x73 zZSr`wOIBUFTURM>N(Kj~>_e7=x=Oub#mt>K%XePhZkim;R-KyKD!;Zdv-3eujc=W{ zHgm<>WaHP|94r z3Qv`H4{lib7y0%aN0Lk=??`^K*=4Jq(Y81YnQ{y)m}Ul|Oa_!ZpV$)BqR9r2Voe4H ztMqdc?30|nSKg%*81uiD#Iq)LEsV;k#hxlYU~BAuPQ0z&IX@j6`Stky9gd=nH&jcs z!qtxID{Q!Ug7n<+K54Y02qkIP;i*|co~$jsv0zy@-Fg=I3hDXP7?yN6gdH?g9&{x^tkH(JToAmFiUprTJ7la0)0*zpUxP!o{hCO)mamds4O)66=u z!nU#`B}VPBTAIk47En?zPldTGW4qxKK2=sDh}c?V|Af`hehC+AMTc=CV7XHvi@;e` zr4&$M{1`v1RyMR)C%2}j6X+UKxEkO{_A{1iC5n;1-cq&CV~EXO<1t&yiLTh;ay1)j z(MsDzDg-Ys)U1C;{}c(t71b4gfl4j;PH|$9_mhkqc>JqPyYP<7<|yXP4C3yE#XCk! zy*#}u7h*o%-zKTok)9sAUOX?RpN#|#&|GN1Hn?KupLIuQS)N?bxuE3uh49!0BLRMQ zKf^Cknaqt{#~ys2AXdOVm_~MGGO zxR|Ag*50}*W&1g zs#aXXjyK7eOnAfZa&0Q-1{zAbfA8j&F*mm7dB@j^FaLcOx2S?bO!!>nau?z-Q5nai zKRvmH^e8t}eWxsura{2+kEQEKT^+8j=7~+ydiMKy>O=ZQTgBk_>E*4EcsFLaC@VO&wmTk$NGm*A&b6{HJi4^NrG?XGKwg&k4pvB`olOr@q( z!+r}VCuO8sspaZimn?bnxK{>A-*&}%Df*|%L&$SIo;i~SHRnZ~>NWWb`C(Xp~7E;>ah%*a+3`T0`XG{OET|oLL zb=JMoX)tz-4e2y5Rd`QoF-?vo&v*|!-AF@q-Q6=v_^r+PBxiBAf|MK)Z}2AdQ1&QN z&s@);*Jb}!j&o55p!uMn-w|@&cuAQ1tFon_v~bvw-u@5w#)4uwnHyP?UFmw!+g&DQ_d}eE3UQdaa8pIt#CZAw*lhS zf|Q?gNr)#`L$=1w~$Hgj*nc6=IUH zNvxs%*&@~FgMUZz8IiuZ_0O%B7xpXt7t4K1baBm>rSG_`SmBz{LGzP_-4%)Xk`F#ebQ?L`qgJy=8Xk=ljQ;N>m3n~P%xQbO=KlL=;>DeOW;{js zWNL5(UI~ON+1#itXSTI;n;2y)4~TPWdBU*+XVmDTi23mR1$+}waMqC#(jj0$<+xO+KxNyf)Vu&`*#4$N9LFjAp|1jn+5g^9q}!hQZ(EVdvpH@)#~@yq0>Qx za5I8Yroj%(UJ)k5AY#&=5f-v|qvhNLit1kfXx8(ROvr^N@ZtaX1W*S$2+lu!xnghr z)iC}!kitNj4&jS;;*-OO6-{&5V22%o|A`&q+!5mZE#hu98t;;iJN z(zzPks4NCS+_&Q+ok(LRMeV585+#(1wk5lzV%SEu_XjoqAnDl*bp zi^t>69EM$iBVJ2m9J8N(JL;17DoxI|F`(a8_Z|Za*)hTwn?gKb4>wz$I7|Te*!-<5 zU&+Jag${&5$(pYZ!kjfI9M>tV&7OSIA6gPWeQU{gavBVDDBgL^%5j+3a&tYlcK04K9$k6YzP_ zj{73M)EAl!IiOJ=;|uwz90Nmww9ZuB>e7=23mp`B7BAm&)a+fX`g zjI_|>KOmKHWn%UFrwcE-f$PkcZ z#Y^@#b``L#1I)G6@Hz&3$?}4kbR)0{C53YrkZ4!%<+oUH>0OR0S&N+&n)KEHP{|C9}b<+<9< zXg5y(v!ZU60@;uAHS_}lBE=pRq9bhg( z9etWN=q;OcN60BZUX{dr>s9*T*EHt>`LI>0R@mWR;htZxBL(~ea}y%AGHUk|+p)uB z`-cky>tRVxTD>pVvltn1Fxi)Z>^Qi)hCR$|94(-0@liRo-KFA3QPALe;9Ov_WB7f- z)Fxv^gBAuE8-z3~LhTS5vGC*MgC{Yc*y{5QK!KwC`5B8*Hz(ISAA^bDmfJgt60@%m zh!0c`4tjK$#9+8xS{c*0K08})W(luvz03%64>97yody;jh15r$YX`CsRA2=P3(34O zy20v)J_du0B*{RH)Qa>i0Fvk)fAXko+-d!&GF8_9tV{FUZ$HTYAl+8rMD?ru6ILX3 zm`t*t2d$>qz;=3TN=-)l!TqRZO}W<{^kov?|1A*lNQMM@qEsQ>qiBc{ycyng=AUTp z%t?H*7pb*Mm{JQc;dfp&Q*yYJdq>MdquSZ*aQqX=qGG=^^HDp25l~y=YyM_0%Hqk{ z0^`H;T}(-~xLo%3jIzrU3LsMrZj=8((wzEb>@jkg7Rc2B@YnwM)CA*PtH z+k>z7yu&wR*v;^J#9vwSM0_o0SUm4acXPkqRMz(`Js6m7TCIt{nLKXC-DdOHNPpHh z*QCg(13WV){_LU&6c+T5?yBwg5{@sTeMM7h<+7BHQ9Epqq7McK!CtXepNg_}Hvt(p zEJYxtK}=_%;QhERvQMkOd6j?7FVl7L$g&P51W1Wa*Z;2AcgDk1lgL>Y;mi=&ON=;G zTNinyN!`8pRg9jf9K@%!|X=tP@J zxn~q`z#O2Ypjk+6E}sHY0(k=w!QE)qvl4xR0NVr2aTPc>Xfm0Ex`4EUbk^|eR6m*j zUze5pjbf3Kc)8wL3Yrbi83I)PLFClGKX<+)cUiyi(YsHBr>1b-KBffEPp{6hHoHh# za)vDRV)5O&8eiD{9FqQN(p74)@6Aq#%nc;| zYzC$YPZRIF2*1b|2G?aF#ZOux955H&V7r2q?|(YoaB)m7)$fi15EAQArRvZ!$inl> zzQ7Wn5K6$lPgz2UHelpxsBWI^-qQ-(?58Gb1YYO{(Uy!QCiUfb8FU0IQ4&Mbmk^;J zdJKGA+PdLBdbWxsHVit!E!c!GDx=k-Uq|9GByunG6WB@!dMxM+m6DgCsh#R@&HZl<^5 z4Av8JVJzco4lG6*_Dzp&QYQXeXq>7epC@`%_H>~2Fn+Edt=?a~-}L$r_9f7RpcnVy zT$xX+TuG*q#u8aSO=C{)xw}%L!p>fqs&dV&a@-)c&!5uthoa?gvTl(oOL018gOESZ25ZZSK9^%JW%-EZwnk3 zDPmhOP4;$1+)(K>vF&BeuKHS&9<)H;((O0tQhruTom4UkcPokTJRFmVDSF!GQs@`U zYn7-HR%$x~ii2VZSzX#VlAA)cTdaoR1tKA`mcU1iZUw8X4!QLs3k#p82aSqV`v zl(M;*4~ZU%9{ib)V(VEc(*+~1@H%t_kw?>}wuV7uaBW~Xh3 zA9z4cuLp4P`NTKmKOd||y$e%gUf!D}t?Mm3)sNI%Znrtt4Yo{DrYH3S*4$FhU@5O= z3Mba|n6)eafRD)Z?*f~f0)M`s^2*YgTT`K4rsB#EYgB*c3e2B2^rk69Ku=G*kZ&ut zhszUS6uzOckJ}aF9M3zOA(4&(&76bx$uAWOnCE`}BmTY1N&M-l?OPy2VfGO(CX_!0W#eYjsZ~mvw(n*5E zN1v5awVHJ+O(`Z9e(8^;*}`4p4oro=%Hpm+Vm9^)et;-1QHFv`zYt4abuCWxrrLlT z!E|`QRUoCG3ck@^dy@aJPq0t@x5{A z<8kQ+=)|fYhnoV1efT+8@^&Gi3Ve2fA}Fxwvtal7Y=(VTyf7=*A)%iesJrm|ct@DI zL74A6%aM1tH6=}Qtji->zA2RixcUxbZX%awcdtHtCcZS{I)4}E&|o{B4O)9T5pj$R zOSu;mMRDocC31IS3h+r|6H6?~akFW2CeB(I$sEnGjhlrfPhj)#S;|L4)nwu@PYIyp zn4u~C!Kcfr?FkF-XmhA( zm|nW8;%0`{j1uUxkg@|^NUN?9vBkVx^NO_QdX*y9UG>v;2l^>D%Pzy;vo{eZvJ z_{}zEd9^eeoh!Bw#~+rz%6gKULM>>y_ZoW0owQiS^z7Gdd7LYEoIBxKP=AsSDS-`} z3EW!<>Sr+^+|w6k{-@gaa#e4}(xC^)cNez%D{1v}TzN?{5bV#yI+6R=r6`y-RH7%i zixZ}D#z0OeDzQ)i+*bT_RYlagql(F%giIuD!Lqx3FoS!b&AB3~217GksF5Z@7*&2z zk7^5=FFj4wckTBhulR; zlSM5X=pzW_+>@y+m6Hsoq~w#U(luB^LtM92ZhdbO`VkVQy0Fqf!!&U;kl?=C_pmBc zgSsBo0@rL{AC^e~W$-1JI>A`vH~H^{xB6ZfMdT@+3jgMW2lpS{pv`CF<9kDVejW}D z17{Xhl-W!Z3CUf^-b%@is(<0%6<9j*Mg19}C)4-_+QLJulWlnqL6tHwzf28} z@24(|@&sg*+4!)A9_p146ZS*G`uz#>yWa2n1wmGmOin-Z?Thkr{gYV+9&AMGM8vw% zCJ3}gQsygG^oLfw*czo2=rt#rS<*xvSEQ6JnNFig+2M1h=`wQc+n}6!6WUa(PYwTK z4y)Cgi1p4-5ZXWAa^_R@5C_Ofe=Drn&nLwC?T^)Y(t@|8s661|5gV_Xz~W+3zdDVN zwU;lX?%uCixJr8nGt~CWatl_Iduws1%cZ_zF;bB;Ft~rv{hh66QNEe+!JSW_JUzU) z&-vFOnuZ!_-J+i$zH3Zt>ol5Jdou(=no0}2MQpir2~pn|QK*iw^+L~Gg75REb8)BB zN1T2hr@mrNa;Kj_h8qleG}z&HtNvI6^O?}Duwo?qP`9}Knqt&3 zY#jJ_bSNkFLH=!P4U>iizfNbsP5nC(LoYj1Sy#^M(U>!)dO{7?Ov-#^0Q~H$I7A4b zdrC8W=h(60t8{8HENP|LeCK%6^Z852Vi|%Z;qn?Vkx%~+R!Hmk*YOkAow`#X!6fi0SmEB`$uhz0N9M=flMwpQSn; z$rxg}Ts|6S=P|u~ertAQK&lH?9mKfMgwkwW#lUbw%kH%^$lIt__lo6OUHQ?+O+%j%VmT1GSIVr3r9g_~KfW8KOQbA;zI z;UTudxf+>D4Qse%Tp`ZbtwdcRV(}mc#pX`$`q@l>PSJ`-qw6*SaB|fU_n883wkFI4re~Om~3s92XhtRd>sLu#d25GtMcSc@c1wJ zb#x{FMV~DNlsgzJ2nWzv9$5xMy@8;u3ujNB5f(!}H^OKxA6|{}HujZPp&ufSmpAy` zlDnd#rtQ1OxvlH&QHAZJ5I_T)@+YY>X3vLSyZk2`hHOs`xKjRRhiZMFm=Y;1Z zl3o0bU$Php3wWyIvSEFode6&JUF|vbzfG1xEd3n?6a)KtQYg2I%2_kL%uzuc&ISm8HWja(lo-7-Lwq^;?4z%qT_ z-42iB#Enj4DIz{Aco96yJ*k0HY$tS6#(bvBQQ2Nhw!G-K(Sa!YoNE!G_b5`SKaTIl z0D9Zab|b9S8g8{y_6$^MVbh&y`m`GS%_iEj=kMIyrD%R#4Du%-#u>zNwxL;V4TBiS z$(vdAhYK$bN37`b9!I@GyDHa?&~TX7Nnw{#MbByZbpDY(b4*p#{_q$hZa2|c^>slH z2t5}P0&k4RQ2zYn1?N=e-ipEE(W~;}Ayw8GEE%8i!@zQje95o+LlB3HWqk)pcVOVt z{bci-xK*ThFKbRlk>}Tw-th$FdUf3dK?jSgIrsI;q#R`IFPrgLJsZ+D6elZ1Yc}{H zaCP7bCA$@4%#)2mdcea6DNs;5@*q>9n$=45>`CryhoB|f{{%n%rE5c^UoNoylJf^~ z(uEf|xl+-sVoNDxmQ4S(SB&2exL+Nk6@6Hr~fQqYx)J%|H-#47&$+=K4;+^Ah-V&A;BR2V+8~A+AuXT zGcxMCyWxj~9E%Oa{G#K!4oTLp@)U@+UU)2O*P|2k8r%Vv3p!ndj__(+sFCZ zZMLoaFV}OE1NLI$?9Qw|L;kT+)v|jA`RiqdvD4Yb^&!7cVsxCAq-)M@@xZ*ME(xud z5huCP2GMNaES5CG)c4MeDYfupGJpwS;lru|4lu>nGf-)lcpm#2>v zFKAI`q7oj9^U4QuY+7pws9XbhX^>xBdbh}b)BsjtKl@en^ik@z`ZecYo@tSvu18Eh zoY4M7Gt)etSwTAqwx^74s_xp79-(&JY$QM@d3}!|AocFz!@*)~L&0y~8p-eYo?$Xq zRrs2##SZs@xbv&tm_ISY=@V0iL6dsH1?vNWlq+v3tg$1z`l}Z$}r$PrXc3v z;NRXQsNeuAe?j};qZ5a6r-g3?FJhQ+4I`vSEU_AqFQNbUIWTm#Ypri{e>-xtkMM5K zK1$qDw$VQ)dK;TFBfl#PIIq4iz5#3U1!njr0ihg_EA5>>%GeXe@Rey+byBL;OL@iv z0I?spTlGJWS;hvq2dw1<*k&&FshE6Nlxo*1kO%+enCxmLPA)ns0iUm1+CAN*QA83p|^NM#&)c7a(-uZQq z5}G|mRh~_{H8+wS;p~^`7qmH~sLj)SqR4z`_rG5sI-lxOIfnF#e)4D=9`cU#d43}k zk5Dqn@}G@7o0v_2?c+b+$+5$Fm?hx{Q_-Sj-WVMrEXi!tZFs5!8B-G-M+*FTFC02X z2?N~}8i;?&Ed+efTf|+9z6Ec6)D~fPEA8Eh@NU@MKXL90g;XN7i0T$iSGsZ^33&cl6Jl?(nJ^GB6aq*9gizS4{d!hQh~{8* zsoPNIpXb`=R_CFYz%Q^iqkKpip0>UiUnIE?o5ldep>rsE_~n4Xn|Mbf{vLQj-hj3M z43zhkkoqh1m&-2;-{(~SHHM$2z75aWy-J3I(_0TP3nHy4B&X1(1+;fS$}Eddp^O2W zubrYoW6mkGtbWcfW`869|JI5?_fhU24#76hV zJ38x=F^T$qD6VEYe{2rGxKqfwo$0~IcYG{csUKMGl6R5&VH^zkrU!O$o^bwoLLgCi zZ~b{xCDGVE%sevt_eMGtRL%Czz83|JwfCRVZTDZeJ+5T`_{y&jv8?OUQFoVk=_U^+ zDfVq^0%&CGy4S~n2(OIP&zlRL+n)A@#~pwrCdpCf3->Qep2I$SM%N1{Ud*+dc|7VB zq$}KU--&lG(?{Qh)Mrld=i%c;^rq5A0qiS+55n_4?Wp~yX2=2Q_4hmUa<+_wh zt>0t_PBiKg(#dMcaKnXYpbBdj{UnjiTpZHQ$?kO)?7fp0(a*{_jBdy?@;3Vrq*XG{WwgD4=Vz+|x}0XRg1u z=%`4Wk2u;nDEgHAl-w#-zkUR3mFZ?|ee>IJC=}dTcZaQPX{z%=tsx%KI1`MDG21r>anSDRS2reuJ|3oM^ zSLr4El7+s!UGN*q*rW(@c%2STpsCg+>6ol;+Bm@{nfiT-cbp&Zvq4=@iV?XU!s_oF zCoI0IH`(~eEU0gLB3`KZ;V4EVQ{lvOD9Azn#cn)up|4CB1QC*X_6S=ST-XdD&HGCg z0nG)ha-RM@V4Op^b=&$*p^J}BlzNy$2Tap(&eG_d-EB9&;T@*V;)xxQMjU!6xg-W2 zl`s4uM+e_XHmks=_%bm{5A=9e`WP=2bC9fpLQ)6t9D8jb4nl%$Nr8b4>@~E@Xv{bN z_vG?_>6M4XV#{G*`U1$-wpDe*|0*S4YPJ$<8TY~;I1dW=pUS>6sII127xzGdY%D;4 zKnU*c!3pkr6Wn3ruyKOBy9IZ54-UcI-QC?UdEf7zy0_|_AE#>l=v8Z0&ogb+Gd0!y zoY@g(FJ`VEZPVjqrpQvLvHDTJjP*8URk&X`PT1$$qVQ}Nd{zo5^f~sumBc5)!_D*6&=pb#%=pUaiqGMq`(dqXHeg!%A+BpU zVe$KsM0ru6$P32;wnZou7-|T>;`L)JSI8-Iou2C=oJ1pjA?uY+lv=?Y8|HT(JOVsF zh-hL)IZ`7)B$Gec zW6!rN6EQh>#qTcD25OI*yf zqwqtkeo`2iYRIZas~Eo10L{d_GsK$Ltc&I|I&JJ_x^;5^6f_l_6eS!KW7#xd%}VYYIG}JFrZtTK zXYJ|g;}(aBwoYs#8WWaWPiSsaaIbyUI*T{h&K8`cTfjhURv{tsgWl%3zzq0Dsl@yvLCx_?dUzN7uBKkWGdT5;q*ZIxxjN-*^*st$?ZfQQu;Xde4KkW;7Z>5>_OI6w7R-_ z;)&LhVK>Id`N8d7vEOE=&w6=amdE(bo@l6zUxQT(-wH{3I7#;_vNxg*Daym$PX&~<|Ab+u4Y;l#8tHOqz!2!b=_Dl{r~v}W z!3FH9pnSfG6*B==2%SX8gkr65sp4tz=`7#1Vs=|)-?r`-8 zs7y6?dH9zJNgc@?lPtuz?s7~L5?sm7-ZwHw2>rNek{W(#!)Dp#;{?O7M&#zDJqG{G zgc8GuI#@tln-e}2gMA=PZc06zi&NuuGxniL5V8mFPKt|?VIoyVhNSh003`$JC(xG> zTbHU+-Zv9(+TH5*RT)L{?G_f2=!ak_s^Cnj;4I8wGHg*QVJcx0UnwTE5M6s&@eg|M z1K>WB!kZ#xVm;`>QR)EVbzmLWkm%O{#B1=jXQ-Y+qGMP`@QrIU7O2(hkUToOP&V}l znYm#6qh6tpU8b7tY)hT6yj|vQ?YKkh47ovt3H~OjMkY}+rYY$Asg`?DTKhg1${SK; zJKUCA0QANXM5ow%r(bH$F}L@z<#)f*@6$XRsF;GJg`=aR9c}hwbdzGaG@?q527)vP z(s=t*+@ypCfVs5`8N_c9*tX}rv8N^i- zz*Fzp#PT4}^hIUu5@QsC%A)3@+4xo8Ote*&qw;Z?O4J@6QZq{4ux% zLA6heNMc>z)!~ZQky8E4tx2@n#qZ!fNzpb)VYlC!35qJCPK&pWTeIRE3(k%+#D;^` z`<>WV!Z0=`?>Jth52D8n=;kF)V%}qZQ#7Fm2F7Q_nb0i+&}S9z@jv|Z$Yv^`J^X`E zDRcAzRZoF7h+_?WhsW$%zs^qi0mbN-{$4yP zYkoYbeLQ(-`slp|jbw`l1+_NxCa1Ru$Uf^2kyNVx+w|j~2hv8v73VDl@}q8z!y{eb=*@kElHU$*{cZ{Nw7snWrb=F$6_f5;z__zLA)gS5 z^~Y4eZnvn7s3vZGH%jAk>k`C0Q5zUQcCASYR&#FwfNn5>+F&t@SvFeqPz$JJ;tK|M0$ zr3w@BVL`o8n`yM44<%GwY(rD2cl)<(eU`pr^iN&{x6q{b-(CdZ_kB0ZW2;W48~VM2 za+w@AM{O2XJEM_bYUN1XT(I18V#rWkK9`;rEoA0TJlmO6CULo)p(0Xt}P*D2+YKqWD^wb*vFMZ!# zm*%$7e5-OSE~)T?6@^Ybe;hUybN5Zy$eLIjJAepRzQ6O^!gl=GZ}98Gtc>)kE4hX> zjfq*Tl1YZORZ)tY*;X)T$jqx9dYcU0>oym;j)QNIcxoaRB97#47$l(aKYhXWo{)z> z5N6p!bJsx%g@!}FW5fbC!!_s(ypT9j=;)ATM>{Ib9!>_bW! zbgZH|diU7Ja(>W)!EvYQ5h$=DAYvOO9g7nt0`cnpUa6vq&Cnx$u9g?iWvDW*b(64} z8_%*$)(EtWGTvsn*WOljcyk%0cZ%6Kis2X2st&TtiscRnKcv(qYVFDSwB%+%*Zj{* zGP^U5;tiL}JX&PssT}Poo8U`&r_mMx57M?=x##N_!&m)C{sKHS6eC2nPB`833Q&_8S--yqj^R)l&JfldKy*h{_C7>xp%Cuy(_Y_9es-w7Jy&`Me_%G zz-b|FoUKk-2wQMGtXV8l#b4l_9{I$Q>3Dfn%e5;K50RNJM|J%}u9{qbj}X}PXu%aJ z9l|GbLElprxwRaA%AK~wNBo$$)!No`GPHVPnkeyig&P2NZ22G zWznzf&uuHWbTft;7nJEAk89=_%FCwQxZxKM=9^WiV{M&b4ow{h*OASu&>3$k8&D^A z$@6A@V9xCDszqQ z5GkIvd__=RBUkze0q5^J;?fs_*OK$3_@Y+u-+U^(#nqAZEs?S*71dU38U}Edqr(FCS^TH0IT4542vL7A!h^H0YtA z1jk*ws-wW0qjg}=;S}+{5{-e?7$!cdJ-QIonTyy@i0=t>M^2;^!M;JHBw&6kQkwW4 zTVCQPS@74)SmuGkjA-hj!ptN9&@?*@oqInkh1g|3I~^JUUoY{47`}cgGG&rpGJYMW zK{^=ljyaLy8``xG$@7+R+ugL4$8CVX^S0INU4p~w{VHQum`;*0xii~Ch*P-6 zdOKYBch-IbrSELR_AEoJgBEr}Y@=?dw5;uEq5zOyphEa-snez@vC-eVB3DPfhz^~({W1lOS zr%ahNegkR9m|eH1YmCB7@Ap+U>W5=~H?iw+^(r(Xk?q_EaU#1V8x96l=rq%y1eB^ zOsz;Mj$pZPI$JH>0~X<3?qtP>>=l>YRt)}!t!jqfd5avY&u5biZA!ZlZ7*T{c%~BW z1e39^a2-mjRPt||Mc1AAI1YF~U#KbnH=?)r54()Gs-HvG4;! zmhDzyG59X#u;lnImrxm6FBS-`T2WnB9@nzvbSI6q-L8ir0#8>oC4SQtCy=?bKJC{h zTvEkY6DGZ$poC8f(FR`?b0rfR{5UJ%hAMER=x7vNPxFq|s0^i&aM!#h_{lu-bCd`;$|9 z*xyrr$Nfp;f5ZFY08q%=4+)1-(^olp5o^j~G@Mkg!xU-RUlk`o~toj4FBPJL&Ryn zH5a60Jo2N#etRJd1Ucbzy4so#QL|cczq{IAjL`Occ}xC%{vy?xuKG7$ICg2R6M%++ zCshxW*XNN)Q!T&3itDfF#q(blC zK#pYwF!cT>uhDq9J4}CtfkVNh6)9j`Cld+Aq!TOQJjeVj6-_Hz#JbOHFc3{AUdDTm zf=#VhB2vh_O|4v{SSnWf*M-a`N<@pi=HC3Lw1XWDsW#J-y`}*Zrh{oLY7^6%_iI9-cp`hVqTYvqn=`pQ+~IHi{ssd zPfmhpaBn#6P5uM2G`;-kd{*G~!zcMj9a3RGGUTK5D5T=Ps%0w1nX#Eo z7tUrV#2C^2<6%k(mV7S%z2?WG4QW(MHR^RIgq3#b1#`gnq zFDUXE-qE!%qgpY-CB`i%~Voa zrt&?i{!j*J4%2Ah{vp>cvz^3Go22*=6+wSk@_X=yO|nw7B2`A@{~yQWxewxGeI{as z$Yoe*RMBh3qzI4g$0Tu=ug0WFp3xZpyzdHS9KhTB&e)GVIm9^l@shUU59Vyc$U95h zkj15S`rC$4SmKMoKHl}OqfR5JS{K2yE$eirPNRtYMT#nJ8!Xy)1026EebS#cI6UtL z1zxI$P>M?`M-WmhDu>aVk19u@11Nd&oMZ+Rf~c!Dr7E!eleiMIxss|I6N?*@nw=B# zos;VCO*-9%)zXQ|4m@ zlGT9Hg_^^$Lg{+q)`u%XMw35pp}IFTh0%1N2ETe|2vlLxUxiaVQ?giLI#@^4d~?KO zz4xaQD}N-l*?NDVmazV0$@OfnzZ$oErRDK#f3TjU?d1s-2?aT%TXZ9Mq!A zRn4}`Wj`-8084s%>~Bw-USD&X<}I3gvPkN(wCtPX3#cnP#ipA5n@dgHRJx#&ouR%A zPlD&n{oz$5B2>IF*%k^i#g}dqjjkGsrRdnNN;W4m@+YlXnkN;5Co?#bh9KW-7MB(7 zqcwX3KAs4s^=|A1U@TL4ES1f0xL;+TrmnUauHpm6BRp0sJ?-u83=MEz?VbDu^7cd| zr#2ESnZT~+s64-l2eP#t`4se+x?u22W#xlccR)drCzjyR0__;5Vuee0i6+VoC|q`XWMcptTAdyWD(_CN!lOXPEI(XIG*=j&uoxB zg=c^2!A0~$eV$T=gOzEt;1v+9Z))}g!2T{V+=B!tOSzcdK&$m;D zwMWk98wlc0M^_SSg?-TNXp_RlT-_WKO=EPuaF`d_gGM@Wr~CVof=RiEcp%TIcyHLX5GsQf8Uv(!6q~|vm)kP?OUL{w;}poD&*VPimwppt(yGa^Zu_9 z*Yt|#LEquZZUWOXDTPcS+-ueVIph>X%)Osn((ru3NfLD7cGcfj(r~+P`%3KsVvdyt z2TNIW{hC;-@)qCHwE+r(-bJC}66{J%Vy)j+--w*F!9+-V`2()5tRjGUP z@v0@|vs`Mdb9MPZv0{~VdyHLEDZ4AecD#Ks(j^rgGv-*|6|#hV07Rpu>c;9iBlpP; zK{zvW^0QT92|B@;I46%HAtM>00r)%WIzepgE3_Th6x36H+)?|u|KZS!0D6#P6eW?b zWi4T=qF0Q43OQAoa^I|?jimPXg5p-{AS&~Eq&hi4fAj>K?~lRp@KrXIowi6tvrW3* zT6p}Js%MryY;OpM)|?9uzfzhi2UZUR0^dWLbitpY=-KD;YiMFesD`%b_Poa}KO0`VVrdC!}lE2AR-lk8Ip{ zH=PdcKR!Vz?^zNp(~VV%^l@_+W><4_n`g#gy0>Tv0rLnt7N`W;J&O)t`W*=aVN8VZ z>X<32XmL@G9DI{vo&(&Tbl1{m)s8K39#F#ij`u!ZjCAz(#3bwz42Ogr%ol{G`NZtx zi#=D{{oz6Uf-BdgZOLlofbP7zwzVO7shaJatKiO7B)z+qbD!_RGnMv@zrl&i>Pi!= ztey64g^RP%Y2s=W2z>v>4?1t>;EOUTR8qh$|8lc~Qu+=kK@0EI{VXR_iQu0K0yWt@IJN9u@ z_!@9GbolY@r86w9xiQWwDk$l}e68BkwjYZHl|wZdQW)?8z}pTI{gtTEP&x6`QTU1! zdeKex5C8k2?c6p*F=xG~FMpA^?VPMsMj#^29^+fxUUrRo-d~rOdpQ zA-UMLlick1M?sc~;1v=uKMWQP;qks#P})ssd$*K33*$;zd#9A^X!n5FBmFKHBQsOA zwf^=emd?jgN*f#v*1nELQ~UL` zPaeG}=;7Fih)QxL;~nrF9YQwNLi=kv`T|_M#IYWQPaM;H`{k8&inkZxVQr>0gNQbI z--6zMW|!zDz|@tnh{S^n%8@_|7Qy?%F5ycSWiOdyBiS9=txDMB5&7>&U%zgh*tcQw zpAkg$Dk!{qDWESMV^xy?k5)!_W{R=G!q1c8M@_^7c3N5%Qg9^1ScDx~0 zcZb1Xfy{SIx45(>my$ImrGR2< zT>5}+-mukHm1`eJUcPSr2=Xwk!6Jx45Gda<8=KT|d%{{T*h2DjYvq5PWjcj)rwAy)5u=_+7C z@weRXr$t_%ou@_hm(BK`8SwqFR-*##kbp|?rKaAj z$ACT fC - - + + diff --git a/dev/favicon-16x16.png b/dev/favicon-16x16.png index 32c4d6c0eb6c3e0d758db340ea0fa2ba153cc73f..7fb10682d7a79895403c1b2de2caccac0ee6d32a 100644 GIT binary patch delta 73 zcmdnNxr1}VBPI@hJ~qa}qsOjqe#IooC~9aLVrXJzU}j}tsBK_iWniE$F5o;_f<*>X NCeCZc|H+;#`2Ygh6ZrrD delta 73 zcmdnNxr1}VBPI@3E^SM}$Q-%Nub3nmMGZ_t3=OPIjIB(~wG9lc3=Bk181YS(V3EO; NNtxQUX|g9vJ^;C?65#*< diff --git a/dev/favicon-32x32.png b/dev/favicon-32x32.png index 45167ebb7951beb063210baccdb2abe319629f77..4dbe29015b64528c2677ee2e8cf8f2902d140b58 100644 GIT binary patch delta 71 zcmew_^j~N~6$d{b8`Fz3({ndAd2omtnuZvfSQ(gE85n6B7+4t?$o=QKH~Bt?45m!} LqD@JY1vv8oGzb-% delta 71 zcmew_^j~N~6$dMqwpB-f?UId69vq?urXhv~Rwl+)rWV=;237_Jj~kqxPrlC~gDErV L?yu;{0-X5(BOw+Z diff --git a/dev/index.html b/dev/index.html index 49b4c4e3..dbc71881 100644 --- a/dev/index.html +++ b/dev/index.html @@ -19,8 +19,8 @@ - - + + diff --git a/dev/news/index.html b/dev/news/index.html index f52a1d00..544b994d 100644 --- a/dev/news/index.html +++ b/dev/news/index.html @@ -1,5 +1,5 @@ -Changelog • censoredChangelog • censored @@ -54,6 +54,7 @@

    censored (development version)

    • Fixed a bug for proportional_hazards(engine = "glmnet") where prediction didn’t work for a workflow() with a formula as the preprocessor (#264).

    • extract_fit_engine() now works properly for proportional hazards models fitted with the "glmnet" engine (#266).

    • +
    • survival_time_coxnet() gained a multi argument to allow multiple values for penalty (#278).

    censored 0.2.0

    CRAN release: 2023-04-13

    diff --git a/dev/pkgdown.yml b/dev/pkgdown.yml index 68f6acee..d44d4fe8 100644 --- a/dev/pkgdown.yml +++ b/dev/pkgdown.yml @@ -3,7 +3,7 @@ pkgdown: 2.0.7 pkgdown_sha: ~ articles: examples: examples.html -last_built: 2023-12-05T10:44Z +last_built: 2023-12-15T14:06Z urls: reference: https://censored.tidymodels.org/reference article: https://censored.tidymodels.org/articles diff --git a/dev/reference/aorsf_internal.html b/dev/reference/aorsf_internal.html index 747e9344..0c37c410 100644 --- a/dev/reference/aorsf_internal.html +++ b/dev/reference/aorsf_internal.html @@ -1,5 +1,5 @@ -Internal helper function for aorsf objects — aorsf_internal • censoredInternal helper function for aorsf objects — aorsf_internal • censored diff --git a/dev/reference/blackboost_train.html b/dev/reference/blackboost_train.html index 9bb76df1..b51de276 100644 --- a/dev/reference/blackboost_train.html +++ b/dev/reference/blackboost_train.html @@ -1,7 +1,7 @@ Boosted trees via mboost — blackboost_train • censoredBoosted trees via mboost — blackboost_train • censoredcensored: parsnip Engines for Survival Models — censored-package • censored% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 3 × 2 ## .eval_time .pred_survival ## ## 1 100 0.931 ## 2 500 0.399 ## 3 1000 0.0624"},{"path":"https://censored.tidymodels.org/dev/articles/examples.html","id":"survival_reg-models","dir":"Articles","previous_headings":"","what":"survival_reg() models","title":"Fitting and Predicting with censored","text":"’ll model survival lung cancer patients. can define model specific parameters: Now create model fit object: holdout data can predicted survival probability different time points well event time, linear predictor, quantile, hazard. ’ll model survival lung cancer patients. can define model specific parameters: Now create model fit object: holdout data can predicted survival probability different time points well event time, linear predictor, quantile, hazard. ’ll model survival lung cancer patients. can define model: Now create model fit object: holdout data can predicted survival probability different time points well event time, linear predictor, quantile, hazard.","code":"library(tidymodels) library(censored) tidymodels_prefer() data(cancer) lung <- lung %>% drop_na() lung_train <- lung[-c(1:5), ] lung_test <- lung[1:5, ] sr_spec <- survival_reg(dist = \"weibull\") %>% set_engine(\"survival\") %>% set_mode(\"censored regression\") sr_spec ## Parametric Survival Regression Model Specification (censored regression) ## ## Main Arguments: ## dist = weibull ## ## Computational engine: survival set.seed(1) sr_fit <- sr_spec %>% fit(Surv(time, status) ~ ., data = lung_train) sr_fit ## parsnip model object ## ## Call: ## survival::survreg(formula = Surv(time, status) ~ ., data = data, ## dist = ~\"weibull\", model = TRUE) ## ## Coefficients: ## (Intercept) inst age sex ph.ecog ## 6.2802499155 0.0191302849 -0.0085917372 0.4249655608 -0.5022975982 ## ph.karno pat.karno meal.cal wt.loss ## -0.0085852225 0.0058753359 0.0001003211 0.0127001420 ## ## Scale= 0.6902035 ## ## Loglik(model)= -795.2 Loglik(intercept only)= -811.4 ## Chisq= 32.41 on 8 degrees of freedom, p= 7.85e-05 ## n= 162 predict( sr_fit, lung_test, type = \"survival\", eval_time = c(100, 500, 1000) ) %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 3 × 2 ## .eval_time .pred_survival ## ## 1 100 0.912 ## 2 500 0.386 ## 3 1000 0.0742 predict(sr_fit, lung_test, type = \"time\") ## # A tibble: 5 × 1 ## .pred_time ## ## 1 517. ## 2 283. ## 3 361. ## 4 268. ## 5 313. predict(sr_fit, lung_test, type = \"linear_pred\") ## # A tibble: 5 × 1 ## .pred_linear_pred ## ## 1 6.25 ## 2 5.64 ## 3 5.89 ## 4 5.59 ## 5 5.75 predict(sr_fit, lung_test, type = \"quantile\") %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 9 × 2 ## .quantile .pred_quantile ## ## 1 0.1 109. ## 2 0.2 184. ## 3 0.3 254. ## 4 0.4 325. ## 5 0.5 401. ## 6 0.6 487. ## 7 0.7 588. ## 8 0.8 718. ## 9 0.9 919. predict(sr_fit, lung_test, type = \"hazard\", eval_time = c(100, 500, 1000)) %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 3 × 2 ## .eval_time .pred_hazard ## ## 1 100 0.00134 ## 2 500 0.00276 ## 3 1000 0.00377 library(tidymodels) library(censored) tidymodels_prefer() data(cancer) lung <- lung %>% drop_na() lung_train <- lung[-c(1:5), ] lung_test <- lung[1:5, ] sr_spec <- survival_reg(dist = \"weibull\") %>% set_engine(\"flexsurv\") %>% set_mode(\"censored regression\") sr_spec ## Parametric Survival Regression Model Specification (censored regression) ## ## Main Arguments: ## dist = weibull ## ## Computational engine: flexsurv set.seed(1) sr_fit <- sr_spec %>% fit(Surv(time, status) ~ age + sex + ph.ecog, data = lung_train) sr_fit ## parsnip model object ## ## Call: ## flexsurv::flexsurvreg(formula = Surv(time, status) ~ age + sex + ## ph.ecog, data = data, dist = ~\"weibull\") ## ## Estimates: ## data mean est L95% U95% se exp(est) ## shape NA 1.39e+00 1.21e+00 1.61e+00 1.02e-01 NA ## scale NA 5.74e+02 1.99e+02 1.65e+03 3.10e+02 NA ## age 6.24e+01 -9.02e-03 -2.50e-02 6.93e-03 8.14e-03 9.91e-01 ## sex 1.38e+00 4.02e-01 1.17e-01 6.87e-01 1.45e-01 1.50e+00 ## ph.ecog 9.51e-01 -3.17e-01 -5.13e-01 -1.21e-01 1.00e-01 7.28e-01 ## L95% U95% ## shape NA NA ## scale NA NA ## age 9.75e-01 1.01e+00 ## sex 1.12e+00 1.99e+00 ## ph.ecog 5.99e-01 8.86e-01 ## ## N = 162, Events: 116, Censored: 46 ## Total time at risk: 49401 ## Log-likelihood = -800.356, df = 5 ## AIC = 1610.712 predict( sr_fit, lung_test, type = \"survival\", eval_time = c(100, 500, 1000) ) %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 3 × 2 ## .eval_time .pred_survival ## ## 1 100 0.889 ## 2 500 0.330 ## 3 1000 0.0543 predict(sr_fit, lung_test, type = \"time\") ## # A tibble: 5 × 1 ## .pred_time ## ## 1 424. ## 2 341. ## 3 292. ## 4 336. ## 5 327. predict(sr_fit, lung_test, type = \"linear_pred\") ## # A tibble: 5 × 1 ## .pred_linear_pred ## ## 1 6.14 ## 2 5.92 ## 3 5.77 ## 4 5.91 ## 5 5.88 predict(sr_fit, lung_test, type = \"quantile\") %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 9 × 2 ## .quantile .pred_quantile ## ## 1 0.1 92.5 ## 2 0.2 158. ## 3 0.3 222. ## 4 0.4 287. ## 5 0.5 357. ## 6 0.6 436. ## 7 0.7 531. ## 8 0.8 653. ## 9 0.9 845. predict(sr_fit, lung_test, type = \"hazard\", eval_time = c(100, 500, 1000)) %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 3 × 2 ## .eval_time .pred_hazard ## ## 1 100 0.00164 ## 2 500 0.00309 ## 3 1000 0.00406 library(tidymodels) library(censored) tidymodels_prefer() data(cancer) lung <- lung %>% drop_na() lung_train <- lung[-c(1:5), ] lung_test <- lung[1:5, ] sr_spec <- survival_reg() %>% set_engine(\"flexsurvspline\") %>% set_mode(\"censored regression\") sr_spec ## Parametric Survival Regression Model Specification (censored regression) ## ## Computational engine: flexsurvspline set.seed(1) sr_fit <- sr_spec %>% fit(Surv(time, status) ~ age + sex + ph.ecog, data = lung_train) sr_fit ## parsnip model object ## ## Call: ## flexsurv::flexsurvspline(formula = Surv(time, status) ~ age + ## sex + ph.ecog, data = data) ## ## Estimates: ## data mean est L95% U95% se exp(est) ## gamma0 NA -8.85681 -10.78535 -6.92827 0.98397 NA ## gamma1 NA 1.39431 1.19358 1.59504 0.10241 NA ## age 62.41358 0.01258 -0.00966 0.03482 0.01135 1.01266 ## sex 1.38272 -0.56080 -0.95517 -0.16643 0.20121 0.57075 ## ph.ecog 0.95062 0.44213 0.17197 0.71230 0.13784 1.55602 ## L95% U95% ## gamma0 NA NA ## gamma1 NA NA ## age 0.99039 1.03543 ## sex 0.38475 0.84668 ## ph.ecog 1.18764 2.03867 ## ## N = 162, Events: 116, Censored: 46 ## Total time at risk: 49401 ## Log-likelihood = -800.356, df = 5 ## AIC = 1610.712 predict( sr_fit, lung_test, type = \"survival\", eval_time = c(100, 500, 1000) ) %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 3 × 2 ## .eval_time .pred_survival ## ## 1 100 0.889 ## 2 500 0.330 ## 3 1000 0.0543 predict(sr_fit, lung_test, type = \"time\") ## # A tibble: 5 × 1 ## .pred_time ## ## 1 424. ## 2 341. ## 3 292. ## 4 336. ## 5 327. predict(sr_fit, lung_test, type = \"linear_pred\") ## # A tibble: 5 × 1 ## .pred_linear_pred ## ## 1 -8.56 ## 2 -8.26 ## 3 -8.04 ## 4 -8.24 ## 5 -8.20 predict(sr_fit, lung_test, type = \"quantile\") %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 9 × 2 ## .quantile .pred_quantile ## ## 1 0.1 92.5 ## 2 0.2 158. ## 3 0.3 222. ## 4 0.4 287. ## 5 0.5 357. ## 6 0.6 436. ## 7 0.7 531. ## 8 0.8 653. ## 9 0.9 845. predict(sr_fit, lung_test, type = \"hazard\", eval_time = c(100, 500, 1000)) %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 3 × 2 ## .eval_time .pred_hazard ## ## 1 100 0.00164 ## 2 500 0.00309 ## 3 1000 0.00406"},{"path":"https://censored.tidymodels.org/dev/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Emil Hvitfeldt. Author. Hannah Frick. Author, maintainer. . Copyright holder, funder.","code":""},{"path":"https://censored.tidymodels.org/dev/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Hvitfeldt E, Frick H (2023). censored: 'parsnip' Engines Survival Models. R package version 0.2.0.9001, https://censored.tidymodels.org, https://github.com/tidymodels/censored.","code":"@Manual{, title = {censored: 'parsnip' Engines for Survival Models}, author = {Emil Hvitfeldt and Hannah Frick}, year = {2023}, note = {R package version 0.2.0.9001, https://censored.tidymodels.org}, url = {https://github.com/tidymodels/censored}, }"},{"path":"https://censored.tidymodels.org/dev/index.html","id":"censored-","dir":"","previous_headings":"","what":"parsnip Engines for Survival Models","title":"parsnip Engines for Survival Models","text":"censored parsnip extension package provides engines various models censored regression survival analysis.","code":""},{"path":"https://censored.tidymodels.org/dev/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"parsnip Engines for Survival Models","text":"can install released version censored CRAN : development version GitHub :","code":"install.packages(\"censored\") # install.packages(\"pak\") pak::pak(\"tidymodels/censored\")"},{"path":"https://censored.tidymodels.org/dev/index.html","id":"available-models-engines-and-prediction-types","dir":"","previous_headings":"","what":"Available models, engines, and prediction types","title":"parsnip Engines for Survival Models","text":"censored provides engines models following table. examples, please see Fitting Predicting censored. time event can predicted type = \"time\", survival probability type = \"survival\", linear predictor type = \"linear_pred\", quantiles event time distribution type = \"quantile\", hazard type = \"hazard\".","code":""},{"path":"https://censored.tidymodels.org/dev/index.html","id":"contributing","dir":"","previous_headings":"","what":"Contributing","title":"parsnip Engines for Survival Models","text":"project released Contributor Code Conduct. contributing project, agree abide terms. questions discussions tidymodels packages, modeling, machine learning, please post RStudio Community. think encountered bug, please submit issue. Either way, learn create share reprex (minimal, reproducible example), clearly communicate code. Check details contributing guidelines tidymodels packages get help.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/aorsf_internal.html","id":null,"dir":"Reference","previous_headings":"","what":"Internal helper function for aorsf objects — aorsf_internal","title":"Internal helper function for aorsf objects — aorsf_internal","text":"Internal helper function aorsf objects","code":""},{"path":"https://censored.tidymodels.org/dev/reference/aorsf_internal.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Internal helper function for aorsf objects — aorsf_internal","text":"","code":"survival_prob_orsf(object, new_data, eval_time, time = deprecated())"},{"path":"https://censored.tidymodels.org/dev/reference/aorsf_internal.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Internal helper function for aorsf objects — aorsf_internal","text":"object model object aorsf::orsf(). new_data data frame predicted. eval_time vector times predict survival probability. time Deprecated favor eval_time. vector times predict survival probability.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/aorsf_internal.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Internal helper function for aorsf objects — aorsf_internal","text":"tibble list column nested tibbles.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/aorsf_internal.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Internal helper function for aorsf objects — aorsf_internal","text":"","code":"library(aorsf) aorsf <- orsf(na.omit(lung), Surv(time, status) ~ age + ph.ecog, n_tree = 10) preds <- survival_prob_orsf(aorsf, lung[1:3, ], eval_time = c(250, 100))"},{"path":"https://censored.tidymodels.org/dev/reference/blackboost_train.html","id":null,"dir":"Reference","previous_headings":"","what":"Boosted trees via mboost — blackboost_train","title":"Boosted trees via mboost — blackboost_train","text":"blackboost_train() wrapper blackboost() function mboost package fits tree-based models model arguments main function.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/blackboost_train.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Boosted trees via mboost — blackboost_train","text":"","code":"blackboost_train( formula, data, family, weights = NULL, teststat = \"quad\", testtype = \"Teststatistic\", mincriterion = 0, minsplit = 10, minbucket = 4, maxdepth = 2, saveinfo = FALSE, ... )"},{"path":"https://censored.tidymodels.org/dev/reference/blackboost_train.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Boosted trees via mboost — blackboost_train","text":"teststat character specifying type test statistic applied variable selection. testtype character specifying compute distribution test statistic. first three options refer p-values criterion, Teststatistic uses raw statistic criterion. Bonferroni Univariate relate p-values asymptotic distribution (adjusted unadjusted). Bonferroni-adjusted Monte-Carlo p-values computed Bonferroni MonteCarlo given. mincriterion value test statistic 1 - p-value must exceeded order implement split. minsplit minimum sum weights node order considered splitting. minbucket minimum sum weights terminal node. maxdepth maximum depth tree. default maxdepth = Inf means restrictions applied tree sizes. saveinfo logical. Store information variable selection procedure info slot partynode. ... arguments pass. x data frame matrix predictors. y factor vector 2 levels","code":""},{"path":"https://censored.tidymodels.org/dev/reference/blackboost_train.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Boosted trees via mboost — blackboost_train","text":"fitted blackboost model.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/blackboost_train.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Boosted trees via mboost — blackboost_train","text":"","code":"blackboost_train(Surv(time, status) ~ age + ph.ecog, data = lung[-14, ], family = mboost::CoxPH() ) #> #> \t Model-based Boosting #> #> Call: #> mboost::blackboost(formula = formula, data = data, family = family, control = mboost::boost_control(), tree_controls = partykit::ctree_control(teststat = \"quad\", testtype = \"Teststatistic\", mincriterion = 0, minsplit = 10, minbucket = 4, maxdepth = 2, saveinfo = FALSE)) #> #> #> \t Cox Partial Likelihood #> #> Loss function: #> #> Number of boosting iterations: mstop = 100 #> Step size: 0.1 #> Offset: 0 #> Number of baselearners: 1 #>"},{"path":"https://censored.tidymodels.org/dev/reference/censored-package.html","id":null,"dir":"Reference","previous_headings":"","what":"censored: parsnip Engines for Survival Models — censored-package","title":"censored: parsnip Engines for Survival Models — censored-package","text":"censored provides engines survival models parsnip package. models include parametric survival models, proportional hazards models, decision trees, boosted trees, bagged trees, random forests. See \"Fitting Predicting censored\" article various examples. See examples classic survival models fit censored.","code":""},{"path":[]},{"path":"https://censored.tidymodels.org/dev/reference/censored-package.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"censored: parsnip Engines for Survival Models — censored-package","text":"Maintainer: Hannah Frick hannah@posit.co (ORCID) Authors: Emil Hvitfeldt emil.hvitfeldt@posit.co (ORCID) contributors: Posit Software, PBC [copyright holder, funder]","code":""},{"path":"https://censored.tidymodels.org/dev/reference/censored-package.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"censored: parsnip Engines for Survival Models — censored-package","text":"","code":"# Accelerated Failure Time (AFT) model fit_aft <- survival_reg(dist = \"weibull\") %>% set_engine(\"survival\") %>% fit(Surv(time, status) ~ age + sex + ph.karno, data = lung) predict(fit_aft, lung[1:3, ], type = \"time\") #> # A tibble: 3 × 1 #> .pred_time #> #> 1 355. #> 2 374. #> 3 416. # Cox's Proportional Hazards model fit_cox <- proportional_hazards() %>% set_engine(\"survival\") %>% fit(Surv(time, status) ~ age + sex + ph.karno, data = lung) predict(fit_cox, lung[1:3, ], type = \"time\") #> # A tibble: 3 × 1 #> .pred_time #> #> 1 325. #> 2 343. #> 3 379. # Andersen-Gill model for recurring events fit_ag <- proportional_hazards() %>% set_engine(\"survival\") %>% fit(Surv(tstart, tstop, status) ~ treat + inherit + age + strata(hos.cat), data = cgd ) predict(fit_ag, cgd[1:3, ], type = \"time\") #> # A tibble: 3 × 1 #> .pred_time #> #> 1 319. #> 2 319. #> 3 319."},{"path":"https://censored.tidymodels.org/dev/reference/coxnet_train.html","id":null,"dir":"Reference","previous_headings":"","what":"Wrapper for glmnet for censored — coxnet_train","title":"Wrapper for glmnet for censored — coxnet_train","text":"used directly users.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/coxnet_train.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Wrapper for glmnet for censored — coxnet_train","text":"","code":"coxnet_train( formula, data, alpha = 1, lambda = NULL, weights = NULL, ..., call = caller_env() )"},{"path":"https://censored.tidymodels.org/dev/reference/coxnet_train.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Wrapper for glmnet for censored — coxnet_train","text":"formula model formula. data data. alpha elasticnet mixing parameter, \\(0\\le\\alpha\\le 1\\). penalty defined $$(1-\\alpha)/2||\\beta||_2^2+\\alpha||\\beta||_1.$$ alpha=1 lasso penalty, alpha=0 ridge penalty. lambda user supplied lambda sequence. Typical usage program compute lambda sequence based nlambda lambda.min.ratio. Supplying value lambda overrides . WARNING: use care. Avoid supplying single value lambda (predictions CV use predict() instead). Supply instead decreasing sequence lambda values. glmnet relies warms starts speed, often faster fit whole path compute single fit. weights observation weights. Can total counts responses proportion matrices. Default 1 observation ... additional parameters passed glmnet::glmnet. call call passed rlang::abort().","code":""},{"path":"https://censored.tidymodels.org/dev/reference/coxnet_train.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Wrapper for glmnet for censored — coxnet_train","text":"fitted glmnet model.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/coxnet_train.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Wrapper for glmnet for censored — coxnet_train","text":"wrapper translates formula interface glmnet's matrix due stratification can specified. glmnet requires response stratified via glmnet::stratifySurv(). censored allows specification via survival::strata() term right-hand side formula. formula used generate stratification information needed stratifying response. formula without strata term used generating model matrix glmnet. wrapper retains original formula pre-processing elements including training data allow predictions fitted model.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/coxnet_train.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Wrapper for glmnet for censored — coxnet_train","text":"","code":"coxnet_mod <- coxnet_train(Surv(time, status) ~ age + sex, data = lung)"},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_coxnet.html","id":null,"dir":"Reference","previous_headings":"","what":"A wrapper for survival probabilities with coxnet models — survival_prob_coxnet","title":"A wrapper for survival probabilities with coxnet models — survival_prob_coxnet","text":"wrapper survival probabilities coxnet models","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_coxnet.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"A wrapper for survival probabilities with coxnet models — survival_prob_coxnet","text":"","code":"survival_prob_coxnet( object, new_data, eval_time, time = deprecated(), output = \"surv\", penalty = NULL, ... )"},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_coxnet.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"A wrapper for survival probabilities with coxnet models — survival_prob_coxnet","text":"object fitted _coxnet object. new_data Data prediction. eval_time vector integers prediction times. time Deprecated favor eval_time. vector integers prediction times. output One \"surv\" \"haz\". penalty Penalty value(s). ... Options pass survival::survfit().","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_coxnet.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"A wrapper for survival probabilities with coxnet models — survival_prob_coxnet","text":"tibble list column nested tibbles.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_coxnet.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"A wrapper for survival probabilities with coxnet models — survival_prob_coxnet","text":"","code":"cox_mod <- proportional_hazards(penalty = 0.1) %>% set_engine(\"glmnet\") %>% fit(Surv(time, status) ~ ., data = lung) survival_prob_coxnet(cox_mod, new_data = lung[1:3, ], eval_time = 300) #> # A tibble: 3 × 1 #> .pred #> #> 1 #> 2 #> 3 "},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_coxph.html","id":null,"dir":"Reference","previous_headings":"","what":"A wrapper for survival probabilities with coxph models — survival_prob_coxph","title":"A wrapper for survival probabilities with coxph models — survival_prob_coxph","text":"wrapper survival probabilities coxph models","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_coxph.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"A wrapper for survival probabilities with coxph models — survival_prob_coxph","text":"","code":"survival_prob_coxph( x, new_data, eval_time, time = deprecated(), output = \"surv\", interval = \"none\", conf.int = 0.95, ... )"},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_coxph.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"A wrapper for survival probabilities with coxph models — survival_prob_coxph","text":"x model coxph(). new_data Data prediction eval_time vector integers prediction times. time Deprecated favor eval_time. vector integers prediction times. output One \"surv\", \"conf\", \"haz\". interval Add confidence interval survival probability? Options \"none\" \"confidence\". conf.int confidence level. ... Options pass survival::survfit()","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_coxph.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"A wrapper for survival probabilities with coxph models — survival_prob_coxph","text":"tibble list column nested tibbles.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_coxph.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"A wrapper for survival probabilities with coxph models — survival_prob_coxph","text":"","code":"cox_mod <- coxph(Surv(time, status) ~ ., data = lung) survival_prob_coxph(cox_mod, new_data = lung[1:3, ], eval_time = 300) #> # A tibble: 3 × 1 #> .pred #> #> 1 #> 2 #> 3 "},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_mboost.html","id":null,"dir":"Reference","previous_headings":"","what":"A wrapper for survival probabilities with mboost models — survival_prob_mboost","title":"A wrapper for survival probabilities with mboost models — survival_prob_mboost","text":"wrapper survival probabilities mboost models","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_mboost.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"A wrapper for survival probabilities with mboost models — survival_prob_mboost","text":"","code":"survival_prob_mboost(object, new_data, eval_time, time = deprecated())"},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_mboost.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"A wrapper for survival probabilities with mboost models — survival_prob_mboost","text":"new_data Data prediction. eval_time vector integers prediction times. time Deprecated favor eval_time. vector integers prediction times. x model blackboost().","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_mboost.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"A wrapper for survival probabilities with mboost models — survival_prob_mboost","text":"tibble list column nested tibbles.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_mboost.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"A wrapper for survival probabilities with mboost models — survival_prob_mboost","text":"","code":"library(mboost) #> Loading required package: parallel #> Loading required package: stabs mod <- blackboost(Surv(time, status) ~ ., data = lung, family = CoxPH()) survival_prob_mboost(mod, new_data = lung[1:3, ], eval_time = 300) #> # A tibble: 3 × 1 #> .pred #> #> 1 #> 2 #> 3 "},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_partykit.html","id":null,"dir":"Reference","previous_headings":"","what":"A wrapper for survival probabilities with partykit models — survival_prob_partykit","title":"A wrapper for survival probabilities with partykit models — survival_prob_partykit","text":"wrapper survival probabilities partykit models","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_partykit.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"A wrapper for survival probabilities with partykit models — survival_prob_partykit","text":"","code":"survival_prob_partykit( object, new_data, eval_time, time = deprecated(), output = \"surv\" )"},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_partykit.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"A wrapper for survival probabilities with partykit models — survival_prob_partykit","text":"object model object partykit::ctree() partykit::cforest(). new_data data frame predicted. eval_time vector times predict survival probability. time Deprecated favor eval_time. vector times predict survival probability. output Type output. Can either \"surv\" \"haz\".","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_partykit.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"A wrapper for survival probabilities with partykit models — survival_prob_partykit","text":"tibble list column nested tibbles.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_partykit.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"A wrapper for survival probabilities with partykit models — survival_prob_partykit","text":"","code":"library(partykit) #> Loading required package: grid #> Loading required package: libcoin #> Loading required package: mvtnorm #> #> Attaching package: ‘partykit’ #> The following object is masked from ‘package:mboost’: #> #> varimp c_tree <- ctree(Surv(time, status) ~ age + ph.ecog, data = lung) survival_prob_partykit(c_tree, lung[1:3, ], eval_time = 100) #> # A tibble: 3 × 1 #> .pred #> #> 1 #> 2 #> 3 c_forest <- cforest(Surv(time, status) ~ age + ph.ecog, data = lung, ntree = 10) survival_prob_partykit(c_forest, lung[1:3, ], eval_time = 100) #> # A tibble: 3 × 1 #> .pred #> #> 1 #> 2 #> 3 "},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_survbagg.html","id":null,"dir":"Reference","previous_headings":"","what":"A wrapper for survival probabilities with survbagg models — survival_prob_survbagg","title":"A wrapper for survival probabilities with survbagg models — survival_prob_survbagg","text":"wrapper survival probabilities survbagg models","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_survbagg.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"A wrapper for survival probabilities with survbagg models — survival_prob_survbagg","text":"","code":"survival_prob_survbagg(object, new_data, eval_time, time = deprecated())"},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_survbagg.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"A wrapper for survival probabilities with survbagg models — survival_prob_survbagg","text":"object model ipred::bagging(). new_data Data prediction. eval_time vector prediction times. time Deprecated favor eval_time. vector prediction times.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_survbagg.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"A wrapper for survival probabilities with survbagg models — survival_prob_survbagg","text":"vctrs list tibbles.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_survbagg.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"A wrapper for survival probabilities with survbagg models — survival_prob_survbagg","text":"","code":"library(ipred) #> #> Attaching package: ‘ipred’ #> The following object is masked from ‘package:mboost’: #> #> cv bagged_tree <- bagging(Surv(time, status) ~ age + ph.ecog, data = lung) survival_prob_survbagg(bagged_tree, lung[1:3, ], eval_time = 100) #> # A tibble: 3 × 1 #> .pred #> #> 1 #> 2 #> 3 "},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_survreg.html","id":null,"dir":"Reference","previous_headings":"","what":"Internal function helps for parametric survival models — survival_prob_survreg","title":"Internal function helps for parametric survival models — survival_prob_survreg","text":"Internal function helps parametric survival models","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_survreg.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Internal function helps for parametric survival models — survival_prob_survreg","text":"","code":"survival_prob_survreg(object, new_data, eval_time, time = deprecated()) hazard_survreg(object, new_data, eval_time)"},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_survreg.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Internal function helps for parametric survival models — survival_prob_survreg","text":"object survreg object. new_data data frame. eval_time vector time points. time Deprecated favor eval_time. vector time points.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_survreg.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Internal function helps for parametric survival models — survival_prob_survreg","text":"tibble list column nested tibbles.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_survreg.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Internal function helps for parametric survival models — survival_prob_survreg","text":"","code":"surv_reg <- survreg(Surv(time, status) ~ ., data = lung) survival_prob_survreg(surv_reg, lung[1:3, ], eval_time = 100) #> # A tibble: 3 × 1 #> .pred #> #> 1 #> 2 #> 3 hazard_survreg(surv_reg, lung[1:3, ], eval_time = 100) #> # A tibble: 3 × 1 #> .pred #> #> 1 #> 2 #> 3 "},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_coxnet.html","id":null,"dir":"Reference","previous_headings":"","what":"A wrapper for survival times with coxnet models — survival_time_coxnet","title":"A wrapper for survival times with coxnet models — survival_time_coxnet","text":"wrapper survival times coxnet models","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_coxnet.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"A wrapper for survival times with coxnet models — survival_time_coxnet","text":"","code":"survival_time_coxnet(object, new_data, penalty = NULL, ...)"},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_coxnet.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"A wrapper for survival times with coxnet models — survival_time_coxnet","text":"object fitted _coxnet object. new_data Data prediction. penalty Penalty value(s). ... Options pass survival::survfit().","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_coxnet.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"A wrapper for survival times with coxnet models — survival_time_coxnet","text":"vector.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_coxnet.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"A wrapper for survival times with coxnet models — survival_time_coxnet","text":"","code":"cox_mod <- proportional_hazards(penalty = 0.1) %>% set_engine(\"glmnet\") %>% fit(Surv(time, status) ~ ., data = lung) survival_time_coxnet(cox_mod, new_data = lung[1:3, ], penalty = 0.1) #> [1] NA 425.4722 NA"},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_coxph.html","id":null,"dir":"Reference","previous_headings":"","what":"A wrapper for survival times with coxph models — survival_time_coxph","title":"A wrapper for survival times with coxph models — survival_time_coxph","text":"wrapper survival times coxph models","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_coxph.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"A wrapper for survival times with coxph models — survival_time_coxph","text":"","code":"survival_time_coxph(object, new_data)"},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_coxph.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"A wrapper for survival times with coxph models — survival_time_coxph","text":"object model coxph(). new_data Data prediction","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_coxph.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"A wrapper for survival times with coxph models — survival_time_coxph","text":"vector.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_coxph.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"A wrapper for survival times with coxph models — survival_time_coxph","text":"","code":"cox_mod <- coxph(Surv(time, status) ~ ., data = lung) survival_time_coxph(cox_mod, new_data = lung[1:3, ]) #> [1] NA 470.5813 NA"},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_mboost.html","id":null,"dir":"Reference","previous_headings":"","what":"A wrapper for mean survival times with mboost models — survival_time_mboost","title":"A wrapper for mean survival times with mboost models — survival_time_mboost","text":"wrapper mean survival times mboost models","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_mboost.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"A wrapper for mean survival times with mboost models — survival_time_mboost","text":"","code":"survival_time_mboost(object, new_data)"},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_mboost.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"A wrapper for mean survival times with mboost models — survival_time_mboost","text":"object model blackboost(). new_data Data prediction","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_mboost.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"A wrapper for mean survival times with mboost models — survival_time_mboost","text":"tibble.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_mboost.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"A wrapper for mean survival times with mboost models — survival_time_mboost","text":"","code":"library(mboost) boosted_tree <- blackboost(Surv(time, status) ~ age + ph.ecog, data = lung[-14, ], family = CoxPH() ) survival_time_mboost(boosted_tree, new_data = lung[1:3, ]) #> # A tibble: 3 × 1 #> .pred_time #> #> 1 370. #> 2 337. #> 3 540."},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_survbagg.html","id":null,"dir":"Reference","previous_headings":"","what":"A wrapper for survival times with survbagg models — survival_time_survbagg","title":"A wrapper for survival times with survbagg models — survival_time_survbagg","text":"wrapper survival times survbagg models","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_survbagg.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"A wrapper for survival times with survbagg models — survival_time_survbagg","text":"","code":"survival_time_survbagg(object, new_data)"},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_survbagg.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"A wrapper for survival times with survbagg models — survival_time_survbagg","text":"object model ipred::bagging(). new_data Data prediction","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_survbagg.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"A wrapper for survival times with survbagg models — survival_time_survbagg","text":"vector.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_survbagg.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"A wrapper for survival times with survbagg models — survival_time_survbagg","text":"","code":"library(ipred) bagged_tree <- bagging(Surv(time, status) ~ age + ph.ecog, data = lung) survival_time_survbagg(bagged_tree, lung[1:3, ]) #> [1] 363 350 574"},{"path":"https://censored.tidymodels.org/dev/reference/time_to_million.html","id":null,"dir":"Reference","previous_headings":"","what":"Number of days before a movie grosses $1M USD — time_to_million","title":"Number of days before a movie grosses $1M USD — time_to_million","text":"data somewhat biased random sample 551 movies released 2015 2018. Columns include","code":""},{"path":"https://censored.tidymodels.org/dev/reference/time_to_million.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Number of days before a movie grosses $1M USD — time_to_million","text":"time_to_million tibble","code":""},{"path":"https://censored.tidymodels.org/dev/reference/time_to_million.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Number of days before a movie grosses $1M USD — time_to_million","text":"title: character string movie title. time: number days movie earns million US dollars. event: binary value whether movie reached goal. 94% movies observed events. released: date field release date. distributor: factor name distributor. released_theaters: maximum number theaters movie played first two weeks release. year: release year. rated: factor Motion Picture Association film rating. runtime: length movie (minutes). set indicators columns movie genre (e.g. action, crime, etc.). set indicators language (e.g., english, hindi, etc.). set indicators countries movie released (e.g., uk, japan, etc.)","code":""},{"path":"https://censored.tidymodels.org/dev/news/index.html","id":"censored-development-version","dir":"Changelog","previous_headings":"","what":"censored (development version)","title":"censored (development version)","text":"Fixed bug proportional_hazards(engine = \"glmnet\") prediction didn’t work workflow() formula preprocessor (#264). extract_fit_engine() now works properly proportional hazards models fitted \"glmnet\" engine (#266).","code":""},{"path":"https://censored.tidymodels.org/dev/news/index.html","id":"censored-020","dir":"Changelog","previous_headings":"","what":"censored 0.2.0","title":"censored 0.2.0","text":"CRAN release: 2023-04-13","code":""},{"path":"https://censored.tidymodels.org/dev/news/index.html","id":"cross-package-changes-with-parsnip-0-2-0","dir":"Changelog","previous_headings":"","what":"Cross-package changes with parsnip","title":"censored 0.2.0","text":"new eval_time argument replaces time argument time points predict survival probability hazard. time argument deprecated (#244). matrix interface fitting, fit_xy(), now works censored regression models (#225, #234, #247, #251). Improved error messages throughout package (#248).","code":""},{"path":"https://censored.tidymodels.org/dev/news/index.html","id":"new-engines-0-2-0","dir":"Changelog","previous_headings":"","what":"New engines","title":"censored 0.2.0","text":"Added new \"aorsf\" engine rand_forest() accelerated oblique random survival forests aorsf package (@bcjaeger, #211). Added new flexsurvspline engine survival_reg() (@mattwarkentin, #213).","code":""},{"path":"https://censored.tidymodels.org/dev/news/index.html","id":"bug-fixes-0-2-0","dir":"Changelog","previous_headings":"","what":"Bug fixes","title":"censored 0.2.0","text":"Predictions type \"linear_pred\" survival_reg(engine = \"flexsurv\") now correct scale distributions natural scale unrestricted scale location parameter identical, e.g. dist = \"lnorm\" (#229). Predictions type \"linear_pred\" proportional_hazards(engine = \"glmnet\") via multi_predict() now sign via predict() (#242). Predictions survival probability survival_reg(engine = \"flexsurv\") single time point now nested correctly (#254). Predictions survival probability decision_tree(engine = \"rpart\") single observation now work (#256). Predictions type \"quantile\" survival_reg(engine = \"survival\") single observation now work (#257). Fixed bug printing coxnet models, .e., proportional_hazards() models fitted \"glmnet\" engine (#249).","code":""},{"path":"https://censored.tidymodels.org/dev/news/index.html","id":"internal-changes-0-2-0","dir":"Changelog","previous_headings":"","what":"Internal changes","title":"censored 0.2.0","text":"Predictions survival probabilities now calculated via summary.survfit() proportional_hazards() models \"survival\" \"glmnet\" engines, bag_tree() models \"rpart\" engine, decision_tree() models \"partykit\" engines, well rand_forest() models \"partykit\" engine (#221, #224). Added internal survfit_summary_*() helper functions (#216).","code":""},{"path":"https://censored.tidymodels.org/dev/news/index.html","id":"censored-011","dir":"Changelog","previous_headings":"","what":"censored 0.1.1","title":"censored 0.1.1","text":"CRAN release: 2022-09-30 boosted trees \"mboost\" engine, survival probabilities can now predicted time = -Inf. always 1. time = Inf now predicts survival probability 0 (#215). Updated tests model arguments update() methods (#208). Internal re-organisation code (#206, 209). Added NEWS.md file track changes package.","code":""}] +[{"path":[]},{"path":"https://censored.tidymodels.org/dev/CODE_OF_CONDUCT.html","id":"our-pledge","dir":"","previous_headings":"","what":"Our Pledge","title":"Contributor Covenant Code of Conduct","text":"members, contributors, leaders pledge make participation community harassment-free experience everyone, regardless age, body size, visible invisible disability, ethnicity, sex characteristics, gender identity expression, level experience, education, socio-economic status, nationality, personal appearance, race, caste, color, religion, sexual identity orientation. pledge act interact ways contribute open, welcoming, diverse, inclusive, healthy community.","code":""},{"path":"https://censored.tidymodels.org/dev/CODE_OF_CONDUCT.html","id":"our-standards","dir":"","previous_headings":"","what":"Our Standards","title":"Contributor Covenant Code of Conduct","text":"Examples behavior contributes positive environment community include: Demonstrating empathy kindness toward people respectful differing opinions, viewpoints, experiences Giving gracefully accepting constructive feedback Accepting responsibility apologizing affected mistakes, learning experience Focusing best just us individuals, overall community Examples unacceptable behavior include: use sexualized language imagery, sexual attention advances kind Trolling, insulting derogatory comments, personal political attacks Public private harassment Publishing others’ private information, physical email address, without explicit permission conduct reasonably considered inappropriate professional setting","code":""},{"path":"https://censored.tidymodels.org/dev/CODE_OF_CONDUCT.html","id":"enforcement-responsibilities","dir":"","previous_headings":"","what":"Enforcement Responsibilities","title":"Contributor Covenant Code of Conduct","text":"Community leaders responsible clarifying enforcing standards acceptable behavior take appropriate fair corrective action response behavior deem inappropriate, threatening, offensive, harmful. Community leaders right responsibility remove, edit, reject comments, commits, code, wiki edits, issues, contributions aligned Code Conduct, communicate reasons moderation decisions appropriate.","code":""},{"path":"https://censored.tidymodels.org/dev/CODE_OF_CONDUCT.html","id":"scope","dir":"","previous_headings":"","what":"Scope","title":"Contributor Covenant Code of Conduct","text":"Code Conduct applies within community spaces, also applies individual officially representing community public spaces. Examples representing community include using official e-mail address, posting via official social media account, acting appointed representative online offline event.","code":""},{"path":"https://censored.tidymodels.org/dev/CODE_OF_CONDUCT.html","id":"enforcement","dir":"","previous_headings":"","what":"Enforcement","title":"Contributor Covenant Code of Conduct","text":"Instances abusive, harassing, otherwise unacceptable behavior may reported community leaders responsible enforcement codeofconduct@posit.co. complaints reviewed investigated promptly fairly. community leaders obligated respect privacy security reporter incident.","code":""},{"path":"https://censored.tidymodels.org/dev/CODE_OF_CONDUCT.html","id":"enforcement-guidelines","dir":"","previous_headings":"","what":"Enforcement Guidelines","title":"Contributor Covenant Code of Conduct","text":"Community leaders follow Community Impact Guidelines determining consequences action deem violation Code Conduct:","code":""},{"path":"https://censored.tidymodels.org/dev/CODE_OF_CONDUCT.html","id":"id_1-correction","dir":"","previous_headings":"Enforcement Guidelines","what":"1. Correction","title":"Contributor Covenant Code of Conduct","text":"Community Impact: Use inappropriate language behavior deemed unprofessional unwelcome community. Consequence: private, written warning community leaders, providing clarity around nature violation explanation behavior inappropriate. public apology may requested.","code":""},{"path":"https://censored.tidymodels.org/dev/CODE_OF_CONDUCT.html","id":"id_2-warning","dir":"","previous_headings":"Enforcement Guidelines","what":"2. Warning","title":"Contributor Covenant Code of Conduct","text":"Community Impact: violation single incident series actions. Consequence: warning consequences continued behavior. interaction people involved, including unsolicited interaction enforcing Code Conduct, specified period time. includes avoiding interactions community spaces well external channels like social media. Violating terms may lead temporary permanent ban.","code":""},{"path":"https://censored.tidymodels.org/dev/CODE_OF_CONDUCT.html","id":"id_3-temporary-ban","dir":"","previous_headings":"Enforcement Guidelines","what":"3. Temporary Ban","title":"Contributor Covenant Code of Conduct","text":"Community Impact: serious violation community standards, including sustained inappropriate behavior. Consequence: temporary ban sort interaction public communication community specified period time. public private interaction people involved, including unsolicited interaction enforcing Code Conduct, allowed period. Violating terms may lead permanent ban.","code":""},{"path":"https://censored.tidymodels.org/dev/CODE_OF_CONDUCT.html","id":"id_4-permanent-ban","dir":"","previous_headings":"Enforcement Guidelines","what":"4. Permanent Ban","title":"Contributor Covenant Code of Conduct","text":"Community Impact: Demonstrating pattern violation community standards, including sustained inappropriate behavior, harassment individual, aggression toward disparagement classes individuals. Consequence: permanent ban sort public interaction within community.","code":""},{"path":"https://censored.tidymodels.org/dev/CODE_OF_CONDUCT.html","id":"attribution","dir":"","previous_headings":"","what":"Attribution","title":"Contributor Covenant Code of Conduct","text":"Code Conduct adapted Contributor Covenant, version 2.1, available https://www.contributor-covenant.org/version/2/1/code_of_conduct.html. Community Impact Guidelines inspired [Mozilla’s code conduct enforcement ladder][https://github.com/mozilla/inclusion]. answers common questions code conduct, see FAQ https://www.contributor-covenant.org/faq. Translations available https://www.contributor-covenant.org/translations.","code":""},{"path":"https://censored.tidymodels.org/dev/LICENSE.html","id":null,"dir":"","previous_headings":"","what":"MIT License","title":"MIT License","text":"Copyright (c) 2023 censored authors Permission hereby granted, free charge, person obtaining copy software associated documentation files (“Software”), deal Software without restriction, including without limitation rights use, copy, modify, merge, publish, distribute, sublicense, /sell copies Software, permit persons Software furnished , subject following conditions: copyright notice permission notice shall included copies substantial portions Software. SOFTWARE PROVIDED “”, WITHOUT WARRANTY KIND, EXPRESS IMPLIED, INCLUDING LIMITED WARRANTIES MERCHANTABILITY, FITNESS PARTICULAR PURPOSE NONINFRINGEMENT. EVENT SHALL AUTHORS COPYRIGHT HOLDERS LIABLE CLAIM, DAMAGES LIABILITY, WHETHER ACTION CONTRACT, TORT OTHERWISE, ARISING , CONNECTION SOFTWARE USE DEALINGS SOFTWARE.","code":""},{"path":"https://censored.tidymodels.org/dev/articles/examples.html","id":"bag_tree-models","dir":"Articles","previous_headings":"","what":"bag_tree() models","title":"Fitting and Predicting with censored","text":"’ll model survival lung cancer patients. can define model specific parameters: Now create model fit object: holdout data can predicted survival probability different time points well event time.","code":"library(tidymodels) ## ── Attaching packages ──────────────────────────────── tidymodels 1.1.1 ── ## ✔ broom 1.0.5 ✔ rsample 1.2.0 ## ✔ dials 1.2.0 ✔ tibble 3.2.1 ## ✔ dplyr 1.1.4 ✔ tidyr 1.3.0 ## ✔ infer 1.0.5 ✔ tune 1.1.2 ## ✔ modeldata 1.2.0 ✔ workflows 1.1.3 ## ✔ parsnip 1.1.1 ✔ workflowsets 1.0.1 ## ✔ purrr 1.0.2 ✔ yardstick 1.2.0 ## ✔ recipes 1.0.9 ## ── Conflicts ─────────────────────────────────── tidymodels_conflicts() ── ## ✖ purrr::discard() masks scales::discard() ## ✖ dplyr::filter() masks stats::filter() ## ✖ dplyr::lag() masks stats::lag() ## ✖ recipes::step() masks stats::step() ## • Learn how to get started at https://www.tidymodels.org/start/ library(censored) ## Loading required package: survival tidymodels_prefer() data(cancer) lung <- lung %>% drop_na() lung_train <- lung[-c(1:5), ] lung_test <- lung[1:5, ] bt_spec <- bag_tree(cost_complexity = 0) %>% set_engine(\"rpart\") %>% set_mode(\"censored regression\") bt_spec ## Bagged Decision Tree Model Specification (censored regression) ## ## Main Arguments: ## cost_complexity = 0 ## min_n = 2 ## ## Computational engine: rpart set.seed(1) bt_fit <- bt_spec %>% fit(Surv(time, status) ~ ., data = lung_train) bt_fit ## parsnip model object ## ## ## Bagging survival trees with 25 bootstrap replications ## ## Call: bagging.data.frame(formula = Surv(time, status) ~ ., data = data) predict( bt_fit, lung_test, type = \"survival\", eval_time = c(100, 500, 1000) ) %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 3 × 2 ## .eval_time .pred_survival ## ## 1 100 0.946 ## 2 500 0.333 ## 3 1000 0.00496 predict(bt_fit, lung_test, type = \"time\") ## # A tibble: 5 × 1 ## .pred_time ## ## 1 353 ## 2 293 ## 3 230 ## 4 201 ## 5 268"},{"path":"https://censored.tidymodels.org/dev/articles/examples.html","id":"boost_tree-models","dir":"Articles","previous_headings":"","what":"boost_tree() models","title":"Fitting and Predicting with censored","text":"’ll model survival lung cancer patients. can define model specific parameters: Now create model fit object: holdout data can predicted survival probability different time points well linear predictor.","code":"library(tidymodels) library(censored) tidymodels_prefer() data(cancer) lung <- lung %>% drop_na() lung_train <- lung[-c(1:5), ] lung_test <- lung[1:5, ] bt_spec <- boost_tree(trees = 15) %>% set_engine(\"mboost\") %>% set_mode(\"censored regression\") bt_spec ## Boosted Tree Model Specification (censored regression) ## ## Main Arguments: ## trees = 15 ## ## Computational engine: mboost set.seed(1) bt_fit <- bt_spec %>% fit(Surv(time, status) ~ ., data = lung_train) bt_fit ## parsnip model object ## ## ## Model-based Boosting ## ## Call: ## mboost::blackboost(formula = formula, data = data, family = family, control = mboost::boost_control(mstop = 15), tree_controls = partykit::ctree_control(teststat = \"quad\", testtype = \"Teststatistic\", mincriterion = 0, minsplit = 10, minbucket = 4, maxdepth = 2, saveinfo = FALSE)) ## ## ## Cox Partial Likelihood ## ## Loss function: ## ## Number of boosting iterations: mstop = 15 ## Step size: 0.1 ## Offset: 0 ## Number of baselearners: 1 predict( bt_fit, lung_test, type = \"survival\", eval_time = c(100, 500, 1000) ) %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 3 × 2 ## .eval_time .pred_survival ## ## 1 100 0.867 ## 2 500 0.294 ## 3 1000 0.0441 predict(bt_fit, lung_test, type = \"linear_pred\") ## # A tibble: 5 × 1 ## .pred_linear_pred ## ## 1 0.0823 ## 2 -0.455 ## 3 0.0661 ## 4 -0.724 ## 5 -0.724"},{"path":"https://censored.tidymodels.org/dev/articles/examples.html","id":"decision_tree-models","dir":"Articles","previous_headings":"","what":"decision_tree() models","title":"Fitting and Predicting with censored","text":"’ll model survival lung cancer patients. can define model specific parameters: Now create model fit object: holdout data can predicted survival probability different time points well event time. ’ll model survival lung cancer patients. can define model specific parameters: Now create model fit object: holdout data can predicted survival probability different time points well event time.","code":"library(tidymodels) library(censored) tidymodels_prefer() data(cancer) lung <- lung %>% drop_na() lung_train <- lung[-c(1:5), ] lung_test <- lung[1:5, ] dt_spec <- decision_tree(cost_complexity = 0) %>% set_engine(\"rpart\") %>% set_mode(\"censored regression\") dt_spec ## Decision Tree Model Specification (censored regression) ## ## Main Arguments: ## cost_complexity = 0 ## ## Computational engine: rpart set.seed(1) dt_fit <- dt_spec %>% fit(Surv(time, status) ~ ., data = lung_train) dt_fit ## parsnip model object ## ## $rpart ## n= 162 ## ## node), split, n, deviance, yval ## * denotes terminal node ## ## 1) root 162 217.089100 1.0000000 ## 2) ph.ecog< 1.5 125 146.610800 0.8606149 ## 4) pat.karno>=65 117 134.248900 0.8042241 ## 8) sex>=1.5 47 58.371280 0.5920010 ## 16) inst>=12.5 16 17.696750 0.3469493 * ## 17) inst< 12.5 31 36.986020 0.7601739 ## 34) ph.ecog< 0.5 14 21.869860 0.4765888 * ## 35) ph.ecog>=0.5 17 12.197510 0.9977683 * ## 9) sex< 1.5 70 71.035080 0.9843711 ## 18) wt.loss< -0.5 10 7.608541 0.6466464 * ## 19) wt.loss>=-0.5 60 61.204860 1.0855380 ## 38) inst< 18.5 51 52.890560 0.9994210 ## 76) pat.karno< 85 27 30.835530 0.8204259 ## 152) age< 65.5 16 16.499450 0.6396414 * ## 153) age>=65.5 11 12.211210 1.2318540 * ## 77) pat.karno>=85 24 20.327560 1.2436570 ## 154) pat.karno>=95 10 6.634957 0.7568023 * ## 155) pat.karno< 95 14 10.631990 1.6387150 * ## 39) inst>=18.5 9 6.360874 1.6566500 * ## 5) pat.karno< 65 8 5.011986 2.2376180 * ## 3) ph.ecog>=1.5 37 59.992750 1.7157640 ## 6) wt.loss>=21 10 10.703230 0.6678083 * ## 7) wt.loss< 21 27 29.918520 3.1500170 ## 14) sex>=1.5 12 7.395091 1.9066160 * ## 15) sex< 1.5 15 16.563010 4.5917120 * ## ## $survfit ## ## Call: prodlim::prodlim(formula = form, data = data) ## Stratified Kaplan-Meier estimator for the conditional event time survival function ## Discrete predictor variable: rpartFactor (0.34694933272507, 0.47658881486553, 0.639641354557786, 0.646646427745816, 0.667808261569019, 0.756802251840104, 0.997768280401696, 1.23185367065451, 1.638714591616, 1.65664969973098, 1.90661557969861, 2.23761769770399, 4.59171172488878) ## ## Right-censored response of a survival model ## ## No.Observations: 162 ## ## Pattern: ## Freq ## event 116 ## right.censored 46 ## ## $levels ## [1] \"0.34694933272507\" \"0.47658881486553\" \"0.639641354557786\" ## [4] \"0.646646427745816\" \"0.667808261569019\" \"0.756802251840104\" ## [7] \"0.997768280401696\" \"1.23185367065451\" \"1.638714591616\" ## [10] \"1.65664969973098\" \"1.90661557969861\" \"2.23761769770399\" ## [13] \"4.59171172488878\" ## ## attr(,\"class\") ## [1] \"pecRpart\" predict( dt_fit, lung_test, type = \"survival\", eval_time = c(100, 500, 1000) ) %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 3 × 2 ## .eval_time .pred_survival ## ## 1 100 0.786 ## 2 500 0.143 ## 3 1000 NA predict(dt_fit, lung_test, type = \"time\") ## # A tibble: 5 × 1 ## .pred_time ## ## 1 1.64 ## 2 2.24 ## 3 1.23 ## 4 1.91 ## 5 1.91 library(tidymodels) library(censored) tidymodels_prefer() data(cancer) lung <- lung %>% drop_na() lung_train <- lung[-c(1:5), ] lung_test <- lung[1:5, ] dt_spec <- decision_tree() %>% set_engine(\"partykit\") %>% set_mode(\"censored regression\") dt_spec ## Decision Tree Model Specification (censored regression) ## ## Computational engine: partykit set.seed(1) dt_fit <- dt_spec %>% fit(Surv(time, status) ~ ., data = lung_train) dt_fit ## parsnip model object ## ## ## Model formula: ## Surv(time, status) ~ inst + age + sex + ph.ecog + ph.karno + ## pat.karno + meal.cal + wt.loss ## ## Fitted party: ## [1] root ## | [2] ph.ecog <= 1: 363.000 (n = 125) ## | [3] ph.ecog > 1 ## | | [4] wt.loss <= 20 ## | | | [5] sex <= 1: 65.000 (n = 15) ## | | | [6] sex > 1: 201.000 (n = 12) ## | | [7] wt.loss > 20: 524.000 (n = 10) ## ## Number of inner nodes: 3 ## Number of terminal nodes: 4 predict( dt_fit, lung_test, type = \"survival\", eval_time = c(100, 500, 1000) ) %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 3 × 2 ## .eval_time .pred_survival ## ## 1 100 0.896 ## 2 500 0.334 ## 3 1000 0.0719 predict(dt_fit, lung_test, type = \"time\") ## # A tibble: 5 × 1 ## .pred_time ## ## 1 363 ## 2 363 ## 3 363 ## 4 201 ## 5 201"},{"path":"https://censored.tidymodels.org/dev/articles/examples.html","id":"proportional_hazards-models","dir":"Articles","previous_headings":"","what":"proportional_hazards() models","title":"Fitting and Predicting with censored","text":"’ll model survival lung cancer patients. can define model specific parameters: Now create model fit object: holdout data can predicted survival probability different time points well linear predictor event time. ’ll model survival lung cancer patients. can define model specific parameters: Now create model fit object: holdout data can predicted survival probability different time points well linear predictor.","code":"library(tidymodels) library(censored) tidymodels_prefer() data(cancer) lung <- lung %>% drop_na() lung_train <- lung[-c(1:5), ] lung_test <- lung[1:5, ] ph_spec <- proportional_hazards() %>% set_engine(\"survival\") %>% set_mode(\"censored regression\") ph_spec ## Proportional Hazards Model Specification (censored regression) ## ## Computational engine: survival set.seed(1) ph_fit <- ph_spec %>% fit(Surv(time, status) ~ ., data = lung_train) ph_fit ## parsnip model object ## ## Call: ## survival::coxph(formula = Surv(time, status) ~ ., data = data, ## model = TRUE, x = TRUE) ## ## coef exp(coef) se(coef) z p ## inst -0.0291726 0.9712488 0.0131293 -2.222 0.02629 ## age 0.0146341 1.0147417 0.0119705 1.223 0.22151 ## sex -0.5977137 0.5500678 0.2051326 -2.914 0.00357 ## ph.ecog 0.7507039 2.1184906 0.2536100 2.960 0.00308 ## ph.karno 0.0137315 1.0138262 0.0132752 1.034 0.30096 ## pat.karno -0.0082098 0.9918238 0.0082560 -0.994 0.32002 ## meal.cal -0.0001233 0.9998767 0.0002841 -0.434 0.66435 ## wt.loss -0.0188464 0.9813301 0.0082051 -2.297 0.02162 ## ## Likelihood ratio test=32.61 on 8 df, p=7.224e-05 ## n= 162, number of events= 116 predict( ph_fit, lung_test, type = \"survival\", eval_time = c(100, 500, 1000) ) %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 3 × 2 ## .eval_time .pred_survival ## ## 1 100 0.903 ## 2 500 0.410 ## 3 1000 0.0953 predict(ph_fit, lung_test, type = \"linear_pred\") ## # A tibble: 5 × 1 ## .pred_linear_pred ## ## 1 -0.373 ## 2 -1.24 ## 3 -0.852 ## 4 -1.33 ## 5 -1.11 predict(ph_fit, lung_test, type = \"time\") ## # A tibble: 5 × 1 ## .pred_time ## ## 1 448. ## 2 262. ## 3 337. ## 4 246. ## 5 286. library(tidymodels) library(censored) tidymodels_prefer() data(cancer) lung <- lung %>% drop_na() lung_train <- lung[-c(1:5), ] lung_test <- lung[1:5, ] ph_spec <- proportional_hazards(penalty = 0.1) %>% set_engine(\"glmnet\") %>% set_mode(\"censored regression\") ph_spec ## Proportional Hazards Model Specification (censored regression) ## ## Main Arguments: ## penalty = 0.1 ## ## Computational engine: glmnet set.seed(1) ph_fit <- ph_spec %>% fit(Surv(time, status) ~ ., data = lung_train) ph_fit ## parsnip model object ## ## Fit time: NA ## ## Call: glmnet::glmnet(x = data_obj$x, y = data_obj$y, family = \"cox\", weights = weights, alpha = alpha, lambda = lambda) ## ## Df %Dev Lambda ## 1 0 0.00 0.221000 ## 2 1 0.23 0.201400 ## 3 2 0.43 0.183500 ## 4 2 0.72 0.167200 ## 5 2 0.96 0.152300 ## 6 2 1.17 0.138800 ## 7 2 1.33 0.126500 ## 8 3 1.48 0.115200 ## 9 4 1.61 0.105000 ## 10 4 1.74 0.095660 ## 11 5 1.87 0.087160 ## 12 6 2.02 0.079420 ## 13 6 2.22 0.072370 ## 14 6 2.40 0.065940 ## 15 6 2.54 0.060080 ## 16 6 2.66 0.054740 ## 17 6 2.77 0.049880 ## 18 6 2.85 0.045450 ## 19 6 2.92 0.041410 ## 20 6 2.98 0.037730 ## 21 7 3.04 0.034380 ## 22 7 3.08 0.031330 ## 23 7 3.12 0.028540 ## 24 7 3.16 0.026010 ## 25 7 3.19 0.023700 ## 26 7 3.21 0.021590 ## 27 8 3.23 0.019670 ## 28 8 3.27 0.017930 ## 29 8 3.30 0.016330 ## 30 8 3.32 0.014880 ## 31 8 3.34 0.013560 ## 32 8 3.36 0.012360 ## 33 8 3.37 0.011260 ## 34 8 3.39 0.010260 ## 35 8 3.40 0.009346 ## 36 8 3.40 0.008516 ## 37 8 3.41 0.007760 ## 38 8 3.42 0.007070 ## 39 8 3.42 0.006442 ## 40 8 3.43 0.005870 ## 41 8 3.43 0.005348 ## 42 8 3.43 0.004873 ## 43 8 3.43 0.004440 ## 44 8 3.44 0.004046 ## 45 8 3.44 0.003686 ## 46 8 3.44 0.003359 ## 47 8 3.44 0.003061 ## 48 8 3.44 0.002789 ## 49 8 3.44 0.002541 ## 50 8 3.44 0.002315 ## The training data has been saved for prediction. predict( ph_fit, lung_test, type = \"survival\", eval_time = c(100, 500, 1000) ) %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 3 × 2 ## .eval_time .pred_survival ## ## 1 100 0.874 ## 2 500 0.349 ## 3 1000 0.0804 predict(ph_fit, lung_test, type = \"linear_pred\") ## # A tibble: 5 × 1 ## .pred_linear_pred ## ## 1 0.272 ## 2 0.0000798 ## 3 0.00575 ## 4 -0.0211 ## 5 -0.00345"},{"path":"https://censored.tidymodels.org/dev/articles/examples.html","id":"rand_forest-models","dir":"Articles","previous_headings":"","what":"rand_forest() models","title":"Fitting and Predicting with censored","text":"’ll model survival lung cancer patients. can define model specific parameters: Now create model fit object: holdout data can predicted survival probability different time points well event time. ’ll model survival lung cancer patients. can define model specific parameters: Now create model fit object: holdout data can predicted survival probability different time points well event time.","code":"library(tidymodels) library(censored) tidymodels_prefer() data(cancer) lung <- lung %>% drop_na() lung_train <- lung[-c(1:5), ] lung_test <- lung[1:5, ] rf_spec <- rand_forest(trees = 200) %>% set_engine(\"partykit\") %>% set_mode(\"censored regression\") rf_spec ## Random Forest Model Specification (censored regression) ## ## Main Arguments: ## trees = 200 ## ## Computational engine: partykit set.seed(1) rf_fit <- rf_spec %>% fit(Surv(time, status) ~ ., data = lung_train) rf_fit ## parsnip model object ## ## $nodes ## $nodes[[1]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V5 <= 1 ## | | | [4] V3 <= 64 ## | | | | [5] V8 <= 1025 * ## | | | | [6] V8 > 1025 * ## | | | [7] V3 > 64 * ## | | [8] V5 > 1 * ## | [9] V4 > 1 ## | | [10] V5 <= 1 ## | | | [11] V5 <= 0 * ## | | | [12] V5 > 0 * ## | | [13] V5 > 1 * ## ## $nodes[[2]] ## [1] root ## | [2] V5 <= 0 ## | | [3] V4 <= 1 * ## | | [4] V4 > 1 * ## | [5] V5 > 0 ## | | [6] V5 <= 1 ## | | | [7] V9 <= 19 ## | | | | [8] V4 <= 1 ## | | | | | [9] V9 <= 6 * ## | | | | | [10] V9 > 6 * ## | | | | [11] V4 > 1 * ## | | | [12] V9 > 19 * ## | | [13] V5 > 1 ## | | | [14] V4 <= 1 * ## | | | [15] V4 > 1 * ## ## $nodes[[3]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V5 <= 0 ## | | | [4] V2 <= 5 * ## | | | [5] V2 > 5 ## | | | | [6] V6 <= 90 * ## | | | | [7] V6 > 90 * ## | | [8] V5 > 0 ## | | | [9] V6 <= 80 ## | | | | [10] V7 <= 70 * ## | | | | [11] V7 > 70 ## | | | | | [12] V2 <= 10 * ## | | | | | [13] V2 > 10 * ## | | | [14] V6 > 80 * ## | [15] V5 > 1 ## | | [16] V6 <= 60 * ## | | [17] V6 > 60 * ## ## $nodes[[4]] ## [1] root ## | [2] V5 <= 0 ## | | [3] V7 <= 80 * ## | | [4] V7 > 80 * ## | [5] V5 > 0 ## | | [6] V4 <= 1 ## | | | [7] V6 <= 80 ## | | | | [8] V3 <= 65 * ## | | | | [9] V3 > 65 ## | | | | | [10] V9 <= 7 * ## | | | | | [11] V9 > 7 * ## | | | [12] V6 > 80 * ## | | [13] V4 > 1 ## | | | [14] V5 <= 1 * ## | | | [15] V5 > 1 * ## ## $nodes[[5]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V4 <= 1 ## | | | [4] V6 <= 80 ## | | | | [5] V7 <= 80 * ## | | | | [6] V7 > 80 * ## | | | [7] V6 > 80 ## | | | | [8] V9 <= 12 ## | | | | | [9] V2 <= 11 * ## | | | | | [10] V2 > 11 * ## | | | | [11] V9 > 12 * ## | | [12] V4 > 1 ## | | | [13] V3 <= 53 * ## | | | [14] V3 > 53 ## | | | | [15] V3 <= 64 * ## | | | | [16] V3 > 64 * ## | [17] V5 > 1 ## | | [18] V8 <= 925 * ## | | [19] V8 > 925 * ## ## $nodes[[6]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V6 <= 80 ## | | | [4] V8 <= 613 * ## | | | [5] V8 > 613 ## | | | | [6] V2 <= 10 * ## | | | | [7] V2 > 10 * ## | | [8] V6 > 80 ## | | | [9] V8 <= 875 * ## | | | [10] V8 > 875 ## | | | | [11] V9 <= 2 * ## | | | | [12] V9 > 2 * ## | [13] V4 > 1 ## | | [14] V6 <= 70 * ## | | [15] V6 > 70 ## | | | [16] V2 <= 11 * ## | | | [17] V2 > 11 * ## ## $nodes[[7]] ## [1] root ## | [2] V7 <= 60 * ## | [3] V7 > 60 ## | | [4] V3 <= 74 ## | | | [5] V7 <= 90 ## | | | | [6] V5 <= 0 * ## | | | | [7] V5 > 0 ## | | | | | [8] V7 <= 70 * ## | | | | | [9] V7 > 70 ## | | | | | | [10] V9 <= 4 * ## | | | | | | [11] V9 > 4 * ## | | | [12] V7 > 90 * ## | | [13] V3 > 74 * ## ## $nodes[[8]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V3 <= 64 ## | | | [4] V4 <= 1 ## | | | | [5] V5 <= 0 * ## | | | | [6] V5 > 0 * ## | | | [7] V4 > 1 ## | | | | [8] V9 <= 6 * ## | | | | [9] V9 > 6 * ## | | [10] V3 > 64 ## | | | [11] V7 <= 80 * ## | | | [12] V7 > 80 * ## | [13] V5 > 1 ## | | [14] V4 <= 1 * ## | | [15] V4 > 1 * ## ## $nodes[[9]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V6 <= 80 ## | | | [4] V9 <= 20 ## | | | | [5] V6 <= 70 * ## | | | | [6] V6 > 70 * ## | | | [7] V9 > 20 * ## | | [8] V6 > 80 ## | | | [9] V7 <= 80 * ## | | | [10] V7 > 80 * ## | [11] V4 > 1 ## | | [12] V7 <= 90 ## | | | [13] V9 <= 3 * ## | | | [14] V9 > 3 * ## | | [15] V7 > 90 * ## ## $nodes[[10]] ## [1] root ## | [2] V5 <= 0 ## | | [3] V3 <= 64 ## | | | [4] V9 <= 3 * ## | | | [5] V9 > 3 * ## | | [6] V3 > 64 * ## | [7] V5 > 0 ## | | [8] V9 <= 27 ## | | | [9] V5 <= 1 ## | | | | [10] V9 <= 14 ## | | | | | [11] V4 <= 1 * ## | | | | | [12] V4 > 1 * ## | | | | [13] V9 > 14 * ## | | | [14] V5 > 1 * ## | | [15] V9 > 27 * ## ## $nodes[[11]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V7 <= 90 ## | | | [4] V7 <= 70 * ## | | | [5] V7 > 70 ## | | | | [6] V3 <= 70 ## | | | | | [7] V7 <= 80 * ## | | | | | [8] V7 > 80 ## | | | | | | [9] V3 <= 61 * ## | | | | | | [10] V3 > 61 * ## | | | | [11] V3 > 70 * ## | | [12] V7 > 90 * ## | [13] V5 > 1 ## | | [14] V4 <= 1 * ## | | [15] V4 > 1 * ## ## $nodes[[12]] ## [1] root ## | [2] V2 <= 21 ## | | [3] V7 <= 60 * ## | | [4] V7 > 60 ## | | | [5] V6 <= 70 * ## | | | [6] V6 > 70 ## | | | | [7] V7 <= 90 ## | | | | | [8] V5 <= 0 * ## | | | | | [9] V5 > 0 ## | | | | | | [10] V9 <= 14 ## | | | | | | | [11] V7 <= 80 * ## | | | | | | | [12] V7 > 80 * ## | | | | | | [13] V9 > 14 * ## | | | | [14] V7 > 90 * ## | [15] V2 > 21 * ## ## $nodes[[13]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V7 <= 60 * ## | | [4] V7 > 60 ## | | | [5] V5 <= 0 * ## | | | [6] V5 > 0 ## | | | | [7] V3 <= 60 * ## | | | | [8] V3 > 60 ## | | | | | [9] V7 <= 70 * ## | | | | | [10] V7 > 70 * ## | [11] V4 > 1 ## | | [12] V5 <= 0 * ## | | [13] V5 > 0 ## | | | [14] V5 <= 1 * ## | | | [15] V5 > 1 * ## ## $nodes[[14]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V5 <= 1 ## | | | [4] V3 <= 53 * ## | | | [5] V3 > 53 ## | | | | [6] V9 <= 14 ## | | | | | [7] V9 <= 2 * ## | | | | | [8] V9 > 2 * ## | | | | [9] V9 > 14 * ## | | [10] V5 > 1 * ## | [11] V4 > 1 ## | | [12] V6 <= 80 ## | | | [13] V5 <= 1 * ## | | | [14] V5 > 1 * ## | | [15] V6 > 80 ## | | | [16] V5 <= 0 * ## | | | [17] V5 > 0 * ## ## $nodes[[15]] ## [1] root ## | [2] V7 <= 60 * ## | [3] V7 > 60 ## | | [4] V5 <= 1 ## | | | [5] V4 <= 1 ## | | | | [6] V8 <= 1275 ## | | | | | [7] V3 <= 59 * ## | | | | | [8] V3 > 59 ## | | | | | | [9] V5 <= 0 * ## | | | | | | [10] V5 > 0 * ## | | | | [11] V8 > 1275 * ## | | | [12] V4 > 1 ## | | | | [13] V6 <= 90 ## | | | | | [14] V8 <= 875 * ## | | | | | [15] V8 > 875 * ## | | | | [16] V6 > 90 * ## | | [17] V5 > 1 * ## ## $nodes[[16]] ## [1] root ## | [2] V7 <= 60 ## | | [3] V9 <= 8 * ## | | [4] V9 > 8 * ## | [5] V7 > 60 ## | | [6] V5 <= 1 ## | | | [7] V5 <= 0 ## | | | | [8] V6 <= 90 * ## | | | | [9] V6 > 90 * ## | | | [10] V5 > 0 ## | | | | [11] V4 <= 1 ## | | | | | [12] V6 <= 80 * ## | | | | | [13] V6 > 80 * ## | | | | [14] V4 > 1 * ## | | [15] V5 > 1 * ## ## $nodes[[17]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V4 <= 1 ## | | | [4] V9 <= 10 ## | | | | [5] V5 <= 0 * ## | | | | [6] V5 > 0 * ## | | | [7] V9 > 10 * ## | | [8] V4 > 1 ## | | | [9] V6 <= 80 * ## | | | [10] V6 > 80 * ## | [11] V5 > 1 ## | | [12] V9 <= 10 * ## | | [13] V9 > 10 * ## ## $nodes[[18]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V3 <= 52 * ## | | [4] V3 > 52 ## | | | [5] V5 <= 0 ## | | | | [6] V6 <= 90 * ## | | | | [7] V6 > 90 * ## | | | [8] V5 > 0 ## | | | | [9] V4 <= 1 ## | | | | | [10] V3 <= 66 * ## | | | | | [11] V3 > 66 * ## | | | | [12] V4 > 1 * ## | [13] V5 > 1 ## | | [14] V9 <= 11 * ## | | [15] V9 > 11 * ## ## $nodes[[19]] ## [1] root ## | [2] V5 <= 0 ## | | [3] V9 <= 3 * ## | | [4] V9 > 3 * ## | [5] V5 > 0 ## | | [6] V9 <= 27 ## | | | [7] V5 <= 1 ## | | | | [8] V7 <= 80 ## | | | | | [9] V7 <= 70 * ## | | | | | [10] V7 > 70 * ## | | | | [11] V7 > 80 * ## | | | [12] V5 > 1 * ## | | [13] V9 > 27 * ## ## $nodes[[20]] ## [1] root ## | [2] V7 <= 70 ## | | [3] V9 <= 24 ## | | | [4] V6 <= 70 * ## | | | [5] V6 > 70 * ## | | [6] V9 > 24 * ## | [7] V7 > 70 ## | | [8] V4 <= 1 ## | | | [9] V5 <= 0 * ## | | | [10] V5 > 0 ## | | | | [11] V9 <= 1 * ## | | | | [12] V9 > 1 * ## | | [13] V4 > 1 ## | | | [14] V7 <= 90 * ## | | | [15] V7 > 90 * ## ## $nodes[[21]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V3 <= 64 ## | | | [4] V8 <= 1060 ## | | | | [5] V5 <= 0 * ## | | | | [6] V5 > 0 * ## | | | [7] V8 > 1060 ## | | | | [8] V6 <= 90 * ## | | | | [9] V6 > 90 * ## | | [10] V3 > 64 ## | | | [11] V7 <= 80 * ## | | | [12] V7 > 80 * ## | [13] V5 > 1 ## | | [14] V9 <= 20 * ## | | [15] V9 > 20 * ## ## $nodes[[22]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V3 <= 64 ## | | | [4] V5 <= 0 * ## | | | [5] V5 > 0 ## | | | | [6] V4 <= 1 ## | | | | | [7] V9 <= 10 * ## | | | | | [8] V9 > 10 * ## | | | | [9] V4 > 1 * ## | | [10] V3 > 64 ## | | | [11] V6 <= 80 * ## | | | [12] V6 > 80 * ## | [13] V5 > 1 ## | | [14] V9 <= 11 * ## | | [15] V9 > 11 * ## ## $nodes[[23]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V9 <= 20 ## | | | [4] V6 <= 70 * ## | | | [5] V6 > 70 ## | | | | [6] V2 <= 4 * ## | | | | [7] V2 > 4 ## | | | | | [8] V9 <= 5 * ## | | | | | [9] V9 > 5 * ## | | [10] V9 > 20 * ## | [11] V4 > 1 ## | | [12] V5 <= 0 * ## | | [13] V5 > 0 ## | | | [14] V2 <= 12 * ## | | | [15] V2 > 12 * ## ## $nodes[[24]] ## [1] root ## | [2] V7 <= 60 ## | | [3] V9 <= 13 * ## | | [4] V9 > 13 * ## | [5] V7 > 60 ## | | [6] V3 <= 64 ## | | | [7] V8 <= 1150 ## | | | | [8] V8 <= 925 ## | | | | | [9] V8 <= 768 * ## | | | | | [10] V8 > 768 * ## | | | | [11] V8 > 925 * ## | | | [12] V8 > 1150 * ## | | [13] V3 > 64 ## | | | [14] V7 <= 80 * ## | | | [15] V7 > 80 * ## ## $nodes[[25]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V5 <= 1 ## | | | [4] V7 <= 70 * ## | | | [5] V7 > 70 ## | | | | [6] V5 <= 0 * ## | | | | [7] V5 > 0 * ## | | [8] V5 > 1 * ## | [9] V4 > 1 ## | | [10] V9 <= 3 * ## | | [11] V9 > 3 * ## ## $nodes[[26]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V5 <= 0 ## | | | [4] V3 <= 64 ## | | | | [5] V7 <= 90 * ## | | | | [6] V7 > 90 * ## | | | [7] V3 > 64 * ## | | [8] V5 > 0 ## | | | [9] V6 <= 80 ## | | | | [10] V2 <= 13 ## | | | | | [11] V7 <= 70 * ## | | | | | [12] V7 > 70 * ## | | | | [13] V2 > 13 * ## | | | [14] V6 > 80 * ## | [15] V5 > 1 ## | | [16] V9 <= 20 * ## | | [17] V9 > 20 * ## ## $nodes[[27]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V5 <= 1 ## | | | [4] V7 <= 80 ## | | | | [5] V3 <= 66 * ## | | | | [6] V3 > 66 * ## | | | [7] V7 > 80 ## | | | | [8] V8 <= 1025 * ## | | | | [9] V8 > 1025 * ## | | [10] V5 > 1 * ## | [11] V4 > 1 ## | | [12] V9 <= -1 * ## | | [13] V9 > -1 ## | | | [14] V6 <= 70 * ## | | | [15] V6 > 70 ## | | | | [16] V7 <= 80 * ## | | | | [17] V7 > 80 * ## ## $nodes[[28]] ## [1] root ## | [2] V7 <= 90 ## | | [3] V5 <= 1 ## | | | [4] V4 <= 1 ## | | | | [5] V8 <= 1225 ## | | | | | [6] V8 <= 463 * ## | | | | | [7] V8 > 463 ## | | | | | | [8] V6 <= 80 * ## | | | | | | [9] V6 > 80 * ## | | | | [10] V8 > 1225 * ## | | | [11] V4 > 1 ## | | | | [12] V9 <= 4 * ## | | | | [13] V9 > 4 * ## | | [14] V5 > 1 ## | | | [15] V4 <= 1 * ## | | | [16] V4 > 1 * ## | [17] V7 > 90 * ## ## $nodes[[29]] ## [1] root ## | [2] V7 <= 90 ## | | [3] V8 <= 675 ## | | | [4] V7 <= 80 * ## | | | [5] V7 > 80 * ## | | [6] V8 > 675 ## | | | [7] V7 <= 60 * ## | | | [8] V7 > 60 ## | | | | [9] V3 <= 64 ## | | | | | [10] V5 <= 0 * ## | | | | | [11] V5 > 0 ## | | | | | | [12] V8 <= 975 * ## | | | | | | [13] V8 > 975 * ## | | | | [14] V3 > 64 * ## | [15] V7 > 90 * ## ## $nodes[[30]] ## [1] root ## | [2] V7 <= 60 * ## | [3] V7 > 60 ## | | [4] V9 <= 18 ## | | | [5] V4 <= 1 ## | | | | [6] V2 <= 11 * ## | | | | [7] V2 > 11 * ## | | | [8] V4 > 1 ## | | | | [9] V6 <= 90 ## | | | | | [10] V5 <= 0 * ## | | | | | [11] V5 > 0 ## | | | | | | [12] V3 <= 56 * ## | | | | | | [13] V3 > 56 * ## | | | | [14] V6 > 90 * ## | | [15] V9 > 18 * ## ## $nodes[[31]] ## [1] root ## | [2] V7 <= 80 ## | | [3] V4 <= 1 ## | | | [4] V3 <= 65 * ## | | | [5] V3 > 65 * ## | | [6] V4 > 1 ## | | | [7] V2 <= 10 * ## | | | [8] V2 > 10 * ## | [9] V7 > 80 ## | | [10] V5 <= 0 * ## | | [11] V5 > 0 ## | | | [12] V2 <= 13 * ## | | | [13] V2 > 13 * ## ## $nodes[[32]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V5 <= 1 ## | | | [4] V8 <= 575 * ## | | | [5] V8 > 575 ## | | | | [6] V2 <= 16 ## | | | | | [7] V3 <= 60 * ## | | | | | [8] V3 > 60 * ## | | | | [9] V2 > 16 * ## | | [10] V5 > 1 * ## | [11] V4 > 1 ## | | [12] V7 <= 80 ## | | | [13] V9 <= 3 * ## | | | [14] V9 > 3 * ## | | [15] V7 > 80 * ## ## $nodes[[33]] ## [1] root ## | [2] V6 <= 70 ## | | [3] V9 <= 2 * ## | | [4] V9 > 2 * ## | [5] V6 > 70 ## | | [6] V9 <= 3 ## | | | [7] V4 <= 1 * ## | | | [8] V4 > 1 * ## | | [9] V9 > 3 ## | | | [10] V8 <= 575 * ## | | | [11] V8 > 575 ## | | | | [12] V7 <= 80 * ## | | | | [13] V7 > 80 * ## ## $nodes[[34]] ## [1] root ## | [2] V2 <= 12 ## | | [3] V8 <= 1175 ## | | | [4] V7 <= 90 ## | | | | [5] V5 <= 1 ## | | | | | [6] V3 <= 66 * ## | | | | | [7] V3 > 66 * ## | | | | [8] V5 > 1 * ## | | | [9] V7 > 90 * ## | | [10] V8 > 1175 * ## | [11] V2 > 12 ## | | [12] V7 <= 60 * ## | | [13] V7 > 60 ## | | | [14] V2 <= 15 * ## | | | [15] V2 > 15 ## | | | | [16] V2 <= 21 * ## | | | | [17] V2 > 21 * ## ## $nodes[[35]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V3 <= 45 * ## | | [4] V3 > 45 ## | | | [5] V9 <= 4 ## | | | | [6] V5 <= 0 * ## | | | | [7] V5 > 0 ## | | | | | [8] V7 <= 80 * ## | | | | | [9] V7 > 80 * ## | | | [10] V9 > 4 ## | | | | [11] V4 <= 1 ## | | | | | [12] V5 <= 0 * ## | | | | | [13] V5 > 0 ## | | | | | | [14] V2 <= 11 * ## | | | | | | [15] V2 > 11 * ## | | | | [16] V4 > 1 * ## | [17] V5 > 1 ## | | [18] V9 <= 10 * ## | | [19] V9 > 10 * ## ## $nodes[[36]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V5 <= 0 ## | | | [4] V9 <= 6 ## | | | | [5] V2 <= 5 * ## | | | | [6] V2 > 5 * ## | | | [7] V9 > 6 * ## | | [8] V5 > 0 ## | | | [9] V4 <= 1 ## | | | | [10] V3 <= 59 * ## | | | | [11] V3 > 59 ## | | | | | [12] V8 <= 825 * ## | | | | | [13] V8 > 825 * ## | | | [14] V4 > 1 * ## | [15] V5 > 1 ## | | [16] V7 <= 60 * ## | | [17] V7 > 60 * ## ## $nodes[[37]] ## [1] root ## | [2] V7 <= 60 ## | | [3] V9 <= 12 * ## | | [4] V9 > 12 * ## | [5] V7 > 60 ## | | [6] V8 <= 1100 ## | | | [7] V4 <= 1 ## | | | | [8] V9 <= 20 ## | | | | | [9] V6 <= 80 * ## | | | | | [10] V6 > 80 * ## | | | | [11] V9 > 20 * ## | | | [12] V4 > 1 ## | | | | [13] V7 <= 80 * ## | | | | [14] V7 > 80 * ## | | [15] V8 > 1100 ## | | | [16] V9 <= 2 * ## | | | [17] V9 > 2 * ## ## $nodes[[38]] ## [1] root ## | [2] V7 <= 60 * ## | [3] V7 > 60 ## | | [4] V5 <= 1 ## | | | [5] V4 <= 1 ## | | | | [6] V5 <= 0 ## | | | | | [7] V9 <= 5 * ## | | | | | [8] V9 > 5 * ## | | | | [9] V5 > 0 ## | | | | | [10] V3 <= 63 * ## | | | | | [11] V3 > 63 * ## | | | [12] V4 > 1 ## | | | | [13] V9 <= 4 * ## | | | | [14] V9 > 4 * ## | | [15] V5 > 1 * ## ## $nodes[[39]] ## [1] root ## | [2] V7 <= 70 ## | | [3] V9 <= 20 ## | | | [4] V4 <= 1 * ## | | | [5] V4 > 1 * ## | | [6] V9 > 20 * ## | [7] V7 > 70 ## | | [8] V5 <= 0 ## | | | [9] V6 <= 90 * ## | | | [10] V6 > 90 * ## | | [11] V5 > 0 ## | | | [12] V2 <= 12 ## | | | | [13] V6 <= 80 ## | | | | | [14] V9 <= 14 * ## | | | | | [15] V9 > 14 * ## | | | | [16] V6 > 80 * ## | | | [17] V2 > 12 * ## ## $nodes[[40]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V7 <= 90 ## | | | [4] V9 <= 4 ## | | | | [5] V4 <= 1 * ## | | | | [6] V4 > 1 * ## | | | [7] V9 > 4 ## | | | | [8] V4 <= 1 ## | | | | | [9] V7 <= 80 ## | | | | | | [10] V7 <= 70 * ## | | | | | | [11] V7 > 70 * ## | | | | | [12] V7 > 80 * ## | | | | [13] V4 > 1 * ## | | [14] V7 > 90 * ## | [15] V5 > 1 ## | | [16] V3 <= 65 * ## | | [17] V3 > 65 * ## ## $nodes[[41]] ## [1] root ## | [2] V3 <= 67 ## | | [3] V6 <= 80 ## | | | [4] V3 <= 56 * ## | | | [5] V3 > 56 ## | | | | [6] V2 <= 15 * ## | | | | [7] V2 > 15 * ## | | [8] V6 > 80 ## | | | [9] V5 <= 0 ## | | | | [10] V3 <= 56 * ## | | | | [11] V3 > 56 * ## | | | [12] V5 > 0 * ## | [13] V3 > 67 ## | | [14] V9 <= 14 ## | | | [15] V6 <= 80 ## | | | | [16] V5 <= 1 * ## | | | | [17] V5 > 1 * ## | | | [18] V6 > 80 * ## | | [19] V9 > 14 * ## ## $nodes[[42]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V3 <= 70 ## | | | [4] V5 <= 1 ## | | | | [5] V7 <= 70 * ## | | | | [6] V7 > 70 ## | | | | | [7] V5 <= 0 * ## | | | | | [8] V5 > 0 * ## | | | [9] V5 > 1 * ## | | [10] V3 > 70 * ## | [11] V4 > 1 ## | | [12] V7 <= 70 * ## | | [13] V7 > 70 ## | | | [14] V2 <= 12 ## | | | | [15] V5 <= 0 * ## | | | | [16] V5 > 0 * ## | | | [17] V2 > 12 * ## ## $nodes[[43]] ## [1] root ## | [2] V5 <= 0 ## | | [3] V6 <= 90 * ## | | [4] V6 > 90 * ## | [5] V5 > 0 ## | | [6] V4 <= 1 ## | | | [7] V2 <= 7 ## | | | | [8] V7 <= 60 * ## | | | | [9] V7 > 60 * ## | | | [10] V2 > 7 ## | | | | [11] V6 <= 70 * ## | | | | [12] V6 > 70 * ## | | [13] V4 > 1 ## | | | [14] V8 <= 675 * ## | | | [15] V8 > 675 * ## ## $nodes[[44]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V5 <= 0 ## | | | [4] V6 <= 90 * ## | | | [5] V6 > 90 * ## | | [6] V5 > 0 ## | | | [7] V4 <= 1 ## | | | | [8] V7 <= 60 * ## | | | | [9] V7 > 60 ## | | | | | [10] V6 <= 80 * ## | | | | | [11] V6 > 80 * ## | | | [12] V4 > 1 * ## | [13] V5 > 1 ## | | [14] V7 <= 60 * ## | | [15] V7 > 60 * ## ## $nodes[[45]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V3 <= 67 ## | | | [4] V6 <= 70 * ## | | | [5] V6 > 70 ## | | | | [6] V5 <= 0 * ## | | | | [7] V5 > 0 ## | | | | | [8] V3 <= 57 * ## | | | | | [9] V3 > 57 * ## | | [10] V3 > 67 ## | | | [11] V9 <= 10 * ## | | | [12] V9 > 10 * ## | [13] V4 > 1 ## | | [14] V5 <= 0 * ## | | [15] V5 > 0 ## | | | [16] V9 <= 0 * ## | | | [17] V9 > 0 * ## ## $nodes[[46]] ## [1] root ## | [2] V5 <= 0 ## | | [3] V7 <= 90 * ## | | [4] V7 > 90 * ## | [5] V5 > 0 ## | | [6] V7 <= 60 * ## | | [7] V7 > 60 ## | | | [8] V2 <= 5 * ## | | | [9] V2 > 5 ## | | | | [10] V3 <= 59 * ## | | | | [11] V3 > 59 ## | | | | | [12] V5 <= 1 ## | | | | | | [13] V6 <= 80 * ## | | | | | | [14] V6 > 80 * ## | | | | | [15] V5 > 1 * ## ## $nodes[[47]] ## [1] root ## | [2] V3 <= 64 ## | | [3] V8 <= 1175 ## | | | [4] V5 <= 0 * ## | | | [5] V5 > 0 ## | | | | [6] V8 <= 925 ## | | | | | [7] V9 <= 14 * ## | | | | | [8] V9 > 14 * ## | | | | [9] V8 > 925 * ## | | [10] V8 > 1175 * ## | [11] V3 > 64 ## | | [12] V9 <= 20 ## | | | [13] V6 <= 70 * ## | | | [14] V6 > 70 ## | | | | [15] V5 <= 0 * ## | | | | [16] V5 > 0 * ## | | [17] V9 > 20 * ## ## $nodes[[48]] ## [1] root ## | [2] V6 <= 70 ## | | [3] V7 <= 60 * ## | | [4] V7 > 60 * ## | [5] V6 > 70 ## | | [6] V4 <= 1 ## | | | [7] V3 <= 65 ## | | | | [8] V7 <= 80 * ## | | | | [9] V7 > 80 * ## | | | [10] V3 > 65 * ## | | [11] V4 > 1 ## | | | [12] V5 <= 0 * ## | | | [13] V5 > 0 * ## ## $nodes[[49]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V7 <= 70 * ## | | [4] V7 > 70 ## | | | [5] V9 <= 12 ## | | | | [6] V6 <= 80 * ## | | | | [7] V6 > 80 ## | | | | | [8] V5 <= 0 ## | | | | | | [9] V3 <= 51 * ## | | | | | | [10] V3 > 51 * ## | | | | | [11] V5 > 0 * ## | | | [12] V9 > 12 * ## | [13] V5 > 1 ## | | [14] V9 <= 20 * ## | | [15] V9 > 20 * ## ## $nodes[[50]] ## [1] root ## | [2] V7 <= 70 ## | | [3] V4 <= 1 ## | | | [4] V9 <= 20 ## | | | | [5] V6 <= 70 * ## | | | | [6] V6 > 70 * ## | | | [7] V9 > 20 * ## | | [8] V4 > 1 * ## | [9] V7 > 70 ## | | [10] V3 <= 63 ## | | | [11] V4 <= 1 ## | | | | [12] V5 <= 0 * ## | | | | [13] V5 > 0 * ## | | | [14] V4 > 1 * ## | | [15] V3 > 63 ## | | | [16] V9 <= 3 * ## | | | [17] V9 > 3 * ## ## $nodes[[51]] ## [1] root ## | [2] V7 <= 70 ## | | [3] V9 <= 20 ## | | | [4] V2 <= 3 * ## | | | [5] V2 > 3 * ## | | [6] V9 > 20 * ## | [7] V7 > 70 ## | | [8] V3 <= 63 ## | | | [9] V4 <= 1 * ## | | | [10] V4 > 1 * ## | | [11] V3 > 63 ## | | | [12] V8 <= 1100 ## | | | | [13] V4 <= 1 * ## | | | | [14] V4 > 1 * ## | | | [15] V8 > 1100 * ## ## $nodes[[52]] ## [1] root ## | [2] V6 <= 70 ## | | [3] V4 <= 1 * ## | | [4] V4 > 1 * ## | [5] V6 > 70 ## | | [6] V5 <= 0 ## | | | [7] V3 <= 63 ## | | | | [8] V8 <= 768 * ## | | | | [9] V8 > 768 * ## | | | [10] V3 > 63 * ## | | [11] V5 > 0 ## | | | [12] V4 <= 1 ## | | | | [13] V8 <= 825 * ## | | | | [14] V8 > 825 * ## | | | [15] V4 > 1 ## | | | | [16] V3 <= 63 * ## | | | | [17] V3 > 63 * ## ## $nodes[[53]] ## [1] root ## | [2] V7 <= 60 * ## | [3] V7 > 60 ## | | [4] V4 <= 1 ## | | | [5] V5 <= 1 ## | | | | [6] V3 <= 65 ## | | | | | [7] V5 <= 0 * ## | | | | | [8] V5 > 0 ## | | | | | | [9] V3 <= 53 * ## | | | | | | [10] V3 > 53 * ## | | | | [11] V3 > 65 * ## | | | [12] V5 > 1 * ## | | [13] V4 > 1 ## | | | [14] V7 <= 80 * ## | | | [15] V7 > 80 * ## ## $nodes[[54]] ## [1] root ## | [2] V3 <= 45 * ## | [3] V3 > 45 ## | | [4] V7 <= 70 ## | | | [5] V2 <= 3 * ## | | | [6] V2 > 3 ## | | | | [7] V9 <= 13 ## | | | | | [8] V8 <= 1025 * ## | | | | | [9] V8 > 1025 * ## | | | | [10] V9 > 13 * ## | | [11] V7 > 70 ## | | | [12] V5 <= 0 * ## | | | [13] V5 > 0 ## | | | | [14] V4 <= 1 ## | | | | | [15] V7 <= 90 * ## | | | | | [16] V7 > 90 * ## | | | | [17] V4 > 1 * ## ## $nodes[[55]] ## [1] root ## | [2] V7 <= 60 * ## | [3] V7 > 60 ## | | [4] V7 <= 80 ## | | | [5] V8 <= 538 * ## | | | [6] V8 > 538 ## | | | | [7] V6 <= 80 * ## | | | | [8] V6 > 80 * ## | | [9] V7 > 80 ## | | | [10] V2 <= 10 ## | | | | [11] V7 <= 90 * ## | | | | [12] V7 > 90 * ## | | | [13] V2 > 10 ## | | | | [14] V4 <= 1 * ## | | | | [15] V4 > 1 * ## ## $nodes[[56]] ## [1] root ## | [2] V5 <= 0 ## | | [3] V7 <= 80 * ## | | [4] V7 > 80 * ## | [5] V5 > 0 ## | | [6] V2 <= 10 ## | | | [7] V5 <= 1 * ## | | | [8] V5 > 1 * ## | | [9] V2 > 10 ## | | | [10] V9 <= 20 ## | | | | [11] V7 <= 80 * ## | | | | [12] V7 > 80 * ## | | | [13] V9 > 20 * ## ## $nodes[[57]] ## [1] root ## | [2] V3 <= 48 * ## | [3] V3 > 48 ## | | [4] V7 <= 80 ## | | | [5] V5 <= 0 * ## | | | [6] V5 > 0 ## | | | | [7] V3 <= 63 * ## | | | | [8] V3 > 63 ## | | | | | [9] V9 <= 20 * ## | | | | | [10] V9 > 20 * ## | | [11] V7 > 80 ## | | | [12] V5 <= 0 * ## | | | [13] V5 > 0 ## | | | | [14] V7 <= 90 * ## | | | | [15] V7 > 90 * ## ## $nodes[[58]] ## [1] root ## | [2] V3 <= 44 * ## | [3] V3 > 44 ## | | [4] V4 <= 1 ## | | | [5] V7 <= 60 * ## | | | [6] V7 > 60 ## | | | | [7] V2 <= 11 ## | | | | | [8] V3 <= 64 * ## | | | | | [9] V3 > 64 * ## | | | | [10] V2 > 11 ## | | | | | [11] V9 <= 5 * ## | | | | | [12] V9 > 5 * ## | | [13] V4 > 1 ## | | | [14] V5 <= 1 ## | | | | [15] V2 <= 12 * ## | | | | [16] V2 > 12 * ## | | | [17] V5 > 1 * ## ## $nodes[[59]] ## [1] root ## | [2] V8 <= 488 * ## | [3] V8 > 488 ## | | [4] V5 <= 0 ## | | | [5] V4 <= 1 * ## | | | [6] V4 > 1 * ## | | [7] V5 > 0 ## | | | [8] V9 <= 20 ## | | | | [9] V8 <= 1100 ## | | | | | [10] V5 <= 1 ## | | | | | | [11] V2 <= 12 * ## | | | | | | [12] V2 > 12 * ## | | | | | [13] V5 > 1 * ## | | | | [14] V8 > 1100 * ## | | | [15] V9 > 20 * ## ## $nodes[[60]] ## [1] root ## | [2] V6 <= 80 ## | | [3] V9 <= 20 ## | | | [4] V5 <= 1 ## | | | | [5] V7 <= 80 * ## | | | | [6] V7 > 80 * ## | | | [7] V5 > 1 * ## | | [8] V9 > 20 * ## | [9] V6 > 80 ## | | [10] V4 <= 1 ## | | | [11] V2 <= 13 ## | | | | [12] V9 <= 5 * ## | | | | [13] V9 > 5 * ## | | | [14] V2 > 13 * ## | | [15] V4 > 1 * ## ## $nodes[[61]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V4 <= 1 ## | | | [4] V7 <= 70 * ## | | | [5] V7 > 70 ## | | | | [6] V8 <= 1039 * ## | | | | [7] V8 > 1039 * ## | | [8] V4 > 1 ## | | | [9] V6 <= 80 * ## | | | [10] V6 > 80 ## | | | | [11] V9 <= 2 * ## | | | | [12] V9 > 2 * ## | [13] V5 > 1 ## | | [14] V9 <= 10 * ## | | [15] V9 > 10 * ## ## $nodes[[62]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V3 <= 63 ## | | | [4] V8 <= 1025 ## | | | | [5] V4 <= 1 * ## | | | | [6] V4 > 1 * ## | | | [7] V8 > 1025 ## | | | | [8] V2 <= 5 * ## | | | | [9] V2 > 5 * ## | | [10] V3 > 63 ## | | | [11] V6 <= 80 * ## | | | [12] V6 > 80 * ## | [13] V5 > 1 ## | | [14] V2 <= 5 * ## | | [15] V2 > 5 * ## ## $nodes[[63]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V8 <= 910 ## | | | [4] V9 <= 20 * ## | | | [5] V9 > 20 * ## | | [6] V8 > 910 ## | | | [7] V8 <= 1225 ## | | | | [8] V5 <= 0 * ## | | | | [9] V5 > 0 * ## | | | [10] V8 > 1225 * ## | [11] V4 > 1 ## | | [12] V8 <= 825 ## | | | [13] V6 <= 80 * ## | | | [14] V6 > 80 * ## | | [15] V8 > 825 ## | | | [16] V5 <= 0 * ## | | | [17] V5 > 0 * ## ## $nodes[[64]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V3 <= 65 ## | | | [4] V5 <= 0 * ## | | | [5] V5 > 0 * ## | | [6] V3 > 65 ## | | | [7] V8 <= 925 * ## | | | [8] V8 > 925 * ## | [9] V4 > 1 ## | | [10] V5 <= 1 ## | | | [11] V7 <= 80 * ## | | | [12] V7 > 80 * ## | | [13] V5 > 1 * ## ## $nodes[[65]] ## [1] root ## | [2] V5 <= 0 ## | | [3] V6 <= 90 * ## | | [4] V6 > 90 * ## | [5] V5 > 0 ## | | [6] V5 <= 1 ## | | | [7] V4 <= 1 ## | | | | [8] V9 <= 2 * ## | | | | [9] V9 > 2 * ## | | | [10] V4 > 1 ## | | | | [11] V8 <= 825 * ## | | | | [12] V8 > 825 * ## | | [13] V5 > 1 ## | | | [14] V8 <= 925 * ## | | | [15] V8 > 925 * ## ## $nodes[[66]] ## [1] root ## | [2] V7 <= 60 * ## | [3] V7 > 60 ## | | [4] V4 <= 1 ## | | | [5] V8 <= 730 * ## | | | [6] V8 > 730 ## | | | | [7] V6 <= 80 * ## | | | | [8] V6 > 80 ## | | | | | [9] V2 <= 13 * ## | | | | | [10] V2 > 13 * ## | | [11] V4 > 1 ## | | | [12] V3 <= 54 * ## | | | [13] V3 > 54 ## | | | | [14] V2 <= 10 * ## | | | | [15] V2 > 10 * ## ## $nodes[[67]] ## [1] root ## | [2] V3 <= 71 ## | | [3] V6 <= 70 * ## | | [4] V6 > 70 ## | | | [5] V4 <= 1 ## | | | | [6] V6 <= 80 * ## | | | | [7] V6 > 80 ## | | | | | [8] V5 <= 0 * ## | | | | | [9] V5 > 0 * ## | | | [10] V4 > 1 ## | | | | [11] V2 <= 12 * ## | | | | [12] V2 > 12 * ## | [13] V3 > 71 * ## ## $nodes[[68]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V6 <= 80 ## | | | [4] V3 <= 69 ## | | | | [5] V2 <= 13 * ## | | | | [6] V2 > 13 * ## | | | [7] V3 > 69 * ## | | [8] V6 > 80 ## | | | [9] V2 <= 13 ## | | | | [10] V2 <= 6 * ## | | | | [11] V2 > 6 * ## | | | [12] V2 > 13 * ## | [13] V4 > 1 ## | | [14] V8 <= 1060 ## | | | [15] V6 <= 80 * ## | | | [16] V6 > 80 * ## | | [17] V8 > 1060 * ## ## $nodes[[69]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V7 <= 60 * ## | | [4] V7 > 60 ## | | | [5] V2 <= 6 * ## | | | [6] V2 > 6 ## | | | | [7] V3 <= 63 * ## | | | | [8] V3 > 63 * ## | [9] V4 > 1 ## | | [10] V7 <= 90 ## | | | [11] V9 <= 0 * ## | | | [12] V9 > 0 ## | | | | [13] V5 <= 1 * ## | | | | [14] V5 > 1 * ## | | [15] V7 > 90 * ## ## $nodes[[70]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V3 <= 71 ## | | | [4] V9 <= 20 ## | | | | [5] V6 <= 90 ## | | | | | [6] V8 <= 1125 ## | | | | | | [7] V9 <= 7 * ## | | | | | | [8] V9 > 7 * ## | | | | | [9] V8 > 1125 * ## | | | | [10] V6 > 90 * ## | | | [11] V9 > 20 * ## | | [12] V3 > 71 * ## | [13] V4 > 1 ## | | [14] V5 <= 0 * ## | | [15] V5 > 0 ## | | | [16] V2 <= 12 * ## | | | [17] V2 > 12 * ## ## $nodes[[71]] ## [1] root ## | [2] V5 <= 0 ## | | [3] V3 <= 64 ## | | | [4] V7 <= 90 * ## | | | [5] V7 > 90 * ## | | [6] V3 > 64 * ## | [7] V5 > 0 ## | | [8] V7 <= 60 * ## | | [9] V7 > 60 ## | | | [10] V4 <= 1 ## | | | | [11] V9 <= 20 ## | | | | | [12] V8 <= 1025 * ## | | | | | [13] V8 > 1025 * ## | | | | [14] V9 > 20 * ## | | | [15] V4 > 1 ## | | | | [16] V2 <= 12 * ## | | | | [17] V2 > 12 * ## ## $nodes[[72]] ## [1] root ## | [2] V7 <= 70 ## | | [3] V2 <= 3 * ## | | [4] V2 > 3 ## | | | [5] V4 <= 1 * ## | | | [6] V4 > 1 * ## | [7] V7 > 70 ## | | [8] V5 <= 0 ## | | | [9] V7 <= 90 * ## | | | [10] V7 > 90 * ## | | [11] V5 > 0 ## | | | [12] V4 <= 1 ## | | | | [13] V3 <= 59 * ## | | | | [14] V3 > 59 * ## | | | [15] V4 > 1 * ## ## $nodes[[73]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V4 <= 1 ## | | | [4] V6 <= 80 ## | | | | [5] V7 <= 80 * ## | | | | [6] V7 > 80 * ## | | | [7] V6 > 80 ## | | | | [8] V3 <= 65 * ## | | | | [9] V3 > 65 * ## | | [10] V4 > 1 ## | | | [11] V6 <= 80 * ## | | | [12] V6 > 80 * ## | [13] V5 > 1 ## | | [14] V9 <= 11 * ## | | [15] V9 > 11 * ## ## $nodes[[74]] ## [1] root ## | [2] V6 <= 80 ## | | [3] V4 <= 1 ## | | | [4] V9 <= 20 ## | | | | [5] V9 <= 8 * ## | | | | [6] V9 > 8 * ## | | | [7] V9 > 20 * ## | | [8] V4 > 1 ## | | | [9] V6 <= 60 * ## | | | [10] V6 > 60 * ## | [11] V6 > 80 ## | | [12] V4 <= 1 ## | | | [13] V9 <= 5 * ## | | | [14] V9 > 5 * ## | | [15] V4 > 1 * ## ## $nodes[[75]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V4 <= 1 ## | | | [4] V5 <= 0 * ## | | | [5] V5 > 0 ## | | | | [6] V9 <= 14 ## | | | | | [7] V7 <= 80 * ## | | | | | [8] V7 > 80 * ## | | | | [9] V9 > 14 * ## | | [10] V4 > 1 ## | | | [11] V9 <= 10 * ## | | | [12] V9 > 10 * ## | [13] V5 > 1 ## | | [14] V2 <= 13 * ## | | [15] V2 > 13 * ## ## $nodes[[76]] ## [1] root ## | [2] V7 <= 60 * ## | [3] V7 > 60 ## | | [4] V3 <= 64 ## | | | [5] V6 <= 80 * ## | | | [6] V6 > 80 ## | | | | [7] V2 <= 13 * ## | | | | [8] V2 > 13 * ## | | [9] V3 > 64 ## | | | [10] V8 <= 575 * ## | | | [11] V8 > 575 ## | | | | [12] V8 <= 910 * ## | | | | [13] V8 > 910 ## | | | | | [14] V8 <= 1100 * ## | | | | | [15] V8 > 1100 * ## ## $nodes[[77]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V7 <= 60 * ## | | [4] V7 > 60 ## | | | [5] V5 <= 1 ## | | | | [6] V5 <= 0 * ## | | | | [7] V5 > 0 ## | | | | | [8] V8 <= 825 * ## | | | | | [9] V8 > 825 ## | | | | | | [10] V7 <= 80 * ## | | | | | | [11] V7 > 80 * ## | | | [12] V5 > 1 * ## | [13] V4 > 1 ## | | [14] V9 <= -1 * ## | | [15] V9 > -1 ## | | | [16] V7 <= 80 * ## | | | [17] V7 > 80 * ## ## $nodes[[78]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V7 <= 60 * ## | | [4] V7 > 60 ## | | | [5] V3 <= 68 ## | | | | [6] V6 <= 80 * ## | | | | [7] V6 > 80 ## | | | | | [8] V7 <= 80 * ## | | | | | [9] V7 > 80 * ## | | | [10] V3 > 68 * ## | [11] V4 > 1 ## | | [12] V9 <= -1 * ## | | [13] V9 > -1 ## | | | [14] V6 <= 70 * ## | | | [15] V6 > 70 ## | | | | [16] V8 <= 925 * ## | | | | [17] V8 > 925 * ## ## $nodes[[79]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V5 <= 0 ## | | | [4] V8 <= 463 * ## | | | [5] V8 > 463 ## | | | | [6] V7 <= 80 * ## | | | | [7] V7 > 80 * ## | | [8] V5 > 0 ## | | | [9] V6 <= 80 ## | | | | [10] V9 <= 0 * ## | | | | [11] V9 > 0 ## | | | | | [12] V3 <= 66 * ## | | | | | [13] V3 > 66 * ## | | | [14] V6 > 80 ## | | | | [15] V4 <= 1 * ## | | | | [16] V4 > 1 * ## | [17] V5 > 1 ## | | [18] V4 <= 1 * ## | | [19] V4 > 1 * ## ## $nodes[[80]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V7 <= 90 ## | | | [4] V6 <= 80 ## | | | | [5] V2 <= 11 * ## | | | | [6] V2 > 11 * ## | | | [7] V6 > 80 ## | | | | [8] V7 <= 80 * ## | | | | [9] V7 > 80 * ## | | [10] V7 > 90 * ## | [11] V5 > 1 ## | | [12] V2 <= 13 * ## | | [13] V2 > 13 * ## ## $nodes[[81]] ## [1] root ## | [2] V5 <= 0 ## | | [3] V2 <= 11 * ## | | [4] V2 > 11 * ## | [5] V5 > 0 ## | | [6] V4 <= 1 ## | | | [7] V9 <= 20 ## | | | | [8] V6 <= 70 * ## | | | | [9] V6 > 70 ## | | | | | [10] V9 <= 8 * ## | | | | | [11] V9 > 8 * ## | | | [12] V9 > 20 * ## | | [13] V4 > 1 ## | | | [14] V9 <= 10 * ## | | | [15] V9 > 10 * ## ## $nodes[[82]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V4 <= 1 ## | | | [4] V3 <= 65 ## | | | | [5] V9 <= 1 * ## | | | | [6] V9 > 1 ## | | | | | [7] V2 <= 4 * ## | | | | | [8] V2 > 4 * ## | | | [9] V3 > 65 ## | | | | [10] V6 <= 80 * ## | | | | [11] V6 > 80 * ## | | [12] V4 > 1 ## | | | [13] V7 <= 80 * ## | | | [14] V7 > 80 * ## | [15] V5 > 1 ## | | [16] V9 <= 20 * ## | | [17] V9 > 20 * ## ## $nodes[[83]] ## [1] root ## | [2] V3 <= 70 ## | | [3] V8 <= 925 ## | | | [4] V5 <= 0 * ## | | | [5] V5 > 0 ## | | | | [6] V2 <= 6 * ## | | | | [7] V2 > 6 * ## | | [8] V8 > 925 ## | | | [9] V4 <= 1 ## | | | | [10] V8 <= 1025 * ## | | | | [11] V8 > 1025 * ## | | | [12] V4 > 1 * ## | [13] V3 > 70 * ## ## $nodes[[84]] ## [1] root ## | [2] V5 <= 0 ## | | [3] V2 <= 12 ## | | | [4] V9 <= 3 * ## | | | [5] V9 > 3 * ## | | [6] V2 > 12 * ## | [7] V5 > 0 ## | | [8] V3 <= 50 * ## | | [9] V3 > 50 ## | | | [10] V5 <= 1 ## | | | | [11] V2 <= 13 ## | | | | | [12] V9 <= 14 * ## | | | | | [13] V9 > 14 * ## | | | | [14] V2 > 13 * ## | | | [15] V5 > 1 ## | | | | [16] V2 <= 13 * ## | | | | [17] V2 > 13 * ## ## $nodes[[85]] ## [1] root ## | [2] V7 <= 60 ## | | [3] V9 <= 13 * ## | | [4] V9 > 13 * ## | [5] V7 > 60 ## | | [6] V6 <= 70 * ## | | [7] V6 > 70 ## | | | [8] V2 <= 13 ## | | | | [9] V5 <= 0 * ## | | | | [10] V5 > 0 ## | | | | | [11] V9 <= 13 * ## | | | | | [12] V9 > 13 * ## | | | [13] V2 > 13 * ## ## $nodes[[86]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V9 <= 2 * ## | | [4] V9 > 2 ## | | | [5] V3 <= 70 ## | | | | [6] V6 <= 80 ## | | | | | [7] V3 <= 62 * ## | | | | | [8] V3 > 62 * ## | | | | [9] V6 > 80 * ## | | | [10] V3 > 70 * ## | [11] V4 > 1 ## | | [12] V7 <= 90 ## | | | [13] V2 <= 12 ## | | | | [14] V2 <= 3 * ## | | | | [15] V2 > 3 * ## | | | [16] V2 > 12 * ## | | [17] V7 > 90 * ## ## $nodes[[87]] ## [1] root ## | [2] V7 <= 60 ## | | [3] V9 <= 14 * ## | | [4] V9 > 14 * ## | [5] V7 > 60 ## | | [6] V5 <= 1 ## | | | [7] V9 <= 5 ## | | | | [8] V6 <= 80 * ## | | | | [9] V6 > 80 ## | | | | | [10] V7 <= 80 * ## | | | | | [11] V7 > 80 ## | | | | | | [12] V5 <= 0 * ## | | | | | | [13] V5 > 0 * ## | | | [14] V9 > 5 ## | | | | [15] V4 <= 1 * ## | | | | [16] V4 > 1 * ## | | [17] V5 > 1 * ## ## $nodes[[88]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V8 <= 875 ## | | | [4] V3 <= 64 * ## | | | [5] V3 > 64 * ## | | [6] V8 > 875 ## | | | [7] V7 <= 70 * ## | | | [8] V7 > 70 ## | | | | [9] V5 <= 0 * ## | | | | [10] V5 > 0 * ## | [11] V4 > 1 ## | | [12] V6 <= 70 * ## | | [13] V6 > 70 ## | | | [14] V9 <= 3 * ## | | | [15] V9 > 3 * ## ## $nodes[[89]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V6 <= 70 * ## | | [4] V6 > 70 ## | | | [5] V2 <= 16 ## | | | | [6] V8 <= 575 * ## | | | | [7] V8 > 575 ## | | | | | [8] V5 <= 0 * ## | | | | | [9] V5 > 0 * ## | | | [10] V2 > 16 * ## | [11] V4 > 1 ## | | [12] V6 <= 70 * ## | | [13] V6 > 70 ## | | | [14] V9 <= 14 ## | | | | [15] V2 <= 5 * ## | | | | [16] V2 > 5 * ## | | | [17] V9 > 14 * ## ## $nodes[[90]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V5 <= 0 * ## | | [4] V5 > 0 ## | | | [5] V8 <= 1275 ## | | | | [6] V5 <= 1 ## | | | | | [7] V6 <= 80 * ## | | | | | [8] V6 > 80 * ## | | | | [9] V5 > 1 * ## | | | [10] V8 > 1275 * ## | [11] V4 > 1 ## | | [12] V6 <= 70 * ## | | [13] V6 > 70 ## | | | [14] V7 <= 80 * ## | | | [15] V7 > 80 * ## ## $nodes[[91]] ## [1] root ## | [2] V7 <= 70 ## | | [3] V7 <= 60 * ## | | [4] V7 > 60 * ## | [5] V7 > 70 ## | | [6] V4 <= 1 ## | | | [7] V5 <= 0 * ## | | | [8] V5 > 0 ## | | | | [9] V7 <= 80 * ## | | | | [10] V7 > 80 * ## | | [11] V4 > 1 ## | | | [12] V7 <= 80 * ## | | | [13] V7 > 80 * ## ## $nodes[[92]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V7 <= 70 * ## | | [4] V7 > 70 ## | | | [5] V4 <= 1 ## | | | | [6] V9 <= 5 * ## | | | | [7] V9 > 5 * ## | | | [8] V4 > 1 ## | | | | [9] V2 <= 12 ## | | | | | [10] V3 <= 64 * ## | | | | | [11] V3 > 64 * ## | | | | [12] V2 > 12 * ## | [13] V5 > 1 ## | | [14] V9 <= 11 * ## | | [15] V9 > 11 * ## ## $nodes[[93]] ## [1] root ## | [2] V3 <= 51 * ## | [3] V3 > 51 ## | | [4] V4 <= 1 ## | | | [5] V7 <= 80 ## | | | | [6] V3 <= 65 * ## | | | | [7] V3 > 65 ## | | | | | [8] V9 <= 17 * ## | | | | | [9] V9 > 17 * ## | | | [10] V7 > 80 ## | | | | [11] V8 <= 993 * ## | | | | [12] V8 > 993 * ## | | [13] V4 > 1 ## | | | [14] V5 <= 0 * ## | | | [15] V5 > 0 ## | | | | [16] V3 <= 60 * ## | | | | [17] V3 > 60 * ## ## $nodes[[94]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V9 <= 12 ## | | | [4] V5 <= 0 ## | | | | [5] V4 <= 1 * ## | | | | [6] V4 > 1 * ## | | | [7] V5 > 0 ## | | | | [8] V4 <= 1 * ## | | | | [9] V4 > 1 * ## | | [10] V9 > 12 ## | | | [11] V4 <= 1 * ## | | | [12] V4 > 1 * ## | [13] V5 > 1 ## | | [14] V7 <= 60 * ## | | [15] V7 > 60 * ## ## $nodes[[95]] ## [1] root ## | [2] V3 <= 46 * ## | [3] V3 > 46 ## | | [4] V7 <= 60 ## | | | [5] V9 <= 13 * ## | | | [6] V9 > 13 * ## | | [7] V7 > 60 ## | | | [8] V6 <= 70 * ## | | | [9] V6 > 70 ## | | | | [10] V3 <= 63 ## | | | | | [11] V5 <= 0 * ## | | | | | [12] V5 > 0 * ## | | | | [13] V3 > 63 ## | | | | | [14] V8 <= 993 * ## | | | | | [15] V8 > 993 * ## ## $nodes[[96]] ## [1] root ## | [2] V7 <= 60 * ## | [3] V7 > 60 ## | | [4] V3 <= 64 ## | | | [5] V9 <= 3 ## | | | | [6] V9 <= -1 * ## | | | | [7] V9 > -1 * ## | | | [8] V9 > 3 ## | | | | [9] V5 <= 0 * ## | | | | [10] V5 > 0 * ## | | [11] V3 > 64 ## | | | [12] V5 <= 1 ## | | | | [13] V3 <= 68 * ## | | | | [14] V3 > 68 * ## | | | [15] V5 > 1 * ## ## $nodes[[97]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V5 <= 0 * ## | | [4] V5 > 0 ## | | | [5] V9 <= 24 ## | | | | [6] V6 <= 70 * ## | | | | [7] V6 > 70 * ## | | | [8] V9 > 24 * ## | [9] V4 > 1 ## | | [10] V5 <= 1 ## | | | [11] V9 <= 2 * ## | | | [12] V9 > 2 * ## | | [13] V5 > 1 * ## ## $nodes[[98]] ## [1] root ## | [2] V7 <= 90 ## | | [3] V5 <= 1 ## | | | [4] V9 <= 2 ## | | | | [5] V5 <= 0 * ## | | | | [6] V5 > 0 * ## | | | [7] V9 > 2 ## | | | | [8] V8 <= 1175 ## | | | | | [9] V6 <= 80 * ## | | | | | [10] V6 > 80 * ## | | | | [11] V8 > 1175 * ## | | [12] V5 > 1 ## | | | [13] V9 <= 20 * ## | | | [14] V9 > 20 * ## | [15] V7 > 90 * ## ## $nodes[[99]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V5 <= 0 * ## | | [4] V5 > 0 ## | | | [5] V8 <= 925 ## | | | | [6] V8 <= 513 * ## | | | | [7] V8 > 513 * ## | | | [8] V8 > 925 ## | | | | [9] V3 <= 68 ## | | | | | [10] V2 <= 12 * ## | | | | | [11] V2 > 12 * ## | | | | [12] V3 > 68 * ## | [13] V4 > 1 ## | | [14] V6 <= 80 ## | | | [15] V2 <= 13 * ## | | | [16] V2 > 13 * ## | | [17] V6 > 80 * ## ## $nodes[[100]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V7 <= 60 * ## | | [4] V7 > 60 ## | | | [5] V5 <= 0 * ## | | | [6] V5 > 0 ## | | | | [7] V8 <= 993 * ## | | | | [8] V8 > 993 ## | | | | | [9] V5 <= 1 * ## | | | | | [10] V5 > 1 * ## | [11] V4 > 1 ## | | [12] V9 <= 14 ## | | | [13] V6 <= 80 * ## | | | [14] V6 > 80 * ## | | [15] V9 > 14 * ## ## $nodes[[101]] ## [1] root ## | [2] V8 <= 488 ## | | [3] V9 <= 20 * ## | | [4] V9 > 20 * ## | [5] V8 > 488 ## | | [6] V5 <= 0 ## | | | [7] V4 <= 1 * ## | | | [8] V4 > 1 * ## | | [9] V5 > 0 ## | | | [10] V7 <= 80 ## | | | | [11] V6 <= 80 ## | | | | | [12] V3 <= 56 * ## | | | | | [13] V3 > 56 ## | | | | | | [14] V3 <= 65 * ## | | | | | | [15] V3 > 65 * ## | | | | [16] V6 > 80 * ## | | | [17] V7 > 80 ## | | | | [18] V8 <= 910 * ## | | | | [19] V8 > 910 * ## ## $nodes[[102]] ## [1] root ## | [2] V6 <= 70 ## | | [3] V2 <= 13 * ## | | [4] V2 > 13 * ## | [5] V6 > 70 ## | | [6] V7 <= 90 ## | | | [7] V4 <= 1 ## | | | | [8] V3 <= 59 * ## | | | | [9] V3 > 59 ## | | | | | [10] V5 <= 0 * ## | | | | | [11] V5 > 0 * ## | | | [12] V4 > 1 ## | | | | [13] V3 <= 62 * ## | | | | [14] V3 > 62 * ## | | [15] V7 > 90 * ## ## $nodes[[103]] ## [1] root ## | [2] V6 <= 70 ## | | [3] V7 <= 60 * ## | | [4] V7 > 60 * ## | [5] V6 > 70 ## | | [6] V4 <= 1 ## | | | [7] V3 <= 60 * ## | | | [8] V3 > 60 ## | | | | [9] V7 <= 70 * ## | | | | [10] V7 > 70 * ## | | [11] V4 > 1 ## | | | [12] V6 <= 80 * ## | | | [13] V6 > 80 * ## ## $nodes[[104]] ## [1] root ## | [2] V5 <= 0 ## | | [3] V8 <= 463 * ## | | [4] V8 > 463 ## | | | [5] V4 <= 1 * ## | | | [6] V4 > 1 * ## | [7] V5 > 0 ## | | [8] V4 <= 1 ## | | | [9] V3 <= 71 ## | | | | [10] V2 <= 15 ## | | | | | [11] V9 <= 17 ## | | | | | | [12] V9 <= 1 * ## | | | | | | [13] V9 > 1 * ## | | | | | [14] V9 > 17 * ## | | | | [15] V2 > 15 * ## | | | [16] V3 > 71 * ## | | [17] V4 > 1 ## | | | [18] V5 <= 1 * ## | | | [19] V5 > 1 * ## ## $nodes[[105]] ## [1] root ## | [2] V6 <= 70 ## | | [3] V4 <= 1 * ## | | [4] V4 > 1 * ## | [5] V6 > 70 ## | | [6] V5 <= 0 ## | | | [7] V2 <= 13 ## | | | | [8] V8 <= 725 * ## | | | | [9] V8 > 725 * ## | | | [10] V2 > 13 * ## | | [11] V5 > 0 ## | | | [12] V8 <= 588 * ## | | | [13] V8 > 588 ## | | | | [14] V7 <= 70 * ## | | | | [15] V7 > 70 ## | | | | | [16] V3 <= 64 * ## | | | | | [17] V3 > 64 * ## ## $nodes[[106]] ## [1] root ## | [2] V2 <= 12 ## | | [3] V6 <= 90 ## | | | [4] V2 <= 2 * ## | | | [5] V2 > 2 ## | | | | [6] V3 <= 59 * ## | | | | [7] V3 > 59 ## | | | | | [8] V4 <= 1 * ## | | | | | [9] V4 > 1 * ## | | [10] V6 > 90 * ## | [11] V2 > 12 ## | | [12] V2 <= 16 * ## | | [13] V2 > 16 * ## ## $nodes[[107]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V5 <= 1 ## | | | [4] V7 <= 70 * ## | | | [5] V7 > 70 ## | | | | [6] V9 <= 8 ## | | | | | [7] V5 <= 0 * ## | | | | | [8] V5 > 0 * ## | | | | [9] V9 > 8 * ## | | [10] V5 > 1 * ## | [11] V4 > 1 ## | | [12] V9 <= -2 * ## | | [13] V9 > -2 ## | | | [14] V6 <= 80 * ## | | | [15] V6 > 80 * ## ## $nodes[[108]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V4 <= 1 ## | | | [4] V9 <= 1 * ## | | | [5] V9 > 1 ## | | | | [6] V2 <= 11 ## | | | | | [7] V7 <= 80 * ## | | | | | [8] V7 > 80 * ## | | | | [9] V2 > 11 * ## | | [10] V4 > 1 ## | | | [11] V8 <= 538 * ## | | | [12] V8 > 538 ## | | | | [13] V9 <= 0 * ## | | | | [14] V9 > 0 * ## | [15] V5 > 1 * ## ## $nodes[[109]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V6 <= 70 * ## | | [4] V6 > 70 ## | | | [5] V9 <= 5 ## | | | | [6] V3 <= 63 * ## | | | | [7] V3 > 63 * ## | | | [8] V9 > 5 ## | | | | [9] V8 <= 1100 ## | | | | | [10] V9 <= 14 * ## | | | | | [11] V9 > 14 * ## | | | | [12] V8 > 1100 * ## | [13] V4 > 1 ## | | [14] V6 <= 80 * ## | | [15] V6 > 80 * ## ## $nodes[[110]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V3 <= 71 ## | | | [4] V5 <= 1 ## | | | | [5] V2 <= 16 ## | | | | | [6] V7 <= 80 ## | | | | | | [7] V9 <= 5 * ## | | | | | | [8] V9 > 5 * ## | | | | | [9] V7 > 80 * ## | | | | [10] V2 > 16 * ## | | | [11] V5 > 1 * ## | | [12] V3 > 71 * ## | [13] V4 > 1 ## | | [14] V7 <= 80 ## | | | [15] V5 <= 1 * ## | | | [16] V5 > 1 * ## | | [17] V7 > 80 * ## ## $nodes[[111]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V6 <= 70 * ## | | [4] V6 > 70 ## | | | [5] V7 <= 90 ## | | | | [6] V9 <= 14 ## | | | | | [7] V8 <= 1175 ## | | | | | | [8] V9 <= 5 * ## | | | | | | [9] V9 > 5 * ## | | | | | [10] V8 > 1175 * ## | | | | [11] V9 > 14 * ## | | | [12] V7 > 90 * ## | [13] V4 > 1 ## | | [14] V9 <= 2 * ## | | [15] V9 > 2 ## | | | [16] V2 <= 12 * ## | | | [17] V2 > 12 * ## ## $nodes[[112]] ## [1] root ## | [2] V5 <= 0 ## | | [3] V9 <= 6 * ## | | [4] V9 > 6 * ## | [5] V5 > 0 ## | | [6] V9 <= 27 ## | | | [7] V5 <= 1 ## | | | | [8] V4 <= 1 ## | | | | | [9] V2 <= 11 * ## | | | | | [10] V2 > 11 * ## | | | | [11] V4 > 1 * ## | | | [12] V5 > 1 * ## | | [13] V9 > 27 * ## ## $nodes[[113]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V9 <= 5 ## | | | [4] V6 <= 80 * ## | | | [5] V6 > 80 ## | | | | [6] V6 <= 90 * ## | | | | [7] V6 > 90 * ## | | [8] V9 > 5 ## | | | [9] V3 <= 64 ## | | | | [10] V7 <= 80 * ## | | | | [11] V7 > 80 * ## | | | [12] V3 > 64 * ## | [13] V5 > 1 ## | | [14] V4 <= 1 * ## | | [15] V4 > 1 * ## ## $nodes[[114]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V7 <= 60 * ## | | [4] V7 > 60 ## | | | [5] V8 <= 925 ## | | | | [6] V3 <= 64 * ## | | | | [7] V3 > 64 * ## | | | [8] V8 > 925 ## | | | | [9] V5 <= 0 * ## | | | | [10] V5 > 0 * ## | [11] V4 > 1 ## | | [12] V7 <= 80 * ## | | [13] V7 > 80 ## | | | [14] V5 <= 0 * ## | | | [15] V5 > 0 * ## ## $nodes[[115]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V3 <= 64 ## | | | [4] V7 <= 90 ## | | | | [5] V5 <= 0 * ## | | | | [6] V5 > 0 ## | | | | | [7] V3 <= 53 * ## | | | | | [8] V3 > 53 * ## | | | [9] V7 > 90 * ## | | [10] V3 > 64 ## | | | [11] V6 <= 80 * ## | | | [12] V6 > 80 * ## | [13] V5 > 1 ## | | [14] V6 <= 60 * ## | | [15] V6 > 60 * ## ## $nodes[[116]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V8 <= 1275 ## | | | [4] V5 <= 1 ## | | | | [5] V9 <= 11 ## | | | | | [6] V5 <= 0 * ## | | | | | [7] V5 > 0 * ## | | | | [8] V9 > 11 * ## | | | [9] V5 > 1 * ## | | [10] V8 > 1275 * ## | [11] V4 > 1 ## | | [12] V2 <= 11 * ## | | [13] V2 > 11 * ## ## $nodes[[117]] ## [1] root ## | [2] V6 <= 80 ## | | [3] V9 <= 27 ## | | | [4] V9 <= 1 * ## | | | [5] V9 > 1 ## | | | | [6] V5 <= 1 * ## | | | | [7] V5 > 1 * ## | | [8] V9 > 27 * ## | [9] V6 > 80 ## | | [10] V3 <= 64 ## | | | [11] V4 <= 1 * ## | | | [12] V4 > 1 * ## | | [13] V3 > 64 * ## ## $nodes[[118]] ## [1] root ## | [2] V3 <= 45 * ## | [3] V3 > 45 ## | | [4] V5 <= 1 ## | | | [5] V2 <= 1 * ## | | | [6] V2 > 1 ## | | | | [7] V7 <= 90 ## | | | | | [8] V3 <= 66 ## | | | | | | [9] V5 <= 0 * ## | | | | | | [10] V5 > 0 * ## | | | | | [11] V3 > 66 * ## | | | | [12] V7 > 90 * ## | | [13] V5 > 1 ## | | | [14] V2 <= 13 * ## | | | [15] V2 > 13 * ## ## $nodes[[119]] ## [1] root ## | [2] V3 <= 64 ## | | [3] V5 <= 0 * ## | | [4] V5 > 0 ## | | | [5] V3 <= 50 * ## | | | [6] V3 > 50 ## | | | | [7] V8 <= 768 * ## | | | | [8] V8 > 768 ## | | | | | [9] V9 <= 5 * ## | | | | | [10] V9 > 5 * ## | [11] V3 > 64 ## | | [12] V2 <= 5 * ## | | [13] V2 > 5 ## | | | [14] V8 <= 875 * ## | | | [15] V8 > 875 ## | | | | [16] V2 <= 15 * ## | | | | [17] V2 > 15 * ## ## $nodes[[120]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V4 <= 1 ## | | | [4] V5 <= 0 * ## | | | [5] V5 > 0 ## | | | | [6] V6 <= 80 * ## | | | | [7] V6 > 80 * ## | | [8] V4 > 1 ## | | | [9] V9 <= 1 * ## | | | [10] V9 > 1 * ## | [11] V5 > 1 ## | | [12] V8 <= 910 * ## | | [13] V8 > 910 * ## ## $nodes[[121]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V4 <= 1 ## | | | [4] V7 <= 90 ## | | | | [5] V5 <= 0 * ## | | | | [6] V5 > 0 ## | | | | | [7] V7 <= 70 * ## | | | | | [8] V7 > 70 * ## | | | [9] V7 > 90 * ## | | [10] V4 > 1 ## | | | [11] V6 <= 80 * ## | | | [12] V6 > 80 * ## | [13] V5 > 1 ## | | [14] V4 <= 1 * ## | | [15] V4 > 1 * ## ## $nodes[[122]] ## [1] root ## | [2] V6 <= 70 ## | | [3] V5 <= 1 * ## | | [4] V5 > 1 * ## | [5] V6 > 70 ## | | [6] V7 <= 70 * ## | | [7] V7 > 70 ## | | | [8] V3 <= 64 ## | | | | [9] V2 <= 12 ## | | | | | [10] V9 <= 1 * ## | | | | | [11] V9 > 1 * ## | | | | [12] V2 > 12 * ## | | | [13] V3 > 64 ## | | | | [14] V8 <= 1030 * ## | | | | [15] V8 > 1030 * ## ## $nodes[[123]] ## [1] root ## | [2] V5 <= 0 ## | | [3] V3 <= 60 * ## | | [4] V3 > 60 * ## | [5] V5 > 0 ## | | [6] V6 <= 70 ## | | | [7] V2 <= 13 * ## | | | [8] V2 > 13 * ## | | [9] V6 > 70 ## | | | [10] V7 <= 90 ## | | | | [11] V3 <= 54 * ## | | | | [12] V3 > 54 ## | | | | | [13] V4 <= 1 * ## | | | | | [14] V4 > 1 * ## | | | [15] V7 > 90 * ## ## $nodes[[124]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V5 <= 0 * ## | | [4] V5 > 0 ## | | | [5] V5 <= 1 ## | | | | [6] V3 <= 63 * ## | | | | [7] V3 > 63 * ## | | | [8] V5 > 1 * ## | [9] V4 > 1 ## | | [10] V6 <= 60 * ## | | [11] V6 > 60 ## | | | [12] V3 <= 64 ## | | | | [13] V3 <= 58 * ## | | | | [14] V3 > 58 * ## | | | [15] V3 > 64 * ## ## $nodes[[125]] ## [1] root ## | [2] V7 <= 70 ## | | [3] V9 <= 24 ## | | | [4] V4 <= 1 ## | | | | [5] V5 <= 1 * ## | | | | [6] V5 > 1 * ## | | | [7] V4 > 1 * ## | | [8] V9 > 24 * ## | [9] V7 > 70 ## | | [10] V4 <= 1 ## | | | [11] V9 <= 6 ## | | | | [12] V5 <= 0 * ## | | | | [13] V5 > 0 * ## | | | [14] V9 > 6 * ## | | [15] V4 > 1 ## | | | [16] V7 <= 90 ## | | | | [17] V2 <= 12 * ## | | | | [18] V2 > 12 * ## | | | [19] V7 > 90 * ## ## $nodes[[126]] ## [1] root ## | [2] V7 <= 70 ## | | [3] V2 <= 3 * ## | | [4] V2 > 3 ## | | | [5] V3 <= 63 * ## | | | [6] V3 > 63 ## | | | | [7] V9 <= 11 * ## | | | | [8] V9 > 11 * ## | [9] V7 > 70 ## | | [10] V7 <= 90 ## | | | [11] V9 <= 6 ## | | | | [12] V6 <= 80 * ## | | | | [13] V6 > 80 * ## | | | [14] V9 > 6 ## | | | | [15] V6 <= 80 * ## | | | | [16] V6 > 80 * ## | | [17] V7 > 90 * ## ## $nodes[[127]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V6 <= 80 ## | | | [4] V7 <= 80 * ## | | | [5] V7 > 80 * ## | | [6] V6 > 80 ## | | | [7] V4 <= 1 ## | | | | [8] V8 <= 875 * ## | | | | [9] V8 > 875 ## | | | | | [10] V2 <= 13 * ## | | | | | [11] V2 > 13 * ## | | | [12] V4 > 1 ## | | | | [13] V3 <= 58 * ## | | | | [14] V3 > 58 * ## | [15] V5 > 1 ## | | [16] V2 <= 12 * ## | | [17] V2 > 12 * ## ## $nodes[[128]] ## [1] root ## | [2] V3 <= 45 * ## | [3] V3 > 45 ## | | [4] V6 <= 80 ## | | | [5] V4 <= 1 ## | | | | [6] V9 <= 20 ## | | | | | [7] V6 <= 70 * ## | | | | | [8] V6 > 70 * ## | | | | [9] V9 > 20 * ## | | | [10] V4 > 1 ## | | | | [11] V6 <= 70 * ## | | | | [12] V6 > 70 * ## | | [13] V6 > 80 ## | | | [14] V7 <= 80 * ## | | | [15] V7 > 80 ## | | | | [16] V9 <= 3 * ## | | | | [17] V9 > 3 * ## ## $nodes[[129]] ## [1] root ## | [2] V5 <= 0 ## | | [3] V4 <= 1 * ## | | [4] V4 > 1 * ## | [5] V5 > 0 ## | | [6] V4 <= 1 ## | | | [7] V5 <= 1 ## | | | | [8] V7 <= 80 ## | | | | | [9] V7 <= 70 * ## | | | | | [10] V7 > 70 * ## | | | | [11] V7 > 80 * ## | | | [12] V5 > 1 * ## | | [13] V4 > 1 ## | | | [14] V2 <= 12 * ## | | | [15] V2 > 12 * ## ## $nodes[[130]] ## [1] root ## | [2] V3 <= 47 * ## | [3] V3 > 47 ## | | [4] V4 <= 1 ## | | | [5] V7 <= 60 * ## | | | [6] V7 > 60 ## | | | | [7] V2 <= 16 ## | | | | | [8] V8 <= 875 * ## | | | | | [9] V8 > 875 ## | | | | | | [10] V7 <= 80 * ## | | | | | | [11] V7 > 80 * ## | | | | [12] V2 > 16 * ## | | [13] V4 > 1 ## | | | [14] V6 <= 90 ## | | | | [15] V7 <= 80 * ## | | | | [16] V7 > 80 * ## | | | [17] V6 > 90 * ## ## $nodes[[131]] ## [1] root ## | [2] V7 <= 60 * ## | [3] V7 > 60 ## | | [4] V3 <= 70 ## | | | [5] V7 <= 90 ## | | | | [6] V5 <= 0 ## | | | | | [7] V8 <= 1039 * ## | | | | | [8] V8 > 1039 * ## | | | | [9] V5 > 0 ## | | | | | [10] V9 <= 12 * ## | | | | | [11] V9 > 12 * ## | | | [12] V7 > 90 * ## | | [13] V3 > 70 * ## ## $nodes[[132]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V6 <= 70 * ## | | [4] V6 > 70 ## | | | [5] V2 <= 4 * ## | | | [6] V2 > 4 ## | | | | [7] V3 <= 60 * ## | | | | [8] V3 > 60 ## | | | | | [9] V8 <= 1030 ## | | | | | | [10] V6 <= 80 * ## | | | | | | [11] V6 > 80 * ## | | | | | [12] V8 > 1030 * ## | [13] V4 > 1 ## | | [14] V5 <= 1 ## | | | [15] V3 <= 60 ## | | | | [16] V6 <= 80 * ## | | | | [17] V6 > 80 * ## | | | [18] V3 > 60 * ## | | [19] V5 > 1 * ## ## $nodes[[133]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V4 <= 1 ## | | | [4] V8 <= 1125 ## | | | | [5] V9 <= 14 ## | | | | | [6] V7 <= 70 * ## | | | | | [7] V7 > 70 * ## | | | | [8] V9 > 14 * ## | | | [9] V8 > 1125 * ## | | [10] V4 > 1 ## | | | [11] V7 <= 90 ## | | | | [12] V2 <= 12 ## | | | | | [13] V8 <= 925 * ## | | | | | [14] V8 > 925 * ## | | | | [15] V2 > 12 * ## | | | [16] V7 > 90 * ## | [17] V5 > 1 * ## ## $nodes[[134]] ## [1] root ## | [2] V6 <= 70 ## | | [3] V9 <= 20 ## | | | [4] V4 <= 1 * ## | | | [5] V4 > 1 * ## | | [6] V9 > 20 * ## | [7] V6 > 70 ## | | [8] V7 <= 70 * ## | | [9] V7 > 70 ## | | | [10] V5 <= 0 ## | | | | [11] V7 <= 90 * ## | | | | [12] V7 > 90 * ## | | | [13] V5 > 0 ## | | | | [14] V7 <= 90 ## | | | | | [15] V2 <= 12 * ## | | | | | [16] V2 > 12 * ## | | | | [17] V7 > 90 * ## ## $nodes[[135]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V4 <= 1 ## | | | [4] V3 <= 65 ## | | | | [5] V2 <= 4 * ## | | | | [6] V2 > 4 ## | | | | | [7] V8 <= 1025 * ## | | | | | [8] V8 > 1025 * ## | | | [9] V3 > 65 * ## | | [10] V4 > 1 ## | | | [11] V7 <= 80 * ## | | | [12] V7 > 80 * ## | [13] V5 > 1 ## | | [14] V2 <= 13 ## | | | [15] V8 <= 910 * ## | | | [16] V8 > 910 * ## | | [17] V2 > 13 * ## ## $nodes[[136]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V4 <= 1 ## | | | [4] V3 <= 65 ## | | | | [5] V5 <= 0 * ## | | | | [6] V5 > 0 * ## | | | [7] V3 > 65 ## | | | | [8] V9 <= 7 * ## | | | | [9] V9 > 7 * ## | | [10] V4 > 1 ## | | | [11] V9 <= 0 * ## | | | [12] V9 > 0 * ## | [13] V5 > 1 ## | | [14] V2 <= 13 * ## | | [15] V2 > 13 * ## ## $nodes[[137]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V3 <= 71 ## | | | [4] V8 <= 925 * ## | | | [5] V8 > 925 ## | | | | [6] V3 <= 53 * ## | | | | [7] V3 > 53 ## | | | | | [8] V6 <= 80 * ## | | | | | [9] V6 > 80 * ## | | [10] V3 > 71 * ## | [11] V4 > 1 ## | | [12] V7 <= 90 ## | | | [13] V2 <= 15 ## | | | | [14] V5 <= 0 * ## | | | | [15] V5 > 0 * ## | | | [16] V2 > 15 * ## | | [17] V7 > 90 * ## ## $nodes[[138]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V4 <= 1 ## | | | [4] V3 <= 64 ## | | | | [5] V9 <= 2 * ## | | | | [6] V9 > 2 * ## | | | [7] V3 > 64 * ## | | [8] V4 > 1 ## | | | [9] V2 <= 11 * ## | | | [10] V2 > 11 * ## | [11] V5 > 1 ## | | [12] V4 <= 1 * ## | | [13] V4 > 1 * ## ## $nodes[[139]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V5 <= 1 ## | | | [4] V3 <= 68 ## | | | | [5] V6 <= 80 * ## | | | | [6] V6 > 80 ## | | | | | [7] V2 <= 5 * ## | | | | | [8] V2 > 5 * ## | | | [9] V3 > 68 * ## | | [10] V5 > 1 * ## | [11] V4 > 1 ## | | [12] V9 <= -1 * ## | | [13] V9 > -1 ## | | | [14] V7 <= 70 * ## | | | [15] V7 > 70 ## | | | | [16] V6 <= 80 * ## | | | | [17] V6 > 80 * ## ## $nodes[[140]] ## [1] root ## | [2] V6 <= 70 ## | | [3] V4 <= 1 * ## | | [4] V4 > 1 * ## | [5] V6 > 70 ## | | [6] V3 <= 64 ## | | | [7] V2 <= 10 ## | | | | [8] V7 <= 80 * ## | | | | [9] V7 > 80 * ## | | | [10] V2 > 10 ## | | | | [11] V6 <= 80 * ## | | | | [12] V6 > 80 * ## | | [13] V3 > 64 ## | | | [14] V8 <= 1030 * ## | | | [15] V8 > 1030 * ## ## $nodes[[141]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V7 <= 70 * ## | | [4] V7 > 70 ## | | | [5] V4 <= 1 ## | | | | [6] V6 <= 80 * ## | | | | [7] V6 > 80 ## | | | | | [8] V8 <= 1039 * ## | | | | | [9] V8 > 1039 * ## | | | [10] V4 > 1 ## | | | | [11] V3 <= 51 * ## | | | | [12] V3 > 51 ## | | | | | [13] V2 <= 6 * ## | | | | | [14] V2 > 6 * ## | [15] V5 > 1 ## | | [16] V2 <= 13 * ## | | [17] V2 > 13 * ## ## $nodes[[142]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V3 <= 64 ## | | | [4] V7 <= 90 ## | | | | [5] V7 <= 70 * ## | | | | [6] V7 > 70 ## | | | | | [7] V9 <= 1 * ## | | | | | [8] V9 > 1 * ## | | | [9] V7 > 90 * ## | | [10] V3 > 64 ## | | | [11] V5 <= 0 * ## | | | [12] V5 > 0 ## | | | | [13] V3 <= 69 * ## | | | | [14] V3 > 69 * ## | [15] V5 > 1 ## | | [16] V9 <= 20 * ## | | [17] V9 > 20 * ## ## $nodes[[143]] ## [1] root ## | [2] V6 <= 60 * ## | [3] V6 > 60 ## | | [4] V5 <= 1 ## | | | [5] V9 <= 8 ## | | | | [6] V7 <= 80 * ## | | | | [7] V7 > 80 ## | | | | | [8] V6 <= 90 ## | | | | | | [9] V8 <= 975 * ## | | | | | | [10] V8 > 975 * ## | | | | | [11] V6 > 90 * ## | | | [12] V9 > 8 ## | | | | [13] V4 <= 1 ## | | | | | [14] V2 <= 11 * ## | | | | | [15] V2 > 11 * ## | | | | [16] V4 > 1 * ## | | [17] V5 > 1 * ## ## $nodes[[144]] ## [1] root ## | [2] V3 <= 63 ## | | [3] V2 <= 10 ## | | | [4] V5 <= 0 * ## | | | [5] V5 > 0 * ## | | [6] V2 > 10 ## | | | [7] V8 <= 1025 * ## | | | [8] V8 > 1025 * ## | [9] V3 > 63 ## | | [10] V9 <= 27 ## | | | [11] V5 <= 1 ## | | | | [12] V5 <= 0 * ## | | | | [13] V5 > 0 ## | | | | | [14] V7 <= 70 * ## | | | | | [15] V7 > 70 * ## | | | [16] V5 > 1 * ## | | [17] V9 > 27 * ## ## $nodes[[145]] ## [1] root ## | [2] V6 <= 70 ## | | [3] V9 <= 20 ## | | | [4] V4 <= 1 * ## | | | [5] V4 > 1 * ## | | [6] V9 > 20 * ## | [7] V6 > 70 ## | | [8] V4 <= 1 ## | | | [9] V9 <= 6 * ## | | | [10] V9 > 6 ## | | | | [11] V7 <= 80 * ## | | | | [12] V7 > 80 * ## | | [13] V4 > 1 ## | | | [14] V9 <= 14 ## | | | | [15] V2 <= 11 * ## | | | | [16] V2 > 11 * ## | | | [17] V9 > 14 * ## ## $nodes[[146]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V7 <= 90 ## | | | [4] V5 <= 0 ## | | | | [5] V8 <= 775 * ## | | | | [6] V8 > 775 * ## | | | [7] V5 > 0 ## | | | | [8] V4 <= 1 ## | | | | | [9] V7 <= 80 * ## | | | | | [10] V7 > 80 * ## | | | | [11] V4 > 1 * ## | | [12] V7 > 90 * ## | [13] V5 > 1 ## | | [14] V6 <= 60 * ## | | [15] V6 > 60 * ## ## $nodes[[147]] ## [1] root ## | [2] V7 <= 60 * ## | [3] V7 > 60 ## | | [4] V5 <= 0 ## | | | [5] V3 <= 64 * ## | | | [6] V3 > 64 * ## | | [7] V5 > 0 ## | | | [8] V5 <= 1 ## | | | | [9] V6 <= 80 ## | | | | | [10] V2 <= 13 ## | | | | | | [11] V7 <= 70 * ## | | | | | | [12] V7 > 70 * ## | | | | | [13] V2 > 13 * ## | | | | [14] V6 > 80 * ## | | | [15] V5 > 1 * ## ## $nodes[[148]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V4 <= 1 ## | | | [4] V6 <= 80 * ## | | | [5] V6 > 80 ## | | | | [6] V8 <= 1175 ## | | | | | [7] V2 <= 11 * ## | | | | | [8] V2 > 11 * ## | | | | [9] V8 > 1175 * ## | | [10] V4 > 1 ## | | | [11] V3 <= 63 ## | | | | [12] V2 <= 10 * ## | | | | [13] V2 > 10 * ## | | | [14] V3 > 63 * ## | [15] V5 > 1 ## | | [16] V6 <= 60 * ## | | [17] V6 > 60 * ## ## $nodes[[149]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V5 <= 1 ## | | | [4] V2 <= 4 * ## | | | [5] V2 > 4 ## | | | | [6] V9 <= 15 ## | | | | | [7] V7 <= 90 ## | | | | | | [8] V8 <= 993 * ## | | | | | | [9] V8 > 993 * ## | | | | | [10] V7 > 90 * ## | | | | [11] V9 > 15 * ## | | [12] V5 > 1 * ## | [13] V4 > 1 ## | | [14] V5 <= 0 * ## | | [15] V5 > 0 ## | | | [16] V5 <= 1 * ## | | | [17] V5 > 1 * ## ## $nodes[[150]] ## [1] root ## | [2] V6 <= 70 ## | | [3] V7 <= 60 * ## | | [4] V7 > 60 * ## | [5] V6 > 70 ## | | [6] V5 <= 0 ## | | | [7] V7 <= 80 * ## | | | [8] V7 > 80 * ## | | [9] V5 > 0 ## | | | [10] V9 <= 14 ## | | | | [11] V7 <= 80 ## | | | | | [12] V2 <= 13 * ## | | | | | [13] V2 > 13 * ## | | | | [14] V7 > 80 * ## | | | [15] V9 > 14 * ## ## $nodes[[151]] ## [1] root ## | [2] V6 <= 70 ## | | [3] V2 <= 12 * ## | | [4] V2 > 12 * ## | [5] V6 > 70 ## | | [6] V4 <= 1 ## | | | [7] V3 <= 47 * ## | | | [8] V3 > 47 ## | | | | [9] V8 <= 1125 ## | | | | | [10] V3 <= 60 * ## | | | | | [11] V3 > 60 ## | | | | | | [12] V7 <= 80 * ## | | | | | | [13] V7 > 80 * ## | | | | [14] V8 > 1125 * ## | | [15] V4 > 1 ## | | | [16] V9 <= 0 * ## | | | [17] V9 > 0 * ## ## $nodes[[152]] ## [1] root ## | [2] V6 <= 70 ## | | [3] V7 <= 70 ## | | | [4] V9 <= 3 * ## | | | [5] V9 > 3 * ## | | [6] V7 > 70 * ## | [7] V6 > 70 ## | | [8] V4 <= 1 ## | | | [9] V5 <= 0 * ## | | | [10] V5 > 0 ## | | | | [11] V6 <= 80 * ## | | | | [12] V6 > 80 * ## | | [13] V4 > 1 ## | | | [14] V6 <= 90 ## | | | | [15] V7 <= 80 * ## | | | | [16] V7 > 80 * ## | | | [17] V6 > 90 * ## ## $nodes[[153]] ## [1] root ## | [2] V3 <= 65 ## | | [3] V7 <= 90 ## | | | [4] V9 <= 3 * ## | | | [5] V9 > 3 ## | | | | [6] V6 <= 70 * ## | | | | [7] V6 > 70 ## | | | | | [8] V2 <= 4 * ## | | | | | [9] V2 > 4 * ## | | [10] V7 > 90 * ## | [11] V3 > 65 ## | | [12] V3 <= 71 ## | | | [13] V8 <= 875 * ## | | | [14] V8 > 875 ## | | | | [15] V2 <= 12 * ## | | | | [16] V2 > 12 * ## | | [17] V3 > 71 * ## ## $nodes[[154]] ## [1] root ## | [2] V3 <= 44 * ## | [3] V3 > 44 ## | | [4] V5 <= 1 ## | | | [5] V9 <= 23 ## | | | | [6] V4 <= 1 ## | | | | | [7] V6 <= 90 ## | | | | | | [8] V2 <= 7 * ## | | | | | | [9] V2 > 7 * ## | | | | | [10] V6 > 90 * ## | | | | [11] V4 > 1 ## | | | | | [12] V2 <= 12 * ## | | | | | [13] V2 > 12 * ## | | | [14] V9 > 23 * ## | | [15] V5 > 1 ## | | | [16] V6 <= 60 * ## | | | [17] V6 > 60 * ## ## $nodes[[155]] ## [1] root ## | [2] V7 <= 60 * ## | [3] V7 > 60 ## | | [4] V4 <= 1 ## | | | [5] V3 <= 70 ## | | | | [6] V5 <= 0 * ## | | | | [7] V5 > 0 ## | | | | | [8] V2 <= 13 ## | | | | | | [9] V2 <= 11 * ## | | | | | | [10] V2 > 11 * ## | | | | | [11] V2 > 13 * ## | | | [12] V3 > 70 * ## | | [13] V4 > 1 ## | | | [14] V7 <= 90 ## | | | | [15] V2 <= 12 * ## | | | | [16] V2 > 12 * ## | | | [17] V7 > 90 * ## ## $nodes[[156]] ## [1] root ## | [2] V7 <= 90 ## | | [3] V3 <= 63 ## | | | [4] V7 <= 60 * ## | | | [5] V7 > 60 ## | | | | [6] V5 <= 0 * ## | | | | [7] V5 > 0 ## | | | | | [8] V4 <= 1 * ## | | | | | [9] V4 > 1 * ## | | [10] V3 > 63 ## | | | [11] V8 <= 1125 ## | | | | [12] V2 <= 15 ## | | | | | [13] V3 <= 71 ## | | | | | | [14] V3 <= 68 * ## | | | | | | [15] V3 > 68 * ## | | | | | [16] V3 > 71 * ## | | | | [17] V2 > 15 * ## | | | [18] V8 > 1125 * ## | [19] V7 > 90 * ## ## $nodes[[157]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V3 <= 60 ## | | | [4] V5 <= 0 * ## | | | [5] V5 > 0 * ## | | [6] V3 > 60 ## | | | [7] V9 <= 14 ## | | | | [8] V4 <= 1 ## | | | | | [9] V9 <= 2 * ## | | | | | [10] V9 > 2 * ## | | | | [11] V4 > 1 * ## | | | [12] V9 > 14 * ## | [13] V5 > 1 ## | | [14] V6 <= 60 * ## | | [15] V6 > 60 * ## ## $nodes[[158]] ## [1] root ## | [2] V6 <= 70 ## | | [3] V9 <= 16 * ## | | [4] V9 > 16 * ## | [5] V6 > 70 ## | | [6] V7 <= 60 * ## | | [7] V7 > 60 ## | | | [8] V4 <= 1 ## | | | | [9] V3 <= 60 * ## | | | | [10] V3 > 60 ## | | | | | [11] V3 <= 68 * ## | | | | | [12] V3 > 68 * ## | | | [13] V4 > 1 ## | | | | [14] V5 <= 0 * ## | | | | [15] V5 > 0 * ## ## $nodes[[159]] ## [1] root ## | [2] V3 <= 45 * ## | [3] V3 > 45 ## | | [4] V4 <= 1 ## | | | [5] V9 <= 27 ## | | | | [6] V6 <= 70 * ## | | | | [7] V6 > 70 ## | | | | | [8] V7 <= 90 ## | | | | | | [9] V8 <= 1100 ## | | | | | | | [10] V2 <= 11 * ## | | | | | | | [11] V2 > 11 * ## | | | | | | [12] V8 > 1100 * ## | | | | | [13] V7 > 90 * ## | | | [14] V9 > 27 * ## | | [15] V4 > 1 ## | | | [16] V7 <= 80 ## | | | | [17] V5 <= 1 * ## | | | | [18] V5 > 1 * ## | | | [19] V7 > 80 * ## ## $nodes[[160]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V3 <= 70 ## | | | [4] V6 <= 70 * ## | | | [5] V6 > 70 ## | | | | [6] V9 <= 6 * ## | | | | [7] V9 > 6 ## | | | | | [8] V8 <= 875 * ## | | | | | [9] V8 > 875 * ## | | [10] V3 > 70 * ## | [11] V4 > 1 ## | | [12] V9 <= 0 * ## | | [13] V9 > 0 ## | | | [14] V8 <= 825 * ## | | | [15] V8 > 825 * ## ## $nodes[[161]] ## [1] root ## | [2] V2 <= 15 ## | | [3] V5 <= 1 ## | | | [4] V5 <= 0 ## | | | | [5] V9 <= 5 * ## | | | | [6] V9 > 5 * ## | | | [7] V5 > 0 ## | | | | [8] V4 <= 1 ## | | | | | [9] V6 <= 80 * ## | | | | | [10] V6 > 80 * ## | | | | [11] V4 > 1 * ## | | [12] V5 > 1 * ## | [13] V2 > 15 ## | | [14] V2 <= 16 * ## | | [15] V2 > 16 * ## ## $nodes[[162]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V5 <= 0 ## | | | [4] V9 <= 6 ## | | | | [5] V2 <= 12 * ## | | | | [6] V2 > 12 * ## | | | [7] V9 > 6 * ## | | [8] V5 > 0 ## | | | [9] V8 <= 925 ## | | | | [10] V9 <= 14 * ## | | | | [11] V9 > 14 * ## | | | [12] V8 > 925 ## | | | | [13] V8 <= 1060 * ## | | | | [14] V8 > 1060 * ## | [15] V5 > 1 ## | | [16] V2 <= 7 * ## | | [17] V2 > 7 * ## ## $nodes[[163]] ## [1] root ## | [2] V3 <= 45 * ## | [3] V3 > 45 ## | | [4] V5 <= 0 ## | | | [5] V3 <= 64 * ## | | | [6] V3 > 64 * ## | | [7] V5 > 0 ## | | | [8] V9 <= 27 ## | | | | [9] V6 <= 70 ## | | | | | [10] V8 <= 1025 * ## | | | | | [11] V8 > 1025 * ## | | | | [12] V6 > 70 ## | | | | | [13] V4 <= 1 ## | | | | | | [14] V6 <= 80 * ## | | | | | | [15] V6 > 80 * ## | | | | | [16] V4 > 1 * ## | | | [17] V9 > 27 * ## ## $nodes[[164]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V4 <= 1 ## | | | [4] V7 <= 70 * ## | | | [5] V7 > 70 ## | | | | [6] V9 <= 12 ## | | | | | [7] V3 <= 60 * ## | | | | | [8] V3 > 60 * ## | | | | [9] V9 > 12 * ## | | [10] V4 > 1 ## | | | [11] V5 <= 0 * ## | | | [12] V5 > 0 * ## | [13] V5 > 1 ## | | [14] V9 <= 10 * ## | | [15] V9 > 10 * ## ## $nodes[[165]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V8 <= 1275 ## | | | [4] V6 <= 70 * ## | | | [5] V6 > 70 ## | | | | [6] V2 <= 11 ## | | | | | [7] V2 <= 6 * ## | | | | | [8] V2 > 6 * ## | | | | [9] V2 > 11 * ## | | [10] V8 > 1275 * ## | [11] V4 > 1 ## | | [12] V5 <= 0 * ## | | [13] V5 > 0 ## | | | [14] V2 <= 13 * ## | | | [15] V2 > 13 * ## ## $nodes[[166]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V3 <= 64 ## | | | [4] V5 <= 0 ## | | | | [5] V8 <= 1025 * ## | | | | [6] V8 > 1025 * ## | | | [7] V5 > 0 ## | | | | [8] V8 <= 875 * ## | | | | [9] V8 > 875 * ## | | [10] V3 > 64 ## | | | [11] V6 <= 80 * ## | | | [12] V6 > 80 * ## | [13] V5 > 1 ## | | [14] V2 <= 13 * ## | | [15] V2 > 13 * ## ## $nodes[[167]] ## [1] root ## | [2] V7 <= 70 ## | | [3] V6 <= 80 ## | | | [4] V5 <= 1 * ## | | | [5] V5 > 1 ## | | | | [6] V9 <= 20 * ## | | | | [7] V9 > 20 * ## | | [8] V6 > 80 * ## | [9] V7 > 70 ## | | [10] V5 <= 0 ## | | | [11] V2 <= 13 * ## | | | [12] V2 > 13 * ## | | [13] V5 > 0 ## | | | [14] V3 <= 53 * ## | | | [15] V3 > 53 ## | | | | [16] V6 <= 80 * ## | | | | [17] V6 > 80 * ## ## $nodes[[168]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V3 <= 71 ## | | | [4] V5 <= 1 ## | | | | [5] V8 <= 1150 ## | | | | | [6] V3 <= 64 * ## | | | | | [7] V3 > 64 * ## | | | | [8] V8 > 1150 * ## | | | [9] V5 > 1 * ## | | [10] V3 > 71 * ## | [11] V4 > 1 ## | | [12] V2 <= 10 * ## | | [13] V2 > 10 ## | | | [14] V9 <= 3 * ## | | | [15] V9 > 3 * ## ## $nodes[[169]] ## [1] root ## | [2] V3 <= 46 * ## | [3] V3 > 46 ## | | [4] V4 <= 1 ## | | | [5] V5 <= 1 ## | | | | [6] V7 <= 90 ## | | | | | [7] V8 <= 1125 ## | | | | | | [8] V2 <= 11 * ## | | | | | | [9] V2 > 11 * ## | | | | | [10] V8 > 1125 * ## | | | | [11] V7 > 90 * ## | | | [12] V5 > 1 * ## | | [13] V4 > 1 ## | | | [14] V5 <= 0 * ## | | | [15] V5 > 0 ## | | | | [16] V2 <= 16 * ## | | | | [17] V2 > 16 * ## ## $nodes[[170]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V3 <= 48 * ## | | [4] V3 > 48 ## | | | [5] V5 <= 1 ## | | | | [6] V7 <= 90 ## | | | | | [7] V7 <= 70 * ## | | | | | [8] V7 > 70 * ## | | | | [9] V7 > 90 * ## | | | [10] V5 > 1 * ## | [11] V4 > 1 ## | | [12] V5 <= 1 ## | | | [13] V7 <= 80 * ## | | | [14] V7 > 80 * ## | | [15] V5 > 1 * ## ## $nodes[[171]] ## [1] root ## | [2] V3 <= 66 ## | | [3] V4 <= 1 ## | | | [4] V7 <= 70 * ## | | | [5] V7 > 70 ## | | | | [6] V6 <= 80 * ## | | | | [7] V6 > 80 * ## | | [8] V4 > 1 ## | | | [9] V2 <= 16 ## | | | | [10] V5 <= 0 * ## | | | | [11] V5 > 0 * ## | | | [12] V2 > 16 * ## | [13] V3 > 66 ## | | [14] V4 <= 1 ## | | | [15] V5 <= 1 * ## | | | [16] V5 > 1 * ## | | [17] V4 > 1 * ## ## $nodes[[172]] ## [1] root ## | [2] V7 <= 70 ## | | [3] V9 <= 20 ## | | | [4] V4 <= 1 * ## | | | [5] V4 > 1 * ## | | [6] V9 > 20 * ## | [7] V7 > 70 ## | | [8] V3 <= 63 ## | | | [9] V4 <= 1 ## | | | | [10] V6 <= 80 * ## | | | | [11] V6 > 80 * ## | | | [12] V4 > 1 * ## | | [13] V3 > 63 ## | | | [14] V6 <= 80 * ## | | | [15] V6 > 80 * ## ## $nodes[[173]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V6 <= 80 ## | | | [4] V5 <= 1 * ## | | | [5] V5 > 1 * ## | | [6] V6 > 80 ## | | | [7] V9 <= -1 * ## | | | [8] V9 > -1 ## | | | | [9] V9 <= 4 * ## | | | | [10] V9 > 4 * ## | [11] V4 > 1 ## | | [12] V2 <= 11 ## | | | [13] V6 <= 80 * ## | | | [14] V6 > 80 * ## | | [15] V2 > 11 * ## ## $nodes[[174]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V5 <= 1 ## | | | [4] V9 <= 17 ## | | | | [5] V9 <= 8 ## | | | | | [6] V5 <= 0 * ## | | | | | [7] V5 > 0 * ## | | | | [8] V9 > 8 * ## | | | [9] V9 > 17 * ## | | [10] V5 > 1 * ## | [11] V4 > 1 ## | | [12] V7 <= 60 * ## | | [13] V7 > 60 ## | | | [14] V5 <= 0 * ## | | | [15] V5 > 0 ## | | | | [16] V8 <= 825 * ## | | | | [17] V8 > 825 * ## ## $nodes[[175]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V6 <= 80 ## | | | [4] V9 <= 20 ## | | | | [5] V5 <= 1 * ## | | | | [6] V5 > 1 * ## | | | [7] V9 > 20 * ## | | [8] V6 > 80 ## | | | [9] V9 <= 6 * ## | | | [10] V9 > 6 * ## | [11] V4 > 1 ## | | [12] V9 <= -1 * ## | | [13] V9 > -1 ## | | | [14] V5 <= 0 * ## | | | [15] V5 > 0 ## | | | | [16] V6 <= 70 * ## | | | | [17] V6 > 70 * ## ## $nodes[[176]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V3 <= 64 ## | | | [4] V2 <= 12 ## | | | | [5] V3 <= 50 * ## | | | | [6] V3 > 50 ## | | | | | [7] V5 <= 0 * ## | | | | | [8] V5 > 0 * ## | | | [9] V2 > 12 * ## | | [10] V3 > 64 ## | | | [11] V9 <= 10 ## | | | | [12] V5 <= 0 * ## | | | | [13] V5 > 0 * ## | | | [14] V9 > 10 * ## | [15] V5 > 1 ## | | [16] V6 <= 60 * ## | | [17] V6 > 60 * ## ## $nodes[[177]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V2 <= 15 ## | | | [4] V5 <= 1 ## | | | | [5] V8 <= 1175 ## | | | | | [6] V6 <= 80 * ## | | | | | [7] V6 > 80 * ## | | | | [8] V8 > 1175 * ## | | | [9] V5 > 1 * ## | | [10] V2 > 15 * ## | [11] V4 > 1 ## | | [12] V6 <= 70 * ## | | [13] V6 > 70 ## | | | [14] V8 <= 975 * ## | | | [15] V8 > 975 * ## ## $nodes[[178]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V4 <= 1 ## | | | [4] V3 <= 63 ## | | | | [5] V5 <= 0 * ## | | | | [6] V5 > 0 * ## | | | [7] V3 > 63 ## | | | | [8] V9 <= 17 ## | | | | | [9] V6 <= 80 * ## | | | | | [10] V6 > 80 * ## | | | | [11] V9 > 17 * ## | | [12] V4 > 1 ## | | | [13] V5 <= 0 * ## | | | [14] V5 > 0 * ## | [15] V5 > 1 ## | | [16] V3 <= 62 * ## | | [17] V3 > 62 * ## ## $nodes[[179]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V3 <= 51 * ## | | [4] V3 > 51 ## | | | [5] V5 <= 0 ## | | | | [6] V9 <= 5 * ## | | | | [7] V9 > 5 * ## | | | [8] V5 > 0 ## | | | | [9] V6 <= 80 ## | | | | | [10] V9 <= 14 * ## | | | | | [11] V9 > 14 * ## | | | | [12] V6 > 80 ## | | | | | [13] V8 <= 875 * ## | | | | | [14] V8 > 875 * ## | [15] V5 > 1 ## | | [16] V8 <= 413 * ## | | [17] V8 > 413 * ## ## $nodes[[180]] ## [1] root ## | [2] V7 <= 60 * ## | [3] V7 > 60 ## | | [4] V4 <= 1 ## | | | [5] V7 <= 90 ## | | | | [6] V8 <= 910 * ## | | | | [7] V8 > 910 ## | | | | | [8] V9 <= -1 * ## | | | | | [9] V9 > -1 ## | | | | | | [10] V2 <= 11 * ## | | | | | | [11] V2 > 11 * ## | | | [12] V7 > 90 * ## | | [13] V4 > 1 ## | | | [14] V7 <= 80 * ## | | | [15] V7 > 80 ## | | | | [16] V9 <= 6 * ## | | | | [17] V9 > 6 * ## ## $nodes[[181]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V7 <= 60 * ## | | [4] V7 > 60 ## | | | [5] V6 <= 70 * ## | | | [6] V6 > 70 ## | | | | [7] V3 <= 63 ## | | | | | [8] V3 <= 58 * ## | | | | | [9] V3 > 58 * ## | | | | [10] V3 > 63 * ## | [11] V4 > 1 ## | | [12] V7 <= 80 ## | | | [13] V3 <= 60 * ## | | | [14] V3 > 60 * ## | | [15] V7 > 80 * ## ## $nodes[[182]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V4 <= 1 ## | | | [4] V8 <= 925 * ## | | | [5] V8 > 925 ## | | | | [6] V5 <= 0 * ## | | | | [7] V5 > 0 * ## | | [8] V4 > 1 ## | | | [9] V8 <= 925 * ## | | | [10] V8 > 925 * ## | [11] V5 > 1 ## | | [12] V9 <= 11 * ## | | [13] V9 > 11 * ## ## $nodes[[183]] ## [1] root ## | [2] V5 <= 0 ## | | [3] V8 <= 588 * ## | | [4] V8 > 588 ## | | | [5] V7 <= 80 * ## | | | [6] V7 > 80 * ## | [7] V5 > 0 ## | | [8] V2 <= 12 ## | | | [9] V6 <= 70 * ## | | | [10] V6 > 70 ## | | | | [11] V3 <= 64 * ## | | | | [12] V3 > 64 * ## | | [13] V2 > 12 ## | | | [14] V9 <= 15 ## | | | | [15] V4 <= 1 * ## | | | | [16] V4 > 1 * ## | | | [17] V9 > 15 * ## ## $nodes[[184]] ## [1] root ## | [2] V3 <= 65 ## | | [3] V6 <= 70 * ## | | [4] V6 > 70 ## | | | [5] V8 <= 1060 ## | | | | [6] V6 <= 80 * ## | | | | [7] V6 > 80 ## | | | | | [8] V7 <= 80 * ## | | | | | [9] V7 > 80 * ## | | | [10] V8 > 1060 * ## | [11] V3 > 65 ## | | [12] V4 <= 1 ## | | | [13] V5 <= 1 * ## | | | [14] V5 > 1 * ## | | [15] V4 > 1 * ## ## $nodes[[185]] ## [1] root ## | [2] V6 <= 70 ## | | [3] V4 <= 1 * ## | | [4] V4 > 1 * ## | [5] V6 > 70 ## | | [6] V4 <= 1 ## | | | [7] V9 <= 2 * ## | | | [8] V9 > 2 ## | | | | [9] V5 <= 0 * ## | | | | [10] V5 > 0 ## | | | | | [11] V7 <= 70 * ## | | | | | [12] V7 > 70 * ## | | [13] V4 > 1 ## | | | [14] V3 <= 59 * ## | | | [15] V3 > 59 * ## ## $nodes[[186]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V8 <= 575 * ## | | [4] V8 > 575 ## | | | [5] V8 <= 1025 ## | | | | [6] V9 <= 7 ## | | | | | [7] V4 <= 1 * ## | | | | | [8] V4 > 1 * ## | | | | [9] V9 > 7 * ## | | | [10] V8 > 1025 ## | | | | [11] V4 <= 1 ## | | | | | [12] V9 <= 2 * ## | | | | | [13] V9 > 2 * ## | | | | [14] V4 > 1 * ## | [15] V5 > 1 ## | | [16] V2 <= 13 * ## | | [17] V2 > 13 * ## ## $nodes[[187]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V3 <= 71 ## | | | [4] V9 <= 15 ## | | | | [5] V9 <= -1 * ## | | | | [6] V9 > -1 ## | | | | | [7] V2 <= 5 * ## | | | | | [8] V2 > 5 ## | | | | | | [9] V9 <= 8 * ## | | | | | | [10] V9 > 8 * ## | | | [11] V9 > 15 * ## | | [12] V3 > 71 * ## | [13] V4 > 1 ## | | [14] V9 <= 13 ## | | | [15] V5 <= 0 * ## | | | [16] V5 > 0 * ## | | [17] V9 > 13 * ## ## $nodes[[188]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V5 <= 0 * ## | | [4] V5 > 0 ## | | | [5] V9 <= 24 ## | | | | [6] V5 <= 1 ## | | | | | [7] V7 <= 70 * ## | | | | | [8] V7 > 70 * ## | | | | [9] V5 > 1 * ## | | | [10] V9 > 24 * ## | [11] V4 > 1 ## | | [12] V5 <= 0 * ## | | [13] V5 > 0 ## | | | [14] V2 <= 12 * ## | | | [15] V2 > 12 * ## ## $nodes[[189]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V7 <= 60 * ## | | [4] V7 > 60 ## | | | [5] V5 <= 0 * ## | | | [6] V5 > 0 ## | | | | [7] V3 <= 70 ## | | | | | [8] V8 <= 993 * ## | | | | | [9] V8 > 993 * ## | | | | [10] V3 > 70 * ## | [11] V4 > 1 ## | | [12] V7 <= 90 ## | | | [13] V7 <= 80 * ## | | | [14] V7 > 80 * ## | | [15] V7 > 90 * ## ## $nodes[[190]] ## [1] root ## | [2] V3 <= 70 ## | | [3] V7 <= 90 ## | | | [4] V4 <= 1 ## | | | | [5] V5 <= 0 * ## | | | | [6] V5 > 0 ## | | | | | [7] V8 <= 1025 * ## | | | | | [8] V8 > 1025 * ## | | | [9] V4 > 1 ## | | | | [10] V5 <= 0 * ## | | | | [11] V5 > 0 * ## | | [12] V7 > 90 * ## | [13] V3 > 70 ## | | [14] V5 <= 1 * ## | | [15] V5 > 1 * ## ## $nodes[[191]] ## [1] root ## | [2] V3 <= 71 ## | | [3] V2 <= 21 ## | | | [4] V6 <= 70 * ## | | | [5] V6 > 70 ## | | | | [6] V3 <= 64 ## | | | | | [7] V5 <= 0 * ## | | | | | [8] V5 > 0 ## | | | | | | [9] V7 <= 80 * ## | | | | | | [10] V7 > 80 * ## | | | | [11] V3 > 64 * ## | | [12] V2 > 21 * ## | [13] V3 > 71 * ## ## $nodes[[192]] ## [1] root ## | [2] V6 <= 70 ## | | [3] V2 <= 7 * ## | | [4] V2 > 7 * ## | [5] V6 > 70 ## | | [6] V9 <= 5 ## | | | [7] V7 <= 90 ## | | | | [8] V6 <= 80 * ## | | | | [9] V6 > 80 * ## | | | [10] V7 > 90 * ## | | [11] V9 > 5 ## | | | [12] V3 <= 64 ## | | | | [13] V3 <= 56 * ## | | | | [14] V3 > 56 * ## | | | [15] V3 > 64 * ## ## $nodes[[193]] ## [1] root ## | [2] V5 <= 0 ## | | [3] V9 <= 3 * ## | | [4] V9 > 3 ## | | | [5] V2 <= 4 * ## | | | [6] V2 > 4 * ## | [7] V5 > 0 ## | | [8] V7 <= 60 * ## | | [9] V7 > 60 ## | | | [10] V2 <= 5 * ## | | | [11] V2 > 5 ## | | | | [12] V9 <= 7 * ## | | | | [13] V9 > 7 * ## ## $nodes[[194]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V5 <= 0 ## | | | [4] V7 <= 80 * ## | | | [5] V7 > 80 * ## | | [6] V5 > 0 ## | | | [7] V4 <= 1 ## | | | | [8] V6 <= 80 ## | | | | | [9] V9 <= 15 * ## | | | | | [10] V9 > 15 * ## | | | | [11] V6 > 80 * ## | | | [12] V4 > 1 ## | | | | [13] V7 <= 80 * ## | | | | [14] V7 > 80 * ## | [15] V5 > 1 ## | | [16] V2 <= 13 * ## | | [17] V2 > 13 * ## ## $nodes[[195]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V9 <= 27 ## | | | [4] V5 <= 1 ## | | | | [5] V2 <= 11 ## | | | | | [6] V7 <= 70 * ## | | | | | [7] V7 > 70 * ## | | | | [8] V2 > 11 * ## | | | [9] V5 > 1 * ## | | [10] V9 > 27 * ## | [11] V4 > 1 ## | | [12] V2 <= 12 ## | | | [13] V6 <= 80 * ## | | | [14] V6 > 80 * ## | | [15] V2 > 12 * ## ## $nodes[[196]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V6 <= 70 * ## | | [4] V6 > 70 ## | | | [5] V5 <= 0 * ## | | | [6] V5 > 0 ## | | | | [7] V3 <= 59 * ## | | | | [8] V3 > 59 ## | | | | | [9] V9 <= 8 * ## | | | | | [10] V9 > 8 * ## | [11] V4 > 1 ## | | [12] V7 <= 80 ## | | | [13] V9 <= 0 * ## | | | [14] V9 > 0 * ## | | [15] V7 > 80 * ## ## $nodes[[197]] ## [1] root ## | [2] V7 <= 60 ## | | [3] V5 <= 1 * ## | | [4] V5 > 1 * ## | [5] V7 > 60 ## | | [6] V4 <= 1 ## | | | [7] V8 <= 488 * ## | | | [8] V8 > 488 ## | | | | [9] V2 <= 15 ## | | | | | [10] V5 <= 0 * ## | | | | | [11] V5 > 0 * ## | | | | [12] V2 > 15 * ## | | [13] V4 > 1 ## | | | [14] V5 <= 0 * ## | | | [15] V5 > 0 ## | | | | [16] V3 <= 65 * ## | | | | [17] V3 > 65 * ## ## $nodes[[198]] ## [1] root ## | [2] V5 <= 1 ## | | [3] V4 <= 1 ## | | | [4] V6 <= 80 ## | | | | [5] V9 <= 14 * ## | | | | [6] V9 > 14 * ## | | | [7] V6 > 80 ## | | | | [8] V9 <= 6 * ## | | | | [9] V9 > 6 * ## | | [10] V4 > 1 ## | | | [11] V6 <= 80 * ## | | | [12] V6 > 80 * ## | [13] V5 > 1 ## | | [14] V9 <= 10 * ## | | [15] V9 > 10 * ## ## $nodes[[199]] ## [1] root ## | [2] V4 <= 1 ## | | [3] V5 <= 1 ## | | | [4] V3 <= 65 ## | | | | [5] V9 <= 1 * ## | | | | [6] V9 > 1 ## | | | | | [7] V3 <= 56 * ## | | | | | [8] V3 > 56 * ## | | | [9] V3 > 65 * ## | | [10] V5 > 1 * ## | [11] V4 > 1 ## | | [12] V7 <= 90 ## | | | [13] V5 <= 0 * ## | | | [14] V5 > 0 ## | | | | [15] V9 <= 0 * ## | | | | [16] V9 > 0 * ## | | [17] V7 > 90 * ## ## $nodes[[200]] ## [1] root ## | [2] V7 <= 70 ## | | [3] V6 <= 70 ## | | | [4] V9 <= 11 * ## | | | [5] V9 > 11 * ## | | [6] V6 > 70 * ## | [7] V7 > 70 ## | | [8] V4 <= 1 ## | | | [9] V2 <= 6 * ## | | | [10] V2 > 6 * ## | | [11] V4 > 1 ## | | | [12] V3 <= 57 * ## | | | [13] V3 > 57 * ## ## ## $data ## Surv(time, status) inst age sex ph.ecog ph.karno pat.karno meal.cal ## 9 218 1 53 1 1 70 80 825 ## 10 166 7 61 1 2 70 70 271 ## 11 170 6 57 1 1 80 80 1025 ## 15 567 12 57 1 1 80 70 2600 ## 17 613 22 70 1 1 90 100 1150 ## 18 707 16 63 1 2 50 70 1025 ## 19 61 1 56 2 2 60 60 238 ## 21 301 11 67 1 1 80 80 1025 ## 22 81 6 49 2 0 100 70 1175 ## 24 371 15 58 1 0 90 100 975 ## 26 520 12 70 2 1 90 80 825 ## 27 574 4 60 1 0 100 100 1025 ## 28 118 13 70 1 3 60 70 1075 ## 29 390 13 53 1 1 80 70 875 ## 30 12 1 74 1 2 70 50 305 ## 31 473 12 69 2 1 90 90 1025 ## 32 26 1 73 1 2 60 70 388 ## 34 107 16 60 2 2 50 60 925 ## 35 53 12 61 1 2 70 100 1075 ## 37 814 22 65 1 2 70 60 513 ## 38 965+ 15 66 2 1 70 90 875 ## 39 93 1 74 1 2 50 40 1225 ## 40 731 1 64 2 1 80 100 1175 ## 41 460 5 70 1 1 80 60 975 ## 42 153 11 73 2 2 60 70 1075 ## 43 433 10 59 2 0 90 90 363 ## 45 583 7 68 1 1 60 70 1025 ## 46 95 7 76 2 2 60 60 625 ## 47 303 1 74 1 0 90 70 463 ## 48 519 3 63 1 1 80 70 1025 ## 49 643 13 74 1 0 90 90 1425 ## 50 765 22 50 2 1 90 100 1175 ## 53 53 21 68 1 0 90 100 1025 ## 54 246 1 58 1 0 100 90 1175 ## 55 689 6 59 1 1 90 80 1300 ## 57 5 5 65 2 0 100 80 338 ## 59 687 3 58 2 1 80 80 1225 ## 60 345 1 64 2 1 90 80 1075 ## 61 444 22 75 2 2 70 70 438 ## 62 223 12 48 1 1 90 80 1300 ## 64 60 11 65 2 1 90 80 1025 ## 65 163 3 69 1 1 80 60 1125 ## 66 65 3 68 1 2 70 50 825 ## 68 821+ 5 64 2 0 90 70 1025 ## 69 428 22 68 1 0 100 80 1039 ## 70 230 6 67 1 1 80 100 488 ## 71 840+ 13 63 1 0 90 90 1175 ## 72 305 3 48 2 1 80 90 538 ## 73 11 5 74 1 2 70 100 1175 ## 75 226 21 53 2 1 90 80 825 ## 76 426 12 71 2 1 90 90 1075 ## 77 705 1 51 2 0 100 80 1300 ## 78 363 6 56 2 1 80 70 1225 ## 80 176 1 73 1 0 90 70 169 ## 81 791 4 59 1 0 100 80 768 ## 82 95 13 55 1 1 70 90 1500 ## 83 196+ 11 42 1 1 80 80 1425 ## 84 167 21 44 2 1 80 90 588 ## 85 806+ 16 44 1 1 80 80 1025 ## 86 284 6 71 1 1 80 90 1100 ## 87 641 22 62 2 1 80 80 1150 ## 88 147 21 61 1 0 100 90 1175 ## 89 740+ 13 44 2 1 90 80 588 ## 90 163 1 72 1 2 70 70 910 ## 91 655 11 63 1 0 100 90 975 ## 93 88 5 66 1 1 90 80 875 ## 94 245 10 57 2 1 80 60 280 ## 96 30 12 72 1 2 80 60 288 ## 99 477 11 64 1 1 90 100 910 ## 101 559+ 1 58 2 0 100 100 710 ## 102 450 6 69 2 1 80 90 1175 ## 106 156 12 66 1 1 80 90 875 ## 107 529+ 26 54 2 1 80 100 975 ## 109 429 21 55 1 1 100 80 975 ## 110 351 3 75 2 2 60 50 925 ## 111 15 13 69 1 0 90 70 575 ## 112 181 1 44 1 1 80 90 1175 ## 113 283 10 80 1 1 80 100 1030 ## 116 13 1 76 1 2 70 70 413 ## 117 212 3 49 1 2 70 60 675 ## 118 524 1 68 1 2 60 70 1300 ## 119 288 16 66 1 2 70 60 613 ## 120 363 15 80 1 1 80 90 346 ## 122 199 26 60 2 2 70 80 675 ## 123 550 3 69 2 1 70 80 910 ## 124 54 11 72 1 2 60 60 768 ## 125 558 1 70 1 0 90 90 1025 ## 126 207 22 66 1 1 80 80 925 ## 127 92 7 50 1 1 80 60 1075 ## 128 60 12 64 1 1 80 90 993 ## 129 551+ 16 77 2 2 80 60 750 ## 131 293 4 59 2 1 80 80 925 ## 133 353 6 47 1 0 100 90 1225 ## 135 267 1 67 1 0 90 70 313 ## 136 511+ 22 74 2 2 60 40 96 ## 139 457 1 54 1 1 90 90 975 ## 140 337 5 56 1 0 100 100 1500 ## 141 201 21 73 2 2 70 60 1225 ## 142 404+ 3 74 1 1 80 70 413 ## 143 222 26 76 1 2 70 70 1500 ## 144 62 1 65 2 1 80 90 1075 ## 145 458+ 11 57 1 1 80 100 513 ## 147 353 16 71 1 0 100 80 775 ## 148 163 16 54 1 1 90 80 1225 ## 149 31 12 82 1 0 100 90 413 ## 151 229 13 70 1 1 70 60 1175 ## 155 156 32 55 1 2 70 30 1025 ## 158 291 4 62 1 2 70 60 475 ## 159 179 12 63 1 1 80 70 538 ## 160 376+ 1 56 2 1 80 90 825 ## 161 384+ 32 62 2 0 90 90 588 ## 162 268 10 44 2 1 90 100 2450 ## 163 292+ 11 69 1 2 60 70 2450 ## 164 142 6 63 1 1 90 80 875 ## 165 413+ 7 64 1 1 80 70 413 ## 166 266+ 16 57 2 0 90 90 1075 ## 168 320 21 46 1 0 100 100 860 ## 169 181 6 61 1 1 90 90 730 ## 170 285 12 65 1 0 100 90 1025 ## 171 301+ 13 61 1 1 90 100 825 ## 172 348 2 58 2 0 90 80 1225 ## 173 197 2 56 1 1 90 60 768 ## 174 382+ 16 43 2 0 100 90 338 ## 175 303+ 1 53 1 1 90 80 1225 ## 176 296+ 13 59 2 1 80 100 1025 ## 177 180 1 56 1 2 60 80 1225 ## 179 145 1 53 2 1 80 90 588 ## 180 269+ 7 74 2 0 100 100 588 ## 181 300+ 13 60 1 0 100 100 975 ## 182 284+ 1 39 1 0 100 90 1225 ## 185 292+ 12 51 2 0 90 80 1225 ## 186 332+ 12 45 2 0 90 100 975 ## 187 285 2 72 2 2 70 90 463 ## 188 259+ 3 58 1 0 90 80 1300 ## 189 110 15 64 1 1 80 60 1025 ## 190 286 22 53 1 0 90 90 1225 ## 191 270 16 72 1 1 80 90 488 ## 194 225+ 1 64 1 1 90 80 825 ## 195 269 22 71 1 1 90 90 1300 ## 196 225+ 12 70 1 0 100 100 1175 ## 197 243+ 32 63 2 1 80 90 825 ## 199 276+ 1 52 2 0 100 80 975 ## 200 135 32 60 1 1 90 70 1275 ## 201 79 15 64 2 1 90 90 488 ## 202 59 22 73 1 1 60 60 2200 ## 203 240+ 32 63 2 0 90 100 1025 ## 204 202+ 3 50 2 0 100 100 635 ## 205 235+ 26 63 2 0 100 90 413 ## 208 239 13 50 2 2 60 60 1025 ## 211 252+ 1 60 2 0 100 90 488 ## 212 221+ 6 67 1 1 80 70 413 ## 213 185+ 15 69 1 1 90 70 1075 ## 216 222+ 11 65 1 1 90 70 1025 ## 218 183 21 76 1 2 80 60 825 ## 219 211+ 11 70 2 2 70 30 131 ## 220 175+ 2 57 2 0 80 80 725 ## 221 197+ 22 67 1 1 80 90 1500 ## 222 203+ 11 71 2 1 80 90 1025 ## 225 191+ 13 39 1 0 90 90 2350 ## 226 105+ 32 75 2 2 60 70 1025 ## 227 174+ 6 66 1 1 90 100 1075 ## 228 177+ 22 58 2 1 80 90 1060 ## wt.loss ## 9 16 ## 10 34 ## 11 27 ## 15 60 ## 17 -5 ## 18 22 ## 19 10 ## 21 17 ## 22 -8 ## 24 13 ## 26 6 ## 27 -13 ## 28 20 ## 29 -7 ## 30 20 ## 31 -1 ## 32 20 ## 34 -15 ## 35 10 ## 37 28 ## 38 4 ## 39 24 ## 40 15 ## 41 10 ## 42 11 ## 43 27 ## 45 7 ## 46 -24 ## 47 30 ## 48 10 ## 49 2 ## 50 4 ## 53 0 ## 54 7 ## 55 15 ## 57 5 ## 59 10 ## 60 -3 ## 61 8 ## 62 68 ## 64 0 ## 65 0 ## 66 8 ## 68 3 ## 69 0 ## 70 23 ## 71 -1 ## 72 29 ## 73 0 ## 75 3 ## 76 19 ## 77 0 ## 78 -2 ## 80 30 ## 81 5 ## 82 15 ## 83 8 ## 84 -1 ## 85 1 ## 86 14 ## 87 1 ## 88 4 ## 89 39 ## 90 2 ## 91 -1 ## 93 8 ## 94 14 ## 96 7 ## 99 0 ## 101 15 ## 102 3 ## 106 14 ## 107 -3 ## 109 5 ## 110 11 ## 111 10 ## 112 5 ## 113 6 ## 116 20 ## 117 20 ## 118 30 ## 119 24 ## 120 11 ## 122 10 ## 123 0 ## 124 -3 ## 125 17 ## 126 20 ## 127 13 ## 128 0 ## 129 28 ## 131 52 ## 133 5 ## 135 6 ## 136 37 ## 139 -5 ## 140 15 ## 141 -16 ## 142 38 ## 143 8 ## 144 0 ## 145 30 ## 147 2 ## 148 13 ## 149 27 ## 151 -2 ## 155 10 ## 158 27 ## 159 -2 ## 160 17 ## 161 8 ## 162 2 ## 163 36 ## 164 2 ## 165 16 ## 166 3 ## 168 4 ## 169 0 ## 170 0 ## 171 2 ## 172 10 ## 173 37 ## 174 6 ## 175 12 ## 176 0 ## 177 -2 ## 179 13 ## 180 0 ## 181 5 ## 182 -5 ## 185 0 ## 186 5 ## 187 20 ## 188 8 ## 189 12 ## 190 8 ## 191 14 ## 194 33 ## 195 -2 ## 196 6 ## 197 0 ## 199 0 ## 200 0 ## 201 37 ## 202 5 ## 203 0 ## 204 1 ## 205 0 ## 208 -3 ## 211 -2 ## 212 23 ## 213 0 ## 216 18 ## 218 7 ## 219 3 ## 220 11 ## 221 2 ## 222 0 ## 225 -5 ## 226 5 ## 227 1 ## 228 0 ## ## $weights ## $weights[[1]] ## [1] 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 ## [35] 0 0 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0 1 ## [69] 1 1 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 0 0 1 1 1 1 1 ## [103] 1 1 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 ## [137] 0 1 1 0 1 1 1 1 0 0 1 1 0 0 0 1 0 1 1 1 0 1 1 1 0 0 ## ## $weights[[2]] ## [1] 1 1 0 0 1 0 0 0 1 1 0 1 0 1 1 1 1 0 1 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 ## [35] 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 ## [69] 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 ## [103] 1 1 1 0 1 1 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 ## [137] 0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0 0 0 0 1 1 0 1 0 ## ## $weights[[3]] ## [1] 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 1 1 ## [35] 1 0 1 1 1 1 0 1 1 1 1 0 0 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 1 ## [69] 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 ## [103] 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 ## [137] 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 ## ## $weights[[4]] ## [1] 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1 0 0 0 1 1 0 1 0 1 ## [35] 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 ## [69] 1 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 1 1 1 0 ## [103] 1 1 0 1 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 ## [137] 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1 ## ## $weights[[5]] ## [1] 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 ## [35] 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 ## [69] 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 1 1 1 1 0 ## [103] 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0 1 0 1 ## [137] 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 ## ## $weights[[6]] ## [1] 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0 1 1 0 1 1 ## [35] 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 ## [69] 1 0 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1 0 ## [103] 0 0 0 1 1 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 ## [137] 1 0 1 1 0 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 0 1 1 1 0 0 ## ## $weights[[7]] ## [1] 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 0 ## [35] 0 0 1 0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 0 1 1 0 0 1 1 1 1 1 0 0 1 1 1 0 ## [69] 1 1 1 0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 ## [103] 1 1 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 ## [137] 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 1 ## ## $weights[[8]] ## [1] 0 1 1 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 0 1 ## [35] 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 ## [69] 1 1 1 1 1 1 1 1 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 ## [103] 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 ## [137] 1 0 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 0 0 0 1 1 1 1 ## ## $weights[[9]] ## [1] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 0 ## [35] 1 1 1 0 1 0 1 1 0 0 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 1 ## [69] 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 0 ## [103] 1 1 0 0 1 1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 ## [137] 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 1 0 0 0 1 0 0 ## ## $weights[[10]] ## [1] 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 ## [35] 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 ## [69] 0 0 1 0 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 1 0 0 1 0 ## [103] 0 1 1 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 0 0 1 1 0 ## [137] 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 ## ## $weights[[11]] ## [1] 0 1 0 1 1 0 1 0 1 1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1 1 0 ## [35] 0 1 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 ## [69] 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 ## [103] 0 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0 1 ## [137] 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 ## ## $weights[[12]] ## [1] 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 1 0 1 0 1 1 1 0 ## [35] 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 0 ## [69] 1 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 ## [103] 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 ## [137] 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 1 ## ## $weights[[13]] ## [1] 0 1 0 0 1 1 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 ## [35] 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 0 1 1 1 ## [69] 0 1 0 0 0 0 1 0 0 0 1 1 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 0 1 ## [103] 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 ## [137] 1 1 1 1 1 0 1 0 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 ## ## $weights[[14]] ## [1] 0 1 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 0 0 1 1 0 0 0 1 ## [35] 1 0 0 1 0 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 ## [69] 1 1 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1 0 1 0 ## [103] 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 ## [137] 1 1 0 0 0 1 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 0 0 0 1 0 ## ## $weights[[15]] ## [1] 0 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 ## [35] 1 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 ## [69] 1 0 1 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 0 0 1 ## [103] 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0 1 1 0 1 0 0 1 ## [137] 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 1 ## ## $weights[[16]] ## [1] 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 1 0 0 ## [35] 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 0 1 0 1 ## [69] 1 0 1 0 1 0 1 1 1 0 1 0 0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 0 0 1 1 1 1 1 ## [103] 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 1 1 1 1 1 0 0 0 1 0 ## [137] 1 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 0 1 1 0 ## ## $weights[[17]] ## [1] 1 1 1 0 1 0 1 0 1 1 0 1 0 1 1 1 1 0 0 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 ## [35] 0 1 1 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 0 1 1 1 0 1 1 ## [69] 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 ## [103] 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 1 1 0 ## [137] 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 ## ## $weights[[18]] ## [1] 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1 1 1 ## [35] 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 0 ## [69] 0 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0 ## [103] 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 1 1 0 ## [137] 1 0 0 1 0 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1 0 1 0 ## ## $weights[[19]] ## [1] 1 0 0 1 0 0 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 ## [35] 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 1 ## [69] 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1 0 1 0 1 1 1 0 1 ## [103] 1 0 1 0 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 ## [137] 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 1 0 0 ## ## $weights[[20]] ## [1] 1 1 0 1 1 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0 ## [35] 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 0 ## [69] 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 ## [103] 1 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 ## [137] 0 0 0 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 1 1 0 1 0 ## ## $weights[[21]] ## [1] 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 ## [35] 0 1 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 0 0 ## [69] 0 1 0 1 1 0 1 1 1 0 0 0 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 0 1 0 0 0 1 1 ## [103] 0 1 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 ## [137] 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 1 0 1 0 1 1 0 1 ## ## $weights[[22]] ## [1] 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 ## [35] 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 0 0 ## [69] 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 0 1 0 1 ## [103] 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1 ## [137] 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 1 1 0 ## ## $weights[[23]] ## [1] 1 0 0 1 0 1 1 1 0 1 0 1 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 ## [35] 1 0 0 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 1 0 1 ## [69] 0 1 0 1 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 ## [103] 1 0 0 1 1 1 1 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 1 1 1 ## [137] 1 0 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 1 ## ## $weights[[24]] ## [1] 0 0 1 1 1 1 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 ## [35] 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 ## [69] 0 0 0 1 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 ## [103] 0 0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 1 0 ## [137] 0 0 0 1 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 ## ## $weights[[25]] ## [1] 1 1 0 1 0 1 0 0 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 ## [35] 0 0 1 0 1 0 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0 ## [69] 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 ## [103] 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 ## [137] 0 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1 ## ## $weights[[26]] ## [1] 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 0 1 1 1 1 0 0 1 0 1 1 1 0 0 1 0 ## [35] 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 1 0 0 1 0 1 1 1 ## [69] 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 ## [103] 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 0 0 1 0 1 1 1 ## [137] 0 1 0 1 1 1 1 0 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 ## ## $weights[[27]] ## [1] 1 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 ## [35] 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 1 1 1 0 1 ## [69] 1 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 1 1 0 1 1 1 ## [103] 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 ## [137] 0 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 ## ## $weights[[28]] ## [1] 1 1 0 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 1 1 1 0 1 1 1 1 0 1 ## [35] 0 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 ## [69] 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 0 1 1 0 1 0 1 0 0 1 1 1 1 ## [103] 1 1 1 1 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 1 0 1 ## [137] 1 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 ## ## $weights[[29]] ## [1] 1 1 0 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 1 ## [35] 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 ## [69] 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 0 1 1 ## [103] 0 1 1 0 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1 1 1 0 1 0 ## [137] 1 1 1 1 0 1 0 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 1 1 ## ## $weights[[30]] ## [1] 0 0 1 0 0 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 ## [35] 1 1 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 1 1 0 1 0 0 1 0 1 1 1 1 0 1 0 1 1 ## [69] 1 1 1 1 1 0 1 0 0 1 0 1 0 0 1 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 1 0 0 0 ## [103] 0 1 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 ## [137] 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 ## ## $weights[[31]] ## [1] 1 0 0 1 0 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 0 ## [35] 1 1 0 1 1 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 1 1 ## [69] 0 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1 ## [103] 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 1 ## [137] 1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 1 ## ## $weights[[32]] ## [1] 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 1 ## [35] 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 1 1 1 1 1 0 1 1 1 0 0 1 0 1 0 1 0 1 ## [69] 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0 ## [103] 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 1 1 ## [137] 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0 1 ## ## $weights[[33]] ## [1] 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 ## [35] 1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 0 ## [69] 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 ## [103] 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 0 1 0 1 1 0 1 ## [137] 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0 1 1 0 0 1 1 ## ## $weights[[34]] ## [1] 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 0 0 1 1 0 0 0 1 1 0 1 1 1 ## [35] 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 1 0 1 ## [69] 1 1 1 1 1 1 0 0 1 0 1 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 ## [103] 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 ## [137] 1 0 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 ## ## $weights[[35]] ## [1] 1 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 1 1 1 1 0 0 0 ## [35] 1 1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 0 1 ## [69] 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1 ## [103] 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 1 0 ## [137] 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 ## ## $weights[[36]] ## [1] 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 1 ## [35] 1 0 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 ## [69] 1 0 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0 1 1 1 0 0 1 ## [103] 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1 1 ## [137] 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 0 0 ## ## $weights[[37]] ## [1] 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 ## [35] 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1 ## [69] 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 ## [103] 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 ## [137] 1 1 1 1 0 1 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1 ## ## $weights[[38]] ## [1] 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1 ## [35] 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 ## [69] 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 ## [103] 0 0 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 1 0 1 ## [137] 1 0 1 0 0 0 1 1 0 1 1 0 1 0 1 0 1 0 0 0 1 1 1 0 1 0 ## ## $weights[[39]] ## [1] 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 1 ## [35] 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 0 1 1 1 1 ## [69] 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 ## [103] 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 ## [137] 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 ## ## $weights[[40]] ## [1] 1 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 ## [35] 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 0 0 0 ## [69] 0 0 1 1 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 ## [103] 1 1 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 0 1 ## [137] 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 0 ## ## $weights[[41]] ## [1] 0 1 0 0 0 0 0 1 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 ## [35] 1 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 1 ## [69] 0 1 0 0 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 0 1 0 1 1 0 1 1 1 ## [103] 0 1 1 0 1 0 0 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 ## [137] 1 1 1 0 1 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 1 ## ## $weights[[42]] ## [1] 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 ## [35] 0 1 1 0 0 1 0 0 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 0 0 1 0 1 1 0 ## [69] 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 1 1 ## [103] 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 0 ## [137] 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 ## ## $weights[[43]] ## [1] 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 1 ## [35] 0 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 1 ## [69] 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0 1 ## [103] 0 1 1 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 ## [137] 0 0 0 1 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 ## ## $weights[[44]] ## [1] 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 1 0 1 0 0 0 0 1 0 1 ## [35] 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 0 ## [69] 1 1 1 1 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0 1 1 1 0 1 1 ## [103] 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 ## [137] 0 1 1 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 ## ## $weights[[45]] ## [1] 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 ## [35] 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 0 ## [69] 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 ## [103] 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 0 1 0 1 ## [137] 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 ## ## $weights[[46]] ## [1] 1 1 0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 1 0 1 ## [35] 1 1 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 ## [69] 1 0 0 0 1 1 1 0 0 1 0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 ## [103] 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 ## [137] 0 0 1 0 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 ## ## $weights[[47]] ## [1] 0 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1 0 1 0 0 0 0 1 1 0 1 1 1 1 1 1 1 ## [35] 1 1 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 ## [69] 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 ## [103] 1 1 0 1 1 1 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 ## [137] 1 1 1 0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 ## ## $weights[[48]] ## [1] 0 1 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 ## [35] 1 1 1 1 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 0 0 1 0 1 1 0 0 1 ## [69] 1 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1 1 ## [103] 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 1 1 0 1 ## [137] 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0 1 0 1 0 ## ## $weights[[49]] ## [1] 1 1 1 1 0 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 1 0 0 0 0 0 1 0 1 0 1 1 1 ## [35] 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 0 0 1 0 0 1 ## [69] 0 1 1 1 1 0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 ## [103] 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 ## [137] 0 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 ## ## $weights[[50]] ## [1] 1 0 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0 ## [35] 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 0 ## [69] 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1 ## [103] 0 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 1 0 0 1 0 1 0 ## [137] 1 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 0 0 1 1 ## ## $weights[[51]] ## [1] 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 ## [35] 1 1 1 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 0 1 1 0 1 1 0 1 1 1 ## [69] 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 1 0 0 0 0 0 1 1 ## [103] 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 ## [137] 1 0 1 1 0 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 0 ## ## $weights[[52]] ## [1] 1 0 1 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1 ## [35] 0 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 1 1 ## [69] 1 1 1 0 1 0 0 1 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 0 0 0 1 1 1 1 ## [103] 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1 0 0 1 1 1 1 ## [137] 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1 ## ## $weights[[53]] ## [1] 1 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 0 0 1 ## [35] 0 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 ## [69] 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 ## [103] 0 1 1 1 1 0 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 0 ## [137] 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 ## ## $weights[[54]] ## [1] 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 ## [35] 1 0 1 0 1 1 1 1 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 ## [69] 1 0 1 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 1 0 1 ## [103] 1 1 1 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 ## [137] 1 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0 ## ## $weights[[55]] ## [1] 1 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 ## [35] 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 1 0 1 ## [69] 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0 1 ## [103] 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 0 1 0 0 1 1 1 1 0 1 1 0 0 0 ## [137] 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 ## ## $weights[[56]] ## [1] 1 1 0 0 1 1 0 1 0 0 0 1 1 1 1 1 1 0 1 1 0 1 0 0 0 0 1 1 1 1 1 0 0 0 ## [35] 0 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0 0 ## [69] 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 0 1 1 1 ## [103] 1 1 0 0 1 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 1 1 1 1 0 ## [137] 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 ## ## $weights[[57]] ## [1] 0 1 1 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1 0 ## [35] 0 1 0 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 ## [69] 1 1 1 1 1 0 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 0 1 ## [103] 0 0 0 1 0 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 1 ## [137] 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 ## ## $weights[[58]] ## [1] 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 ## [35] 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 ## [69] 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 1 0 1 1 1 ## [103] 1 1 1 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 ## [137] 0 1 0 0 0 0 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 ## ## $weights[[59]] ## [1] 1 1 0 1 0 1 0 1 0 0 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 0 1 0 0 ## [35] 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 ## [69] 0 0 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0 0 0 0 1 1 1 0 ## [103] 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 ## [137] 0 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 0 0 0 ## ## $weights[[60]] ## [1] 1 1 0 1 0 1 0 0 0 1 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 ## [35] 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 1 ## [69] 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 1 0 1 0 1 0 ## [103] 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 1 0 1 ## [137] 1 1 1 1 0 1 0 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 ## ## $weights[[61]] ## [1] 0 1 0 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1 ## [35] 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 0 1 ## [69] 0 1 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 0 ## [103] 1 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 ## [137] 0 1 0 0 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 ## ## $weights[[62]] ## [1] 0 0 0 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 1 0 0 0 ## [35] 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 ## [69] 1 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 0 0 0 1 1 0 1 1 1 1 ## [103] 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 ## [137] 0 0 0 1 1 1 0 1 1 1 1 1 1 0 0 1 0 1 1 0 1 0 1 0 0 0 ## ## $weights[[63]] ## [1] 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 1 ## [35] 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 1 0 ## [69] 1 0 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 ## [103] 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 ## [137] 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0 0 1 1 0 0 ## ## $weights[[64]] ## [1] 1 1 0 1 1 1 1 1 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 ## [35] 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 0 ## [69] 0 0 1 1 0 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1 ## [103] 1 1 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1 0 0 0 1 0 1 0 1 0 1 ## [137] 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1 0 ## ## $weights[[65]] ## [1] 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 0 0 0 1 0 0 1 0 0 1 1 1 0 1 1 ## [35] 0 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 1 1 1 ## [69] 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 1 0 0 0 1 1 0 1 0 0 0 1 1 1 0 1 0 ## [103] 0 1 1 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0 ## [137] 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 ## ## $weights[[66]] ## [1] 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 ## [35] 1 0 1 0 0 1 0 1 1 0 1 1 1 0 0 0 1 0 1 1 1 0 1 0 1 1 0 0 1 0 1 1 0 1 ## [69] 0 1 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 1 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0 ## [103] 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 ## [137] 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 ## ## $weights[[67]] ## [1] 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 1 ## [35] 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0 1 1 1 ## [69] 1 0 0 0 1 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 ## [103] 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 ## [137] 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 1 1 0 1 ## ## $weights[[68]] ## [1] 1 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 0 1 1 ## [35] 0 0 1 0 1 0 0 0 0 1 0 1 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1 0 0 1 1 ## [69] 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 0 ## [103] 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 ## [137] 1 1 0 1 0 1 0 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1 ## ## $weights[[69]] ## [1] 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 0 0 1 0 ## [35] 0 0 1 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 ## [69] 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 ## [103] 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 ## [137] 1 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 ## ## $weights[[70]] ## [1] 0 1 0 0 1 1 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 1 0 ## [35] 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 1 1 0 1 0 ## [69] 0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 ## [103] 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1 0 0 0 1 1 ## [137] 1 1 0 1 1 0 1 0 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 ## ## $weights[[71]] ## [1] 1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 ## [35] 0 0 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0 0 1 0 1 0 1 1 ## [69] 1 0 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 0 1 ## [103] 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 0 1 ## [137] 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 1 ## ## $weights[[72]] ## [1] 0 0 0 0 1 0 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 ## [35] 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 ## [69] 1 1 1 0 0 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 1 1 0 1 1 0 0 1 1 ## [103] 0 0 0 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 0 1 0 1 1 ## [137] 0 1 1 1 1 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 ## ## $weights[[73]] ## [1] 1 0 1 1 0 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 ## [35] 0 0 1 0 1 1 0 1 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 ## [69] 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0 ## [103] 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 1 1 1 ## [137] 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 ## ## $weights[[74]] ## [1] 1 0 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 0 ## [35] 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 1 ## [69] 0 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 ## [103] 1 0 0 1 1 1 1 0 1 0 1 0 1 0 0 1 1 1 1 1 0 1 0 0 0 0 1 1 1 0 0 0 0 1 ## [137] 0 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 0 1 0 1 1 1 ## ## $weights[[75]] ## [1] 1 1 1 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 ## [35] 1 0 1 0 1 1 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 0 1 1 0 0 1 1 ## [69] 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 ## [103] 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 1 1 0 ## [137] 1 0 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 ## ## $weights[[76]] ## [1] 0 1 0 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1 0 ## [35] 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 0 0 1 ## [69] 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 0 1 1 1 1 0 ## [103] 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 ## [137] 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 ## ## $weights[[77]] ## [1] 1 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 0 ## [35] 1 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 0 1 1 0 0 0 1 0 1 1 1 1 1 ## [69] 1 1 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 ## [103] 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 ## [137] 0 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 1 1 0 ## ## $weights[[78]] ## [1] 0 0 1 1 0 0 1 1 0 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 1 0 1 ## [35] 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 1 0 1 1 0 0 1 0 0 ## [69] 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 ## [103] 1 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 ## [137] 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 ## ## $weights[[79]] ## [1] 0 0 0 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0 0 1 ## [35] 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 ## [69] 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 0 0 1 0 ## [103] 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 1 0 ## [137] 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 ## ## $weights[[80]] ## [1] 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 ## [35] 0 0 1 1 1 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 ## [69] 0 1 1 1 1 0 1 0 0 0 0 1 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 0 1 1 ## [103] 0 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 1 0 ## [137] 0 1 1 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 1 0 ## ## $weights[[81]] ## [1] 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 ## [35] 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 0 0 ## [69] 0 1 0 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 ## [103] 1 1 1 0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 1 1 1 1 0 1 ## [137] 0 0 1 1 0 0 1 1 1 0 1 1 1 0 0 1 0 0 1 0 0 0 1 1 1 1 ## ## $weights[[82]] ## [1] 1 1 0 1 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 1 ## [35] 0 1 0 0 0 1 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 ## [69] 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 ## [103] 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0 1 1 1 ## [137] 0 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 ## ## $weights[[83]] ## [1] 1 1 0 0 0 1 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 0 1 ## [35] 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 1 1 ## [69] 1 0 0 1 1 1 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 0 0 0 1 0 1 ## [103] 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 ## [137] 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 0 ## ## $weights[[84]] ## [1] 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 ## [35] 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 1 1 0 1 ## [69] 0 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 1 ## [103] 1 1 1 0 1 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 0 1 1 0 ## [137] 0 1 1 0 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 1 0 1 1 0 0 1 ## ## $weights[[85]] ## [1] 0 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 0 1 1 0 0 1 1 0 0 0 1 0 1 0 0 1 1 ## [35] 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 0 0 1 1 ## [69] 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 0 1 ## [103] 1 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0 0 ## [137] 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 ## ## $weights[[86]] ## [1] 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 ## [35] 0 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0 1 1 1 0 ## [69] 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 ## [103] 1 1 1 1 1 1 0 0 0 1 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 0 1 0 ## [137] 1 0 1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 0 0 0 1 ## ## $weights[[87]] ## [1] 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 ## [35] 1 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 1 0 ## [69] 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 ## [103] 1 1 1 1 0 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 ## [137] 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 ## ## $weights[[88]] ## [1] 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1 ## [35] 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 0 1 0 1 0 1 1 0 0 ## [69] 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 1 ## [103] 1 0 1 1 0 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1 1 ## [137] 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 ## ## $weights[[89]] ## [1] 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 1 0 0 1 0 ## [35] 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 ## [69] 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 ## [103] 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 0 0 ## [137] 1 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 0 0 1 0 ## ## $weights[[90]] ## [1] 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 0 ## [35] 1 1 1 1 1 0 0 1 1 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 ## [69] 1 0 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 ## [103] 1 0 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 1 0 1 0 0 1 1 0 1 ## [137] 1 0 1 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 ## ## $weights[[91]] ## [1] 1 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 0 1 ## [35] 1 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 0 ## [69] 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 0 1 0 0 ## [103] 1 0 1 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 ## [137] 0 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 0 1 0 1 1 1 1 ## ## $weights[[92]] ## [1] 1 0 1 1 1 0 1 1 1 1 1 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 ## [35] 1 1 1 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0 ## [69] 0 1 1 0 0 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 1 0 0 1 0 0 1 0 0 ## [103] 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 ## [137] 0 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 ## ## $weights[[93]] ## [1] 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1 ## [35] 1 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 1 0 ## [69] 1 0 0 0 0 1 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0 0 ## [103] 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 ## [137] 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 ## ## $weights[[94]] ## [1] 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 0 1 0 1 1 0 1 1 1 0 1 0 1 ## [35] 0 0 1 0 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 1 ## [69] 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 ## [103] 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 ## [137] 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 ## ## $weights[[95]] ## [1] 1 0 0 1 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 0 ## [35] 0 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 ## [69] 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 1 ## [103] 0 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 ## [137] 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 ## ## $weights[[96]] ## [1] 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 ## [35] 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 ## [69] 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 1 1 0 ## [103] 1 0 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 1 1 0 1 0 1 1 1 0 ## [137] 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 ## ## $weights[[97]] ## [1] 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0 1 0 0 1 ## [35] 0 1 1 1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 ## [69] 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 0 0 1 0 ## [103] 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 0 ## [137] 0 1 0 1 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1 ## ## $weights[[98]] ## [1] 0 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 ## [35] 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 1 0 1 1 0 ## [69] 0 0 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 1 ## [103] 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 ## [137] 0 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0 1 0 ## ## $weights[[99]] ## [1] 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 ## [35] 0 0 0 1 0 1 1 0 0 1 0 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 ## [69] 0 1 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 1 1 ## [103] 0 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0 ## [137] 1 0 1 1 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 1 1 1 0 1 1 ## ## $weights[[100]] ## [1] 0 1 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 ## [35] 1 0 0 1 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 1 ## [69] 1 0 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 ## [103] 1 0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 0 ## [137] 0 0 0 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 ## ## $weights[[101]] ## [1] 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0 1 ## [35] 1 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 ## [69] 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 ## [103] 0 1 1 0 1 1 1 0 1 1 0 1 0 1 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 1 1 ## [137] 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0 ## ## $weights[[102]] ## [1] 0 1 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 0 1 1 0 0 0 0 1 1 1 1 1 0 1 ## [35] 0 0 0 0 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 0 0 1 0 1 ## [69] 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 ## [103] 1 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 0 1 1 1 ## [137] 1 1 1 1 1 0 0 1 0 0 1 1 1 1 0 1 0 1 1 1 0 0 0 1 0 1 ## ## $weights[[103]] ## [1] 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 1 1 0 1 1 0 1 1 1 ## [35] 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1 ## [69] 0 1 1 1 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 ## [103] 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 ## [137] 0 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 ## ## $weights[[104]] ## [1] 1 0 0 1 1 1 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 0 0 1 0 0 1 0 1 1 1 1 ## [35] 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 ## [69] 0 1 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 0 0 1 1 ## [103] 1 1 1 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 ## [137] 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 1 1 1 ## ## $weights[[105]] ## [1] 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 ## [35] 0 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 ## [69] 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0 ## [103] 1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 1 0 1 ## [137] 1 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 0 1 1 1 0 1 0 0 1 0 ## ## $weights[[106]] ## [1] 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 1 0 1 ## [35] 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 ## [69] 0 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 ## [103] 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 ## [137] 0 0 1 1 0 1 0 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 ## ## $weights[[107]] ## [1] 1 1 0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1 0 0 1 0 ## [35] 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 ## [69] 1 0 1 0 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 ## [103] 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 0 0 1 1 1 1 0 1 1 0 ## [137] 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 1 1 1 0 1 1 1 0 ## ## $weights[[108]] ## [1] 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 0 1 1 ## [35] 0 1 1 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 1 1 1 1 1 1 1 0 ## [69] 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0 1 0 1 ## [103] 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 ## [137] 0 1 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 0 0 1 ## ## $weights[[109]] ## [1] 1 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0 1 1 ## [35] 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 ## [69] 0 1 1 0 0 0 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 1 0 1 1 0 0 0 0 ## [103] 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1 1 0 1 1 0 ## [137] 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 1 1 ## ## $weights[[110]] ## [1] 1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 0 0 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 1 1 ## [35] 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 ## [69] 0 0 0 1 1 0 1 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 0 0 1 1 1 ## [103] 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 1 1 0 0 1 0 1 ## [137] 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 1 0 1 ## ## $weights[[111]] ## [1] 1 1 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 ## [35] 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 0 0 1 1 1 0 0 1 1 0 1 ## [69] 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 ## [103] 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0 0 ## [137] 0 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 0 ## ## $weights[[112]] ## [1] 1 1 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 0 0 0 0 0 1 1 1 ## [35] 1 1 1 1 1 0 1 0 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 ## [69] 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 ## [103] 1 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 ## [137] 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 ## ## $weights[[113]] ## [1] 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 ## [35] 1 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 1 0 1 0 1 0 0 1 1 1 1 1 ## [69] 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 ## [103] 1 0 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 0 ## [137] 0 1 1 0 1 0 0 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0 1 1 1 0 ## ## $weights[[114]] ## [1] 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0 1 0 1 0 0 1 ## [35] 1 1 0 0 1 0 1 0 1 1 1 0 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 0 0 ## [69] 0 0 0 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1 1 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 ## [103] 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 1 ## [137] 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0 1 1 1 1 1 ## ## $weights[[115]] ## [1] 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 1 ## [35] 0 1 0 0 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 ## [69] 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 1 ## [103] 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 ## [137] 0 1 1 1 0 1 1 1 0 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 1 ## ## $weights[[116]] ## [1] 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 1 0 1 1 1 1 ## [35] 1 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 ## [69] 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 ## [103] 0 0 1 0 1 0 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 ## [137] 0 1 0 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 1 0 1 ## ## $weights[[117]] ## [1] 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 1 1 1 1 1 ## [35] 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ## [69] 0 1 0 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0 1 1 0 1 0 1 0 1 ## [103] 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 0 0 1 ## [137] 0 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 1 0 0 0 1 ## ## $weights[[118]] ## [1] 0 0 1 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 1 1 1 0 1 0 ## [35] 0 1 0 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0 1 1 ## [69] 1 1 1 1 0 1 1 1 1 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0 1 ## [103] 0 0 0 0 0 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 ## [137] 0 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 ## ## $weights[[119]] ## [1] 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 ## [35] 0 1 0 0 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1 ## [69] 1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 ## [103] 0 1 0 1 0 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 ## [137] 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 ## ## $weights[[120]] ## [1] 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 ## [35] 1 1 0 1 1 1 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 ## [69] 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 1 0 ## [103] 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 ## [137] 1 1 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 1 ## ## $weights[[121]] ## [1] 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 ## [35] 0 1 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 1 1 0 0 1 0 1 ## [69] 0 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 1 ## [103] 0 1 1 0 1 0 1 1 1 0 0 0 1 1 0 1 1 1 0 1 1 0 0 1 1 1 1 1 0 1 1 0 1 0 ## [137] 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 ## ## $weights[[122]] ## [1] 1 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 0 1 ## [35] 1 0 1 0 1 1 1 0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 ## [69] 0 1 0 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 ## [103] 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 ## [137] 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 1 0 1 1 ## ## $weights[[123]] ## [1] 1 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0 1 0 1 1 1 ## [35] 1 0 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 1 0 ## [69] 1 1 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 0 0 ## [103] 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 0 1 0 1 1 ## [137] 1 0 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 ## ## $weights[[124]] ## [1] 1 1 1 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1 0 1 0 0 ## [35] 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1 0 1 0 ## [69] 0 1 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0 ## [103] 0 0 1 0 1 1 1 1 0 1 1 0 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 ## [137] 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1 0 1 0 0 ## ## $weights[[125]] ## [1] 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 0 1 ## [35] 0 1 1 0 1 1 0 0 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 0 ## [69] 1 1 0 1 1 0 1 0 0 0 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 ## [103] 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 0 1 0 ## [137] 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 1 0 0 1 0 1 0 ## ## $weights[[126]] ## [1] 1 0 1 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 0 0 ## [35] 1 1 0 1 1 0 0 1 0 0 1 0 1 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 0 0 0 1 1 1 ## [69] 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 ## [103] 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 0 1 1 1 1 0 0 1 1 1 0 0 1 0 0 1 ## [137] 1 1 1 0 0 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 0 0 1 ## ## $weights[[127]] ## [1] 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 ## [35] 1 1 0 1 1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 1 1 0 1 1 1 1 1 1 ## [69] 1 1 0 1 1 1 0 0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 0 1 0 1 ## [103] 1 0 1 1 1 1 1 0 0 1 0 1 1 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 ## [137] 1 1 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 ## ## $weights[[128]] ## [1] 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 0 1 ## [35] 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 ## [69] 1 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0 ## [103] 1 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1 1 0 ## [137] 1 0 0 0 0 1 0 1 1 1 0 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1 ## ## $weights[[129]] ## [1] 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 0 1 0 0 1 0 1 1 ## [35] 1 0 0 0 0 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 0 1 ## [69] 0 1 1 1 0 0 1 0 1 1 0 1 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 ## [103] 1 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 1 1 1 0 0 ## [137] 1 1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0 ## ## $weights[[130]] ## [1] 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 ## [35] 1 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 0 ## [69] 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 ## [103] 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 ## [137] 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 0 1 0 1 1 0 0 ## ## $weights[[131]] ## [1] 1 1 1 0 0 1 0 1 0 1 1 0 1 1 1 0 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 ## [35] 1 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 1 1 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0 1 ## [69] 1 1 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 0 1 1 1 0 1 0 0 1 0 0 1 1 0 0 ## [103] 0 1 1 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 ## [137] 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 0 0 1 0 0 1 1 ## ## $weights[[132]] ## [1] 1 0 1 0 1 0 1 1 1 0 0 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 ## [35] 1 0 1 1 0 0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 0 1 0 0 0 1 1 0 ## [69] 1 1 1 1 0 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 1 ## [103] 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1 ## [137] 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 0 0 1 1 0 1 ## ## $weights[[133]] ## [1] 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 0 1 1 1 1 1 ## [35] 1 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 ## [69] 0 1 1 0 0 0 1 1 0 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 ## [103] 0 1 1 1 0 0 1 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 ## [137] 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 0 ## ## $weights[[134]] ## [1] 0 1 1 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 0 0 ## [35] 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 ## [69] 1 0 1 1 1 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 0 0 1 ## [103] 0 1 1 0 1 0 0 0 1 1 1 1 0 1 0 0 1 1 1 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 ## [137] 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 ## ## $weights[[135]] ## [1] 1 0 1 0 1 1 1 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 ## [35] 0 0 0 1 0 1 1 1 1 0 1 0 0 0 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 ## [69] 0 0 1 1 1 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 ## [103] 0 1 0 0 1 0 1 0 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 ## [137] 0 1 1 1 1 1 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 0 0 ## ## $weights[[136]] ## [1] 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 0 ## [35] 1 0 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 ## [69] 0 0 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 1 ## [103] 1 1 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 ## [137] 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 ## ## $weights[[137]] ## [1] 1 1 1 1 0 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 ## [35] 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0 ## [69] 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 ## [103] 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 1 ## [137] 0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0 0 0 0 ## ## $weights[[138]] ## [1] 0 1 0 1 1 1 0 1 0 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 ## [35] 0 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 ## [69] 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 1 1 ## [103] 1 1 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 ## [137] 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 1 ## ## $weights[[139]] ## [1] 1 1 1 1 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 ## [35] 1 0 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 1 1 1 1 0 0 1 0 1 0 ## [69] 1 1 0 0 1 0 1 1 0 0 1 1 0 1 1 1 0 0 0 1 1 0 1 1 0 0 1 1 1 0 1 0 1 0 ## [103] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 0 ## [137] 1 1 1 0 0 0 1 0 1 1 0 0 1 1 1 0 0 1 1 0 1 1 1 1 0 0 ## ## $weights[[140]] ## [1] 1 0 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 1 0 1 ## [35] 0 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0 1 ## [69] 0 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 1 0 1 ## [103] 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 1 0 1 0 0 ## [137] 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0 ## ## $weights[[141]] ## [1] 1 1 1 0 1 1 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0 ## [35] 1 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 0 0 1 0 0 1 0 1 ## [69] 1 0 1 1 0 1 1 1 0 0 1 0 0 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 ## [103] 0 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 ## [137] 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 ## ## $weights[[142]] ## [1] 1 1 0 1 0 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 1 0 ## [35] 0 1 1 1 1 0 1 1 0 0 1 0 1 1 1 1 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ## [69] 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 1 ## [103] 0 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 1 0 1 1 0 ## [137] 1 0 1 1 1 0 1 1 1 1 1 0 0 1 0 1 0 1 1 1 0 1 1 1 1 0 ## ## $weights[[143]] ## [1] 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0 ## [35] 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 1 0 ## [69] 1 0 1 0 1 0 1 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 1 1 1 0 ## [103] 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 ## [137] 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 ## ## $weights[[144]] ## [1] 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 0 1 1 1 0 0 1 0 0 1 1 ## [35] 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 ## [69] 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 ## [103] 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 ## [137] 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 0 1 1 ## ## $weights[[145]] ## [1] 0 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1 ## [35] 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 ## [69] 0 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 ## [103] 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 0 1 0 1 1 1 0 ## [137] 1 1 0 1 1 1 0 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 ## ## $weights[[146]] ## [1] 0 1 1 1 0 1 0 1 1 1 1 0 1 0 0 1 0 1 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 0 ## [35] 0 0 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 0 1 ## [69] 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1 ## [103] 1 0 1 1 0 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 ## [137] 1 0 0 0 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0 1 ## ## $weights[[147]] ## [1] 1 1 1 1 1 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 0 0 1 0 1 1 0 1 0 1 0 0 ## [35] 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 0 1 0 ## [69] 1 0 1 1 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 0 0 1 1 1 0 0 1 0 1 1 ## [103] 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 ## [137] 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 ## ## $weights[[148]] ## [1] 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0 1 1 1 1 1 0 1 1 1 ## [35] 1 1 0 1 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 ## [69] 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 0 ## [103] 1 0 0 0 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 1 0 ## [137] 0 1 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 ## ## $weights[[149]] ## [1] 1 1 1 1 1 0 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 ## [35] 0 0 1 0 1 0 0 0 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 1 1 1 ## [69] 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 0 1 0 1 1 1 0 ## [103] 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0 0 1 1 0 1 1 0 1 1 1 0 1 ## [137] 1 0 1 1 1 1 0 1 0 1 0 0 0 1 1 1 1 1 1 1 0 1 0 1 0 0 ## ## $weights[[150]] ## [1] 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 ## [35] 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 1 0 1 ## [69] 0 1 0 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 ## [103] 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 ## [137] 0 0 0 0 0 1 1 0 0 0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 ## ## $weights[[151]] ## [1] 1 0 1 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 ## [35] 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 ## [69] 0 1 0 1 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 0 ## [103] 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 ## [137] 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 1 0 1 1 0 1 ## ## $weights[[152]] ## [1] 1 0 0 1 1 1 1 1 0 0 1 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 1 ## [35] 1 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 1 ## [69] 1 1 1 0 0 0 0 1 1 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 ## [103] 0 1 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 1 1 1 ## [137] 1 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 ## ## $weights[[153]] ## [1] 1 1 1 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 ## [35] 1 1 1 1 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 1 0 1 0 1 1 1 0 1 ## [69] 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 1 ## [103] 0 0 1 1 0 1 0 1 1 0 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 1 1 1 0 1 1 ## [137] 1 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1 1 ## ## $weights[[154]] ## [1] 0 1 1 1 0 1 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 ## [35] 0 0 1 1 0 1 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 ## [69] 0 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 ## [103] 1 1 1 1 1 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 0 0 1 1 1 ## [137] 1 0 0 0 1 1 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 1 1 0 1 ## ## $weights[[155]] ## [1] 0 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0 ## [35] 0 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 ## [69] 1 0 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 1 1 1 0 0 1 0 ## [103] 0 1 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0 1 0 0 ## [137] 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 1 ## ## $weights[[156]] ## [1] 1 0 0 1 1 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 0 1 0 ## [35] 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 ## [69] 0 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 0 1 0 0 0 1 1 1 ## [103] 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 ## [137] 0 0 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 ## ## $weights[[157]] ## [1] 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1 ## [35] 1 1 1 1 1 1 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 1 1 1 ## [69] 0 1 0 1 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 ## [103] 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 ## [137] 1 1 1 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1 0 ## ## $weights[[158]] ## [1] 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 ## [35] 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 1 ## [69] 1 1 1 0 0 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 ## [103] 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 0 1 1 1 0 0 0 0 ## [137] 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 ## ## $weights[[159]] ## [1] 1 1 1 0 0 0 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 0 1 1 1 0 ## [35] 1 1 1 0 0 0 1 0 1 1 0 0 0 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 ## [69] 1 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 1 1 ## [103] 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 ## [137] 1 1 0 0 0 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 ## ## $weights[[160]] ## [1] 1 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 0 1 ## [35] 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1 0 ## [69] 1 0 0 0 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 1 1 1 ## [103] 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 ## [137] 1 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1 1 ## ## $weights[[161]] ## [1] 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 1 0 1 1 1 1 0 1 0 0 1 1 1 0 1 ## [35] 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 ## [69] 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 1 0 1 ## [103] 1 0 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 1 1 ## [137] 1 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 ## ## $weights[[162]] ## [1] 1 1 1 0 1 1 1 0 1 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 1 0 1 1 ## [35] 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 0 0 1 0 1 1 0 1 1 0 1 0 ## [69] 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 0 0 1 1 0 1 0 0 1 1 1 1 1 ## [103] 0 1 1 0 1 1 0 1 0 0 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 ## [137] 1 0 1 1 1 0 1 1 1 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 ## ## $weights[[163]] ## [1] 1 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 ## [35] 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 0 1 ## [69] 1 1 0 1 0 1 0 0 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 ## [103] 1 1 1 0 1 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 ## [137] 1 1 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 ## ## $weights[[164]] ## [1] 1 0 1 1 0 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 1 1 1 0 1 1 ## [35] 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 ## [69] 1 1 1 1 1 0 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 1 ## [103] 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 ## [137] 1 1 0 0 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 0 0 0 1 ## ## $weights[[165]] ## [1] 0 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 1 1 1 1 0 ## [35] 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 ## [69] 1 1 0 1 0 1 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 1 ## [103] 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 ## [137] 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 ## ## $weights[[166]] ## [1] 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 0 1 1 ## [35] 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0 1 1 ## [69] 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 ## [103] 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1 ## [137] 1 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 ## ## $weights[[167]] ## [1] 1 1 1 1 0 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1 ## [35] 0 1 1 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 ## [69] 0 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 ## [103] 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 ## [137] 1 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 ## ## $weights[[168]] ## [1] 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 1 0 1 0 0 0 1 ## [35] 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 0 0 1 0 0 0 1 1 ## [69] 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 1 1 0 1 0 0 0 1 1 1 ## [103] 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 1 0 1 ## [137] 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 ## ## $weights[[169]] ## [1] 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 1 ## [35] 0 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 0 ## [69] 1 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 ## [103] 1 0 0 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 0 0 ## [137] 1 0 0 1 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 1 ## ## $weights[[170]] ## [1] 1 1 1 0 0 1 1 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 0 0 0 1 ## [35] 0 0 1 1 1 1 1 0 1 0 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 0 1 ## [69] 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 ## [103] 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 1 1 1 0 ## [137] 0 0 0 1 0 1 0 0 0 1 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 0 ## ## $weights[[171]] ## [1] 0 1 1 1 1 1 0 1 0 0 0 1 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 ## [35] 1 1 1 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 0 0 0 ## [69] 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 ## [103] 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 ## [137] 1 0 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0 1 1 ## ## $weights[[172]] ## [1] 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 0 1 1 1 0 ## [35] 1 1 1 0 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 ## [69] 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 ## [103] 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 ## [137] 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 ## ## $weights[[173]] ## [1] 0 0 1 0 1 1 1 0 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1 0 1 0 1 1 ## [35] 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1 0 ## [69] 0 1 1 0 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 ## [103] 1 1 1 0 1 1 1 0 1 0 1 1 1 0 1 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 ## [137] 0 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 0 ## ## $weights[[174]] ## [1] 0 0 0 0 1 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 ## [35] 0 0 1 0 1 0 0 1 1 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 ## [69] 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 ## [103] 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 0 ## [137] 0 1 1 1 0 1 1 0 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 ## ## $weights[[175]] ## [1] 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 ## [35] 1 0 1 1 1 1 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 1 1 1 1 ## [69] 0 1 0 1 1 0 1 1 1 1 1 0 1 1 0 0 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0 ## [103] 1 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 ## [137] 1 0 0 1 1 1 1 1 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 1 1 ## ## $weights[[176]] ## [1] 1 1 0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1 1 ## [35] 0 1 0 1 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 1 1 ## [69] 0 1 1 0 1 1 0 0 1 1 0 1 0 1 0 1 1 0 1 1 1 0 0 0 1 1 0 1 0 1 0 1 0 0 ## [103] 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 ## [137] 1 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 1 0 0 0 1 0 0 1 1 1 ## ## $weights[[177]] ## [1] 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0 0 0 1 0 1 1 0 0 0 0 1 ## [35] 0 1 1 1 1 0 1 0 1 0 1 0 0 0 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1 0 1 0 0 ## [69] 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 ## [103] 1 0 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 ## [137] 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 ## ## $weights[[178]] ## [1] 1 1 1 1 0 0 1 1 1 0 0 0 1 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 ## [35] 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 ## [69] 0 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 ## [103] 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 ## [137] 1 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 ## ## $weights[[179]] ## [1] 0 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 0 1 1 0 0 ## [35] 1 1 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 ## [69] 1 0 1 0 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 1 0 1 1 ## [103] 0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 ## [137] 1 1 1 0 0 0 1 1 0 0 1 0 1 1 1 1 1 1 1 0 0 1 0 1 1 0 ## ## $weights[[180]] ## [1] 0 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 ## [35] 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 ## [69] 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 1 ## [103] 0 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 ## [137] 1 1 1 1 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 ## ## $weights[[181]] ## [1] 0 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 ## [35] 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 ## [69] 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 0 0 0 0 ## [103] 1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1 ## [137] 1 0 1 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 ## ## $weights[[182]] ## [1] 1 1 0 1 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 1 0 ## [35] 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 1 1 ## [69] 1 1 0 0 1 0 1 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 1 0 0 1 0 0 ## [103] 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 ## [137] 1 1 0 1 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 0 0 1 ## ## $weights[[183]] ## [1] 1 0 1 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 ## [35] 0 1 0 1 1 0 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 ## [69] 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 ## [103] 1 1 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 ## [137] 1 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 ## ## $weights[[184]] ## [1] 1 1 1 1 0 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 0 0 1 ## [35] 0 1 1 1 1 1 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 1 ## [69] 0 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 ## [103] 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 0 0 ## [137] 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 0 1 ## ## $weights[[185]] ## [1] 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0 1 1 0 ## [35] 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 ## [69] 1 1 0 1 1 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 1 ## [103] 1 1 0 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 ## [137] 1 0 0 1 0 0 0 0 1 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 ## ## $weights[[186]] ## [1] 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 1 0 1 1 ## [35] 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 ## [69] 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 0 1 0 1 1 0 0 1 1 1 1 0 1 1 0 1 ## [103] 0 1 1 1 1 1 1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 0 0 1 1 0 0 0 1 ## [137] 1 1 1 0 0 1 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 1 1 1 0 1 ## ## $weights[[187]] ## [1] 0 1 0 1 1 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 ## [35] 0 0 0 1 1 1 1 0 1 0 1 1 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 ## [69] 0 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0 0 1 1 1 0 1 1 1 1 0 1 0 0 0 1 1 1 1 ## [103] 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 ## [137] 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 ## ## $weights[[188]] ## [1] 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 ## [35] 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 1 1 0 0 0 1 0 0 1 1 1 1 ## [69] 1 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 ## [103] 0 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 ## [137] 1 1 1 1 0 1 1 1 1 0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 0 0 ## ## $weights[[189]] ## [1] 0 1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 1 0 0 0 1 1 1 1 1 0 1 1 0 ## [35] 0 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 0 1 ## [69] 0 1 1 0 1 1 1 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 ## [103] 1 1 1 0 1 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 ## [137] 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 ## ## $weights[[190]] ## [1] 1 0 0 0 1 1 1 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 1 1 1 0 1 ## [35] 1 0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 ## [69] 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0 ## [103] 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 0 1 1 0 1 0 0 0 1 1 0 1 1 1 0 ## [137] 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 1 ## ## $weights[[191]] ## [1] 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 0 1 0 ## [35] 0 0 1 1 0 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 ## [69] 1 0 1 0 1 0 0 0 1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 ## [103] 0 1 0 1 0 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1 ## [137] 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 0 1 ## ## $weights[[192]] ## [1] 1 0 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1 ## [35] 1 0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 ## [69] 0 0 1 1 1 1 0 1 1 0 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 0 0 1 1 ## [103] 0 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 ## [137] 1 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1 0 1 1 1 1 0 ## ## $weights[[193]] ## [1] 1 0 0 1 1 1 1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 ## [35] 1 1 0 1 1 1 0 1 0 0 0 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 ## [69] 1 1 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 ## [103] 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 ## [137] 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 ## ## $weights[[194]] ## [1] 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 0 0 ## [35] 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 ## [69] 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 0 0 ## [103] 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 0 1 ## [137] 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1 ## ## $weights[[195]] ## [1] 1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 1 0 1 0 0 ## [35] 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 ## [69] 0 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1 ## [103] 0 1 0 1 1 0 1 0 1 0 1 1 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 1 1 1 ## [137] 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 0 1 1 1 0 ## ## $weights[[196]] ## [1] 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 0 0 1 1 0 1 ## [35] 1 1 1 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 ## [69] 1 0 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 ## [103] 1 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 0 1 0 1 1 0 0 0 0 1 1 1 0 1 1 0 0 1 ## [137] 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 1 1 ## ## $weights[[197]] ## [1] 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 1 ## [35] 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 ## [69] 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 ## [103] 1 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1 0 1 0 1 1 ## [137] 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1 0 0 0 ## ## $weights[[198]] ## [1] 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 0 ## [35] 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 1 ## [69] 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 0 0 0 1 1 0 0 ## [103] 1 1 1 0 1 1 0 0 0 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 0 1 0 ## [137] 0 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 ## ## $weights[[199]] ## [1] 1 0 0 1 1 1 0 1 1 1 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1 ## [35] 1 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 1 1 1 1 1 1 0 1 0 0 ## [69] 0 1 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 1 ## [103] 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 0 0 1 1 0 0 ## [137] 1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 ## ## $weights[[200]] ## [1] 1 1 1 0 1 0 1 0 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 ## [35] 1 1 0 0 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 ## [69] 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1 ## [103] 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 ## [137] 1 0 1 0 0 1 0 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 1 ## ## ## $fitted ## idx (response) ## 1 1 218 ## 2 2 166 ## 3 3 170 ## 4 4 567 ## 5 5 613 ## 6 6 707 ## 7 7 61 ## 8 8 301 ## 9 9 81 ## 10 10 371 ## 11 11 520 ## 12 12 574 ## 13 13 118 ## 14 14 390 ## 15 15 12 ## 16 16 473 ## 17 17 26 ## 18 18 107 ## 19 19 53 ## 20 20 814 ## 21 21 965+ ## 22 22 93 ## 23 23 731 ## 24 24 460 ## 25 25 153 ## 26 26 433 ## 27 27 583 ## 28 28 95 ## 29 29 303 ## 30 30 519 ## 31 31 643 ## 32 32 765 ## 33 33 53 ## 34 34 246 ## 35 35 689 ## 36 36 5 ## 37 37 687 ## 38 38 345 ## 39 39 444 ## 40 40 223 ## 41 41 60 ## 42 42 163 ## 43 43 65 ## 44 44 821+ ## 45 45 428 ## 46 46 230 ## 47 47 840+ ## 48 48 305 ## 49 49 11 ## 50 50 226 ## 51 51 426 ## 52 52 705 ## 53 53 363 ## 54 54 176 ## 55 55 791 ## 56 56 95 ## 57 57 196+ ## 58 58 167 ## 59 59 806+ ## 60 60 284 ## 61 61 641 ## 62 62 147 ## 63 63 740+ ## 64 64 163 ## 65 65 655 ## 66 66 88 ## 67 67 245 ## 68 68 30 ## 69 69 477 ## 70 70 559+ ## 71 71 450 ## 72 72 156 ## 73 73 529+ ## 74 74 429 ## 75 75 351 ## 76 76 15 ## 77 77 181 ## 78 78 283 ## 79 79 13 ## 80 80 212 ## 81 81 524 ## 82 82 288 ## 83 83 363 ## 84 84 199 ## 85 85 550 ## 86 86 54 ## 87 87 558 ## 88 88 207 ## 89 89 92 ## 90 90 60 ## 91 91 551+ ## 92 92 293 ## 93 93 353 ## 94 94 267 ## 95 95 511+ ## 96 96 457 ## 97 97 337 ## 98 98 201 ## 99 99 404+ ## 100 100 222 ## 101 101 62 ## 102 102 458+ ## 103 103 353 ## 104 104 163 ## 105 105 31 ## 106 106 229 ## 107 107 156 ## 108 108 291 ## 109 109 179 ## 110 110 376+ ## 111 111 384+ ## 112 112 268 ## 113 113 292+ ## 114 114 142 ## 115 115 413+ ## 116 116 266+ ## 117 117 320 ## 118 118 181 ## 119 119 285 ## 120 120 301+ ## 121 121 348 ## 122 122 197 ## 123 123 382+ ## 124 124 303+ ## 125 125 296+ ## 126 126 180 ## 127 127 145 ## 128 128 269+ ## 129 129 300+ ## 130 130 284+ ## 131 131 292+ ## 132 132 332+ ## 133 133 285 ## 134 134 259+ ## 135 135 110 ## 136 136 286 ## 137 137 270 ## 138 138 225+ ## 139 139 269 ## 140 140 225+ ## 141 141 243+ ## 142 142 276+ ## 143 143 135 ## 144 144 79 ## 145 145 59 ## 146 146 240+ ## 147 147 202+ ## 148 148 235+ ## 149 149 239 ## 150 150 252+ ## 151 151 221+ ## 152 152 185+ ## 153 153 222+ ## 154 154 183 ## 155 155 211+ ## 156 156 175+ ## 157 157 197+ ## 158 158 203+ ## 159 159 191+ ## 160 160 105+ ## 161 161 174+ ## 162 162 177+ ## ## $terms ## Surv(time, status) ~ inst + age + sex + ph.ecog + ph.karno + ## pat.karno + meal.cal + wt.loss ## attr(,\"variables\") ## list(Surv(time, status), inst, age, sex, ph.ecog, ph.karno, pat.karno, ## meal.cal, wt.loss) ## attr(,\"factors\") ## inst age sex ph.ecog ph.karno pat.karno meal.cal ## Surv(time, status) 0 0 0 0 0 0 0 ## inst 1 0 0 0 0 0 0 ## age 0 1 0 0 0 0 0 ## sex 0 0 1 0 0 0 0 ## ph.ecog 0 0 0 1 0 0 0 ## ph.karno 0 0 0 0 1 0 0 ## pat.karno 0 0 0 0 0 1 0 ## meal.cal 0 0 0 0 0 0 1 ## wt.loss 0 0 0 0 0 0 0 ## wt.loss ## Surv(time, status) 0 ## inst 0 ## age 0 ## sex 0 ## ph.ecog 0 ## ph.karno 0 ## pat.karno 0 ## meal.cal 0 ## wt.loss 1 ## attr(,\"term.labels\") ## [1] \"inst\" \"age\" \"sex\" \"ph.ecog\" \"ph.karno\" ## [6] \"pat.karno\" \"meal.cal\" \"wt.loss\" ## attr(,\"order\") ## [1] 1 1 1 1 1 1 1 1 ## attr(,\"intercept\") ## [1] 1 ## attr(,\"response\") ## [1] 1 ## attr(,\".Environment\") ## ## attr(,\"Formula_with_dot\") ## Surv(time, status) ~ . ## ## attr(,\"Formula_without_dot\") ## Surv(time, status) ~ inst + age + sex + ph.ecog + ph.karno + ## pat.karno + meal.cal + wt.loss ## ## attr(,\"dot\") ## [1] \"sequential\" ## ## $info ## $info$call ## partykit::cforest(formula = formula, data = data, weights = weights, ## control = partykit::ctree_control(minsplit = 20L, maxdepth = Inf, ## teststat = \"quadratic\", testtype = \"Univariate\", mincriterion = 0, ## saveinfo = FALSE), ntree = 200, mtry = 3) ## ## $info$control ## $info$control$criterion ## [1] \"p.value\" ## ## $info$control$logmincriterion ## [1] -Inf ## ## $info$control$minsplit ## [1] 20 ## ## $info$control$minbucket ## [1] 7 ## ## $info$control$minprob ## [1] 0.01 ## ## $info$control$maxvar ## [1] Inf ## ## $info$control$stump ## [1] FALSE ## ## $info$control$nmax ## yx z ## Inf Inf ## ## $info$control$lookahead ## [1] FALSE ## ## $info$control$mtry ## [1] 3 ## ## $info$control$maxdepth ## [1] Inf ## ## $info$control$multiway ## [1] FALSE ## ## $info$control$splittry ## [1] 2 ## ## $info$control$maxsurrogate ## [1] 0 ## ## $info$control$numsurrogate ## [1] FALSE ## ## $info$control$majority ## [1] FALSE ## ## $info$control$caseweights ## [1] TRUE ## ## $info$control$applyfun ## function (X, FUN, ...) ## { ## FUN <- match.fun(FUN) ## if (!is.vector(X) || is.object(X)) ## X <- as.list(X) ## .Internal(lapply(X, FUN)) ## } ## ## ## ## $info$control$saveinfo ## [1] FALSE ## ## $info$control$bonferroni ## [1] FALSE ## ## $info$control$update ## [1] FALSE ## ## $info$control$selectfun ## function (model, trafo, data, subset, weights, whichvar, ctrl) ## { ## args <- list(...) ## ctrl[names(args)] <- args ## .select(model, trafo, data, subset, weights, whichvar, ctrl, ## FUN = .ctree_test) ## } ## ## ## ## $info$control$splitfun ## function (model, trafo, data, subset, weights, whichvar, ctrl) ## { ## args <- list(...) ## ctrl[names(args)] <- args ## .split(model, trafo, data, subset, weights, whichvar, ctrl, ## FUN = .ctree_test) ## } ## ## ## ## $info$control$svselectfun ## function (model, trafo, data, subset, weights, whichvar, ctrl) ## { ## args <- list(...) ## ctrl[names(args)] <- args ## .select(model, trafo, data, subset, weights, whichvar, ctrl, ## FUN = .ctree_test) ## } ## ## ## ## $info$control$svsplitfun ## function (model, trafo, data, subset, weights, whichvar, ctrl) ## { ## args <- list(...) ## ctrl[names(args)] <- args ## .split(model, trafo, data, subset, weights, whichvar, ctrl, ## FUN = .ctree_test) ## } ## ## ## ## $info$control$teststat ## [1] \"quadratic\" ## ## $info$control$splitstat ## [1] \"quadratic\" ## ## $info$control$splittest ## [1] FALSE ## ## $info$control$pargs ## $maxpts ## [1] 25000 ## ## $abseps ## [1] 0.001 ## ## $releps ## [1] 0 ## ## attr(,\"class\") ## [1] \"GenzBretz\" ## ## $info$control$testtype ## [1] \"Univariate\" ## ## $info$control$nresample ## [1] 9999 ## ## $info$control$tol ## [1] 1.490116e-08 ## ## $info$control$intersplit ## [1] FALSE ## ## $info$control$MIA ## [1] FALSE ## ## ## ## $trafo ## function (subset, weights, info, estfun, object, ...) ## list(estfun = Y, unweighted = TRUE) ## ## ## ## $predictf ## ~inst + age + sex + ph.ecog + ph.karno + pat.karno + meal.cal + ## wt.loss ## attr(,\"variables\") ## list(inst, age, sex, ph.ecog, ph.karno, pat.karno, meal.cal, ## wt.loss) ## attr(,\"factors\") ## inst age sex ph.ecog ph.karno pat.karno meal.cal wt.loss ## inst 1 0 0 0 0 0 0 0 ## age 0 1 0 0 0 0 0 0 ## sex 0 0 1 0 0 0 0 0 ## ph.ecog 0 0 0 1 0 0 0 0 ## ph.karno 0 0 0 0 1 0 0 0 ## pat.karno 0 0 0 0 0 1 0 0 ## meal.cal 0 0 0 0 0 0 1 0 ## wt.loss 0 0 0 0 0 0 0 1 ## attr(,\"term.labels\") ## [1] \"inst\" \"age\" \"sex\" \"ph.ecog\" \"ph.karno\" ## [6] \"pat.karno\" \"meal.cal\" \"wt.loss\" ## attr(,\"order\") ## [1] 1 1 1 1 1 1 1 1 ## attr(,\"intercept\") ## [1] 1 ## attr(,\"response\") ## [1] 0 ## attr(,\".Environment\") ## ## attr(,\"Formula_with_dot\") ## Surv(time, status) ~ . ## ## attr(,\"Formula_without_dot\") ## Surv(time, status) ~ inst + age + sex + ph.ecog + ph.karno + ## pat.karno + meal.cal + wt.loss ## ## attr(,\"dot\") ## [1] \"sequential\" ## ## attr(,\"class\") ## [1] \"cforest\" \"constparties\" \"parties\" predict( rf_fit, lung_test, type = \"survival\", eval_time = c(100, 500, 1000) ) %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 3 × 2 ## .eval_time .pred_survival ## ## 1 100 0.886 ## 2 500 0.303 ## 3 1000 0.0443 predict(rf_fit, lung_test, type = \"time\") ## # A tibble: 5 × 1 ## .pred_time ## ## 1 337 ## 2 267 ## 3 230 ## 4 201 ## 5 226 library(tidymodels) library(censored) tidymodels_prefer() data(cancer) lung <- lung %>% drop_na() lung_train <- lung[-c(1:5), ] lung_test <- lung[1:5, ] rf_spec <- rand_forest(trees = 200) %>% set_engine(\"aorsf\") %>% set_mode(\"censored regression\") rf_spec ## Random Forest Model Specification (censored regression) ## ## Main Arguments: ## trees = 200 ## ## Computational engine: aorsf set.seed(1) rf_fit <- rf_spec %>% fit(Surv(time, status) ~ ., data = lung_train) rf_fit ## parsnip model object ## ## ---------- Oblique random survival forest ## ## Linear combinations: Accelerated Cox regression ## N observations: 162 ## N events: 116 ## N trees: 200 ## N predictors total: 8 ## N predictors per node: 3 ## Average leaves per tree: 17 ## Min observations in leaf: 5 ## Min events in leaf: 1 ## OOB stat value: 0.61 ## OOB stat type: Harrell's C-statistic ## Variable importance: anova ## ## ----------------------------------------- predict( rf_fit, lung_test, type = \"survival\", eval_time = c(100, 500, 1000) ) %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 3 × 2 ## .eval_time .pred_survival ## ## 1 100 0.931 ## 2 500 0.399 ## 3 1000 0.0624"},{"path":"https://censored.tidymodels.org/dev/articles/examples.html","id":"survival_reg-models","dir":"Articles","previous_headings":"","what":"survival_reg() models","title":"Fitting and Predicting with censored","text":"’ll model survival lung cancer patients. can define model specific parameters: Now create model fit object: holdout data can predicted survival probability different time points well event time, linear predictor, quantile, hazard. ’ll model survival lung cancer patients. can define model specific parameters: Now create model fit object: holdout data can predicted survival probability different time points well event time, linear predictor, quantile, hazard. ’ll model survival lung cancer patients. can define model: Now create model fit object: holdout data can predicted survival probability different time points well event time, linear predictor, quantile, hazard.","code":"library(tidymodels) library(censored) tidymodels_prefer() data(cancer) lung <- lung %>% drop_na() lung_train <- lung[-c(1:5), ] lung_test <- lung[1:5, ] sr_spec <- survival_reg(dist = \"weibull\") %>% set_engine(\"survival\") %>% set_mode(\"censored regression\") sr_spec ## Parametric Survival Regression Model Specification (censored regression) ## ## Main Arguments: ## dist = weibull ## ## Computational engine: survival set.seed(1) sr_fit <- sr_spec %>% fit(Surv(time, status) ~ ., data = lung_train) sr_fit ## parsnip model object ## ## Call: ## survival::survreg(formula = Surv(time, status) ~ ., data = data, ## dist = ~\"weibull\", model = TRUE) ## ## Coefficients: ## (Intercept) inst age sex ph.ecog ## 6.2802499155 0.0191302849 -0.0085917372 0.4249655608 -0.5022975982 ## ph.karno pat.karno meal.cal wt.loss ## -0.0085852225 0.0058753359 0.0001003211 0.0127001420 ## ## Scale= 0.6902035 ## ## Loglik(model)= -795.2 Loglik(intercept only)= -811.4 ## Chisq= 32.41 on 8 degrees of freedom, p= 7.85e-05 ## n= 162 predict( sr_fit, lung_test, type = \"survival\", eval_time = c(100, 500, 1000) ) %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 3 × 2 ## .eval_time .pred_survival ## ## 1 100 0.912 ## 2 500 0.386 ## 3 1000 0.0742 predict(sr_fit, lung_test, type = \"time\") ## # A tibble: 5 × 1 ## .pred_time ## ## 1 517. ## 2 283. ## 3 361. ## 4 268. ## 5 313. predict(sr_fit, lung_test, type = \"linear_pred\") ## # A tibble: 5 × 1 ## .pred_linear_pred ## ## 1 6.25 ## 2 5.64 ## 3 5.89 ## 4 5.59 ## 5 5.75 predict(sr_fit, lung_test, type = \"quantile\") %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 9 × 2 ## .quantile .pred_quantile ## ## 1 0.1 109. ## 2 0.2 184. ## 3 0.3 254. ## 4 0.4 325. ## 5 0.5 401. ## 6 0.6 487. ## 7 0.7 588. ## 8 0.8 718. ## 9 0.9 919. predict(sr_fit, lung_test, type = \"hazard\", eval_time = c(100, 500, 1000)) %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 3 × 2 ## .eval_time .pred_hazard ## ## 1 100 0.00134 ## 2 500 0.00276 ## 3 1000 0.00377 library(tidymodels) library(censored) tidymodels_prefer() data(cancer) lung <- lung %>% drop_na() lung_train <- lung[-c(1:5), ] lung_test <- lung[1:5, ] sr_spec <- survival_reg(dist = \"weibull\") %>% set_engine(\"flexsurv\") %>% set_mode(\"censored regression\") sr_spec ## Parametric Survival Regression Model Specification (censored regression) ## ## Main Arguments: ## dist = weibull ## ## Computational engine: flexsurv set.seed(1) sr_fit <- sr_spec %>% fit(Surv(time, status) ~ age + sex + ph.ecog, data = lung_train) sr_fit ## parsnip model object ## ## Call: ## flexsurv::flexsurvreg(formula = Surv(time, status) ~ age + sex + ## ph.ecog, data = data, dist = ~\"weibull\") ## ## Estimates: ## data mean est L95% U95% se exp(est) ## shape NA 1.39e+00 1.21e+00 1.61e+00 1.02e-01 NA ## scale NA 5.74e+02 1.99e+02 1.65e+03 3.10e+02 NA ## age 6.24e+01 -9.02e-03 -2.50e-02 6.93e-03 8.14e-03 9.91e-01 ## sex 1.38e+00 4.02e-01 1.17e-01 6.87e-01 1.45e-01 1.50e+00 ## ph.ecog 9.51e-01 -3.17e-01 -5.13e-01 -1.21e-01 1.00e-01 7.28e-01 ## L95% U95% ## shape NA NA ## scale NA NA ## age 9.75e-01 1.01e+00 ## sex 1.12e+00 1.99e+00 ## ph.ecog 5.99e-01 8.86e-01 ## ## N = 162, Events: 116, Censored: 46 ## Total time at risk: 49401 ## Log-likelihood = -800.356, df = 5 ## AIC = 1610.712 predict( sr_fit, lung_test, type = \"survival\", eval_time = c(100, 500, 1000) ) %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 3 × 2 ## .eval_time .pred_survival ## ## 1 100 0.889 ## 2 500 0.330 ## 3 1000 0.0543 predict(sr_fit, lung_test, type = \"time\") ## # A tibble: 5 × 1 ## .pred_time ## ## 1 424. ## 2 341. ## 3 292. ## 4 336. ## 5 327. predict(sr_fit, lung_test, type = \"linear_pred\") ## # A tibble: 5 × 1 ## .pred_linear_pred ## ## 1 6.14 ## 2 5.92 ## 3 5.77 ## 4 5.91 ## 5 5.88 predict(sr_fit, lung_test, type = \"quantile\") %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 9 × 2 ## .quantile .pred_quantile ## ## 1 0.1 92.5 ## 2 0.2 158. ## 3 0.3 222. ## 4 0.4 287. ## 5 0.5 357. ## 6 0.6 436. ## 7 0.7 531. ## 8 0.8 653. ## 9 0.9 845. predict(sr_fit, lung_test, type = \"hazard\", eval_time = c(100, 500, 1000)) %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 3 × 2 ## .eval_time .pred_hazard ## ## 1 100 0.00164 ## 2 500 0.00309 ## 3 1000 0.00406 library(tidymodels) library(censored) tidymodels_prefer() data(cancer) lung <- lung %>% drop_na() lung_train <- lung[-c(1:5), ] lung_test <- lung[1:5, ] sr_spec <- survival_reg() %>% set_engine(\"flexsurvspline\") %>% set_mode(\"censored regression\") sr_spec ## Parametric Survival Regression Model Specification (censored regression) ## ## Computational engine: flexsurvspline set.seed(1) sr_fit <- sr_spec %>% fit(Surv(time, status) ~ age + sex + ph.ecog, data = lung_train) sr_fit ## parsnip model object ## ## Call: ## flexsurv::flexsurvspline(formula = Surv(time, status) ~ age + ## sex + ph.ecog, data = data) ## ## Estimates: ## data mean est L95% U95% se exp(est) ## gamma0 NA -8.85681 -10.78535 -6.92827 0.98397 NA ## gamma1 NA 1.39431 1.19358 1.59504 0.10241 NA ## age 62.41358 0.01258 -0.00966 0.03482 0.01135 1.01266 ## sex 1.38272 -0.56080 -0.95517 -0.16643 0.20121 0.57075 ## ph.ecog 0.95062 0.44213 0.17197 0.71230 0.13784 1.55602 ## L95% U95% ## gamma0 NA NA ## gamma1 NA NA ## age 0.99039 1.03543 ## sex 0.38475 0.84668 ## ph.ecog 1.18764 2.03867 ## ## N = 162, Events: 116, Censored: 46 ## Total time at risk: 49401 ## Log-likelihood = -800.356, df = 5 ## AIC = 1610.712 predict( sr_fit, lung_test, type = \"survival\", eval_time = c(100, 500, 1000) ) %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 3 × 2 ## .eval_time .pred_survival ## ## 1 100 0.889 ## 2 500 0.330 ## 3 1000 0.0543 predict(sr_fit, lung_test, type = \"time\") ## # A tibble: 5 × 1 ## .pred_time ## ## 1 424. ## 2 341. ## 3 292. ## 4 336. ## 5 327. predict(sr_fit, lung_test, type = \"linear_pred\") ## # A tibble: 5 × 1 ## .pred_linear_pred ## ## 1 -8.56 ## 2 -8.26 ## 3 -8.04 ## 4 -8.24 ## 5 -8.20 predict(sr_fit, lung_test, type = \"quantile\") %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 9 × 2 ## .quantile .pred_quantile ## ## 1 0.1 92.5 ## 2 0.2 158. ## 3 0.3 222. ## 4 0.4 287. ## 5 0.5 357. ## 6 0.6 436. ## 7 0.7 531. ## 8 0.8 653. ## 9 0.9 845. predict(sr_fit, lung_test, type = \"hazard\", eval_time = c(100, 500, 1000)) %>% slice(1) %>% tidyr::unnest(col = .pred) ## # A tibble: 3 × 2 ## .eval_time .pred_hazard ## ## 1 100 0.00164 ## 2 500 0.00309 ## 3 1000 0.00406"},{"path":"https://censored.tidymodels.org/dev/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Emil Hvitfeldt. Author. Hannah Frick. Author, maintainer. . Copyright holder, funder.","code":""},{"path":"https://censored.tidymodels.org/dev/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Hvitfeldt E, Frick H (2023). censored: 'parsnip' Engines Survival Models. R package version 0.2.0.9001, https://censored.tidymodels.org, https://github.com/tidymodels/censored.","code":"@Manual{, title = {censored: 'parsnip' Engines for Survival Models}, author = {Emil Hvitfeldt and Hannah Frick}, year = {2023}, note = {R package version 0.2.0.9001, https://censored.tidymodels.org}, url = {https://github.com/tidymodels/censored}, }"},{"path":"https://censored.tidymodels.org/dev/index.html","id":"censored-","dir":"","previous_headings":"","what":"parsnip Engines for Survival Models","title":"parsnip Engines for Survival Models","text":"censored parsnip extension package provides engines various models censored regression survival analysis.","code":""},{"path":"https://censored.tidymodels.org/dev/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"parsnip Engines for Survival Models","text":"can install released version censored CRAN : development version GitHub :","code":"install.packages(\"censored\") # install.packages(\"pak\") pak::pak(\"tidymodels/censored\")"},{"path":"https://censored.tidymodels.org/dev/index.html","id":"available-models-engines-and-prediction-types","dir":"","previous_headings":"","what":"Available models, engines, and prediction types","title":"parsnip Engines for Survival Models","text":"censored provides engines models following table. examples, please see Fitting Predicting censored. time event can predicted type = \"time\", survival probability type = \"survival\", linear predictor type = \"linear_pred\", quantiles event time distribution type = \"quantile\", hazard type = \"hazard\".","code":""},{"path":"https://censored.tidymodels.org/dev/index.html","id":"contributing","dir":"","previous_headings":"","what":"Contributing","title":"parsnip Engines for Survival Models","text":"project released Contributor Code Conduct. contributing project, agree abide terms. questions discussions tidymodels packages, modeling, machine learning, please post RStudio Community. think encountered bug, please submit issue. Either way, learn create share reprex (minimal, reproducible example), clearly communicate code. Check details contributing guidelines tidymodels packages get help.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/aorsf_internal.html","id":null,"dir":"Reference","previous_headings":"","what":"Internal helper function for aorsf objects — aorsf_internal","title":"Internal helper function for aorsf objects — aorsf_internal","text":"Internal helper function aorsf objects","code":""},{"path":"https://censored.tidymodels.org/dev/reference/aorsf_internal.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Internal helper function for aorsf objects — aorsf_internal","text":"","code":"survival_prob_orsf(object, new_data, eval_time, time = deprecated())"},{"path":"https://censored.tidymodels.org/dev/reference/aorsf_internal.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Internal helper function for aorsf objects — aorsf_internal","text":"object model object aorsf::orsf(). new_data data frame predicted. eval_time vector times predict survival probability. time Deprecated favor eval_time. vector times predict survival probability.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/aorsf_internal.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Internal helper function for aorsf objects — aorsf_internal","text":"tibble list column nested tibbles.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/aorsf_internal.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Internal helper function for aorsf objects — aorsf_internal","text":"","code":"library(aorsf) aorsf <- orsf(na.omit(lung), Surv(time, status) ~ age + ph.ecog, n_tree = 10) preds <- survival_prob_orsf(aorsf, lung[1:3, ], eval_time = c(250, 100))"},{"path":"https://censored.tidymodels.org/dev/reference/blackboost_train.html","id":null,"dir":"Reference","previous_headings":"","what":"Boosted trees via mboost — blackboost_train","title":"Boosted trees via mboost — blackboost_train","text":"blackboost_train() wrapper blackboost() function mboost package fits tree-based models model arguments main function.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/blackboost_train.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Boosted trees via mboost — blackboost_train","text":"","code":"blackboost_train( formula, data, family, weights = NULL, teststat = \"quad\", testtype = \"Teststatistic\", mincriterion = 0, minsplit = 10, minbucket = 4, maxdepth = 2, saveinfo = FALSE, ... )"},{"path":"https://censored.tidymodels.org/dev/reference/blackboost_train.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Boosted trees via mboost — blackboost_train","text":"teststat character specifying type test statistic applied variable selection. testtype character specifying compute distribution test statistic. first three options refer p-values criterion, Teststatistic uses raw statistic criterion. Bonferroni Univariate relate p-values asymptotic distribution (adjusted unadjusted). Bonferroni-adjusted Monte-Carlo p-values computed Bonferroni MonteCarlo given. mincriterion value test statistic 1 - p-value must exceeded order implement split. minsplit minimum sum weights node order considered splitting. minbucket minimum sum weights terminal node. maxdepth maximum depth tree. default maxdepth = Inf means restrictions applied tree sizes. saveinfo logical. Store information variable selection procedure info slot partynode. ... arguments pass. x data frame matrix predictors. y factor vector 2 levels","code":""},{"path":"https://censored.tidymodels.org/dev/reference/blackboost_train.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Boosted trees via mboost — blackboost_train","text":"fitted blackboost model.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/blackboost_train.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Boosted trees via mboost — blackboost_train","text":"","code":"blackboost_train(Surv(time, status) ~ age + ph.ecog, data = lung[-14, ], family = mboost::CoxPH() ) #> #> \t Model-based Boosting #> #> Call: #> mboost::blackboost(formula = formula, data = data, family = family, control = mboost::boost_control(), tree_controls = partykit::ctree_control(teststat = \"quad\", testtype = \"Teststatistic\", mincriterion = 0, minsplit = 10, minbucket = 4, maxdepth = 2, saveinfo = FALSE)) #> #> #> \t Cox Partial Likelihood #> #> Loss function: #> #> Number of boosting iterations: mstop = 100 #> Step size: 0.1 #> Offset: 0 #> Number of baselearners: 1 #>"},{"path":"https://censored.tidymodels.org/dev/reference/censored-package.html","id":null,"dir":"Reference","previous_headings":"","what":"censored: parsnip Engines for Survival Models — censored-package","title":"censored: parsnip Engines for Survival Models — censored-package","text":"censored provides engines survival models parsnip package. models include parametric survival models, proportional hazards models, decision trees, boosted trees, bagged trees, random forests. See \"Fitting Predicting censored\" article various examples. See examples classic survival models fit censored.","code":""},{"path":[]},{"path":"https://censored.tidymodels.org/dev/reference/censored-package.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"censored: parsnip Engines for Survival Models — censored-package","text":"Maintainer: Hannah Frick hannah@posit.co (ORCID) Authors: Emil Hvitfeldt emil.hvitfeldt@posit.co (ORCID) contributors: Posit Software, PBC [copyright holder, funder]","code":""},{"path":"https://censored.tidymodels.org/dev/reference/censored-package.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"censored: parsnip Engines for Survival Models — censored-package","text":"","code":"# Accelerated Failure Time (AFT) model fit_aft <- survival_reg(dist = \"weibull\") %>% set_engine(\"survival\") %>% fit(Surv(time, status) ~ age + sex + ph.karno, data = lung) predict(fit_aft, lung[1:3, ], type = \"time\") #> # A tibble: 3 × 1 #> .pred_time #> #> 1 355. #> 2 374. #> 3 416. # Cox's Proportional Hazards model fit_cox <- proportional_hazards() %>% set_engine(\"survival\") %>% fit(Surv(time, status) ~ age + sex + ph.karno, data = lung) predict(fit_cox, lung[1:3, ], type = \"time\") #> # A tibble: 3 × 1 #> .pred_time #> #> 1 325. #> 2 343. #> 3 379. # Andersen-Gill model for recurring events fit_ag <- proportional_hazards() %>% set_engine(\"survival\") %>% fit(Surv(tstart, tstop, status) ~ treat + inherit + age + strata(hos.cat), data = cgd ) predict(fit_ag, cgd[1:3, ], type = \"time\") #> # A tibble: 3 × 1 #> .pred_time #> #> 1 319. #> 2 319. #> 3 319."},{"path":"https://censored.tidymodels.org/dev/reference/coxnet_train.html","id":null,"dir":"Reference","previous_headings":"","what":"Wrapper for glmnet for censored — coxnet_train","title":"Wrapper for glmnet for censored — coxnet_train","text":"used directly users.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/coxnet_train.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Wrapper for glmnet for censored — coxnet_train","text":"","code":"coxnet_train( formula, data, alpha = 1, lambda = NULL, weights = NULL, ..., call = caller_env() )"},{"path":"https://censored.tidymodels.org/dev/reference/coxnet_train.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Wrapper for glmnet for censored — coxnet_train","text":"formula model formula. data data. alpha elasticnet mixing parameter, \\(0\\le\\alpha\\le 1\\). penalty defined $$(1-\\alpha)/2||\\beta||_2^2+\\alpha||\\beta||_1.$$ alpha=1 lasso penalty, alpha=0 ridge penalty. lambda user supplied lambda sequence. Typical usage program compute lambda sequence based nlambda lambda.min.ratio. Supplying value lambda overrides . WARNING: use care. Avoid supplying single value lambda (predictions CV use predict() instead). Supply instead decreasing sequence lambda values. glmnet relies warms starts speed, often faster fit whole path compute single fit. weights observation weights. Can total counts responses proportion matrices. Default 1 observation ... additional parameters passed glmnet::glmnet. call call passed rlang::abort().","code":""},{"path":"https://censored.tidymodels.org/dev/reference/coxnet_train.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Wrapper for glmnet for censored — coxnet_train","text":"fitted glmnet model.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/coxnet_train.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Wrapper for glmnet for censored — coxnet_train","text":"wrapper translates formula interface glmnet's matrix due stratification can specified. glmnet requires response stratified via glmnet::stratifySurv(). censored allows specification via survival::strata() term right-hand side formula. formula used generate stratification information needed stratifying response. formula without strata term used generating model matrix glmnet. wrapper retains original formula pre-processing elements including training data allow predictions fitted model.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/coxnet_train.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Wrapper for glmnet for censored — coxnet_train","text":"","code":"coxnet_mod <- coxnet_train(Surv(time, status) ~ age + sex, data = lung)"},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_coxnet.html","id":null,"dir":"Reference","previous_headings":"","what":"A wrapper for survival probabilities with coxnet models — survival_prob_coxnet","title":"A wrapper for survival probabilities with coxnet models — survival_prob_coxnet","text":"wrapper survival probabilities coxnet models","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_coxnet.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"A wrapper for survival probabilities with coxnet models — survival_prob_coxnet","text":"","code":"survival_prob_coxnet( object, new_data, eval_time, time = deprecated(), output = \"surv\", penalty = NULL, ... )"},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_coxnet.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"A wrapper for survival probabilities with coxnet models — survival_prob_coxnet","text":"object fitted _coxnet object. new_data Data prediction. eval_time vector integers prediction times. time Deprecated favor eval_time. vector integers prediction times. output One \"surv\" \"haz\". penalty Penalty value(s). ... Options pass survival::survfit().","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_coxnet.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"A wrapper for survival probabilities with coxnet models — survival_prob_coxnet","text":"tibble list column nested tibbles.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_coxnet.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"A wrapper for survival probabilities with coxnet models — survival_prob_coxnet","text":"","code":"cox_mod <- proportional_hazards(penalty = 0.1) %>% set_engine(\"glmnet\") %>% fit(Surv(time, status) ~ ., data = lung) survival_prob_coxnet(cox_mod, new_data = lung[1:3, ], eval_time = 300) #> # A tibble: 3 × 1 #> .pred #> #> 1 #> 2 #> 3 "},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_coxph.html","id":null,"dir":"Reference","previous_headings":"","what":"A wrapper for survival probabilities with coxph models — survival_prob_coxph","title":"A wrapper for survival probabilities with coxph models — survival_prob_coxph","text":"wrapper survival probabilities coxph models","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_coxph.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"A wrapper for survival probabilities with coxph models — survival_prob_coxph","text":"","code":"survival_prob_coxph( x, new_data, eval_time, time = deprecated(), output = \"surv\", interval = \"none\", conf.int = 0.95, ... )"},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_coxph.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"A wrapper for survival probabilities with coxph models — survival_prob_coxph","text":"x model coxph(). new_data Data prediction eval_time vector integers prediction times. time Deprecated favor eval_time. vector integers prediction times. output One \"surv\", \"conf\", \"haz\". interval Add confidence interval survival probability? Options \"none\" \"confidence\". conf.int confidence level. ... Options pass survival::survfit()","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_coxph.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"A wrapper for survival probabilities with coxph models — survival_prob_coxph","text":"tibble list column nested tibbles.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_coxph.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"A wrapper for survival probabilities with coxph models — survival_prob_coxph","text":"","code":"cox_mod <- coxph(Surv(time, status) ~ ., data = lung) survival_prob_coxph(cox_mod, new_data = lung[1:3, ], eval_time = 300) #> # A tibble: 3 × 1 #> .pred #> #> 1 #> 2 #> 3 "},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_mboost.html","id":null,"dir":"Reference","previous_headings":"","what":"A wrapper for survival probabilities with mboost models — survival_prob_mboost","title":"A wrapper for survival probabilities with mboost models — survival_prob_mboost","text":"wrapper survival probabilities mboost models","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_mboost.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"A wrapper for survival probabilities with mboost models — survival_prob_mboost","text":"","code":"survival_prob_mboost(object, new_data, eval_time, time = deprecated())"},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_mboost.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"A wrapper for survival probabilities with mboost models — survival_prob_mboost","text":"new_data Data prediction. eval_time vector integers prediction times. time Deprecated favor eval_time. vector integers prediction times. x model blackboost().","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_mboost.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"A wrapper for survival probabilities with mboost models — survival_prob_mboost","text":"tibble list column nested tibbles.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_mboost.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"A wrapper for survival probabilities with mboost models — survival_prob_mboost","text":"","code":"library(mboost) #> Loading required package: parallel #> Loading required package: stabs mod <- blackboost(Surv(time, status) ~ ., data = lung, family = CoxPH()) survival_prob_mboost(mod, new_data = lung[1:3, ], eval_time = 300) #> # A tibble: 3 × 1 #> .pred #> #> 1 #> 2 #> 3 "},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_partykit.html","id":null,"dir":"Reference","previous_headings":"","what":"A wrapper for survival probabilities with partykit models — survival_prob_partykit","title":"A wrapper for survival probabilities with partykit models — survival_prob_partykit","text":"wrapper survival probabilities partykit models","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_partykit.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"A wrapper for survival probabilities with partykit models — survival_prob_partykit","text":"","code":"survival_prob_partykit( object, new_data, eval_time, time = deprecated(), output = \"surv\" )"},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_partykit.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"A wrapper for survival probabilities with partykit models — survival_prob_partykit","text":"object model object partykit::ctree() partykit::cforest(). new_data data frame predicted. eval_time vector times predict survival probability. time Deprecated favor eval_time. vector times predict survival probability. output Type output. Can either \"surv\" \"haz\".","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_partykit.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"A wrapper for survival probabilities with partykit models — survival_prob_partykit","text":"tibble list column nested tibbles.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_partykit.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"A wrapper for survival probabilities with partykit models — survival_prob_partykit","text":"","code":"library(partykit) #> Loading required package: grid #> Loading required package: libcoin #> Loading required package: mvtnorm #> #> Attaching package: ‘partykit’ #> The following object is masked from ‘package:mboost’: #> #> varimp c_tree <- ctree(Surv(time, status) ~ age + ph.ecog, data = lung) survival_prob_partykit(c_tree, lung[1:3, ], eval_time = 100) #> # A tibble: 3 × 1 #> .pred #> #> 1 #> 2 #> 3 c_forest <- cforest(Surv(time, status) ~ age + ph.ecog, data = lung, ntree = 10) survival_prob_partykit(c_forest, lung[1:3, ], eval_time = 100) #> # A tibble: 3 × 1 #> .pred #> #> 1 #> 2 #> 3 "},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_survbagg.html","id":null,"dir":"Reference","previous_headings":"","what":"A wrapper for survival probabilities with survbagg models — survival_prob_survbagg","title":"A wrapper for survival probabilities with survbagg models — survival_prob_survbagg","text":"wrapper survival probabilities survbagg models","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_survbagg.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"A wrapper for survival probabilities with survbagg models — survival_prob_survbagg","text":"","code":"survival_prob_survbagg(object, new_data, eval_time, time = deprecated())"},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_survbagg.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"A wrapper for survival probabilities with survbagg models — survival_prob_survbagg","text":"object model ipred::bagging(). new_data Data prediction. eval_time vector prediction times. time Deprecated favor eval_time. vector prediction times.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_survbagg.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"A wrapper for survival probabilities with survbagg models — survival_prob_survbagg","text":"vctrs list tibbles.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_survbagg.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"A wrapper for survival probabilities with survbagg models — survival_prob_survbagg","text":"","code":"library(ipred) #> #> Attaching package: ‘ipred’ #> The following object is masked from ‘package:mboost’: #> #> cv bagged_tree <- bagging(Surv(time, status) ~ age + ph.ecog, data = lung) survival_prob_survbagg(bagged_tree, lung[1:3, ], eval_time = 100) #> # A tibble: 3 × 1 #> .pred #> #> 1 #> 2 #> 3 "},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_survreg.html","id":null,"dir":"Reference","previous_headings":"","what":"Internal function helps for parametric survival models — survival_prob_survreg","title":"Internal function helps for parametric survival models — survival_prob_survreg","text":"Internal function helps parametric survival models","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_survreg.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Internal function helps for parametric survival models — survival_prob_survreg","text":"","code":"survival_prob_survreg(object, new_data, eval_time, time = deprecated()) hazard_survreg(object, new_data, eval_time)"},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_survreg.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Internal function helps for parametric survival models — survival_prob_survreg","text":"object survreg object. new_data data frame. eval_time vector time points. time Deprecated favor eval_time. vector time points.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_survreg.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Internal function helps for parametric survival models — survival_prob_survreg","text":"tibble list column nested tibbles.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_prob_survreg.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Internal function helps for parametric survival models — survival_prob_survreg","text":"","code":"surv_reg <- survreg(Surv(time, status) ~ ., data = lung) survival_prob_survreg(surv_reg, lung[1:3, ], eval_time = 100) #> # A tibble: 3 × 1 #> .pred #> #> 1 #> 2 #> 3 hazard_survreg(surv_reg, lung[1:3, ], eval_time = 100) #> # A tibble: 3 × 1 #> .pred #> #> 1 #> 2 #> 3 "},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_coxnet.html","id":null,"dir":"Reference","previous_headings":"","what":"A wrapper for survival times with coxnet models — survival_time_coxnet","title":"A wrapper for survival times with coxnet models — survival_time_coxnet","text":"wrapper survival times coxnet models","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_coxnet.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"A wrapper for survival times with coxnet models — survival_time_coxnet","text":"","code":"survival_time_coxnet(object, new_data, penalty = NULL, multi = FALSE, ...)"},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_coxnet.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"A wrapper for survival times with coxnet models — survival_time_coxnet","text":"object fitted _coxnet object. new_data Data prediction. penalty Penalty value(s). multi Allow multiple penalty values? ... Options pass survival::survfit().","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_coxnet.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"A wrapper for survival times with coxnet models — survival_time_coxnet","text":"vector.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_coxnet.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"A wrapper for survival times with coxnet models — survival_time_coxnet","text":"","code":"cox_mod <- proportional_hazards(penalty = 0.1) %>% set_engine(\"glmnet\") %>% fit(Surv(time, status) ~ ., data = lung) survival_time_coxnet(cox_mod, new_data = lung[1:3, ], penalty = 0.1) #> [1] NA 425.4722 NA"},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_coxph.html","id":null,"dir":"Reference","previous_headings":"","what":"A wrapper for survival times with coxph models — survival_time_coxph","title":"A wrapper for survival times with coxph models — survival_time_coxph","text":"wrapper survival times coxph models","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_coxph.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"A wrapper for survival times with coxph models — survival_time_coxph","text":"","code":"survival_time_coxph(object, new_data)"},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_coxph.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"A wrapper for survival times with coxph models — survival_time_coxph","text":"object model coxph(). new_data Data prediction","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_coxph.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"A wrapper for survival times with coxph models — survival_time_coxph","text":"vector.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_coxph.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"A wrapper for survival times with coxph models — survival_time_coxph","text":"","code":"cox_mod <- coxph(Surv(time, status) ~ ., data = lung) survival_time_coxph(cox_mod, new_data = lung[1:3, ]) #> [1] NA 470.5813 NA"},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_mboost.html","id":null,"dir":"Reference","previous_headings":"","what":"A wrapper for mean survival times with mboost models — survival_time_mboost","title":"A wrapper for mean survival times with mboost models — survival_time_mboost","text":"wrapper mean survival times mboost models","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_mboost.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"A wrapper for mean survival times with mboost models — survival_time_mboost","text":"","code":"survival_time_mboost(object, new_data)"},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_mboost.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"A wrapper for mean survival times with mboost models — survival_time_mboost","text":"object model blackboost(). new_data Data prediction","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_mboost.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"A wrapper for mean survival times with mboost models — survival_time_mboost","text":"tibble.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_mboost.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"A wrapper for mean survival times with mboost models — survival_time_mboost","text":"","code":"library(mboost) boosted_tree <- blackboost(Surv(time, status) ~ age + ph.ecog, data = lung[-14, ], family = CoxPH() ) survival_time_mboost(boosted_tree, new_data = lung[1:3, ]) #> # A tibble: 3 × 1 #> .pred_time #> #> 1 370. #> 2 337. #> 3 540."},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_survbagg.html","id":null,"dir":"Reference","previous_headings":"","what":"A wrapper for survival times with survbagg models — survival_time_survbagg","title":"A wrapper for survival times with survbagg models — survival_time_survbagg","text":"wrapper survival times survbagg models","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_survbagg.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"A wrapper for survival times with survbagg models — survival_time_survbagg","text":"","code":"survival_time_survbagg(object, new_data)"},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_survbagg.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"A wrapper for survival times with survbagg models — survival_time_survbagg","text":"object model ipred::bagging(). new_data Data prediction","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_survbagg.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"A wrapper for survival times with survbagg models — survival_time_survbagg","text":"vector.","code":""},{"path":"https://censored.tidymodels.org/dev/reference/survival_time_survbagg.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"A wrapper for survival times with survbagg models — survival_time_survbagg","text":"","code":"library(ipred) bagged_tree <- bagging(Surv(time, status) ~ age + ph.ecog, data = lung) survival_time_survbagg(bagged_tree, lung[1:3, ]) #> [1] 310 350 450"},{"path":"https://censored.tidymodels.org/dev/reference/time_to_million.html","id":null,"dir":"Reference","previous_headings":"","what":"Number of days before a movie grosses $1M USD — time_to_million","title":"Number of days before a movie grosses $1M USD — time_to_million","text":"data somewhat biased random sample 551 movies released 2015 2018. Columns include","code":""},{"path":"https://censored.tidymodels.org/dev/reference/time_to_million.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Number of days before a movie grosses $1M USD — time_to_million","text":"time_to_million tibble","code":""},{"path":"https://censored.tidymodels.org/dev/reference/time_to_million.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Number of days before a movie grosses $1M USD — time_to_million","text":"title: character string movie title. time: number days movie earns million US dollars. event: binary value whether movie reached goal. 94% movies observed events. released: date field release date. distributor: factor name distributor. released_theaters: maximum number theaters movie played first two weeks release. year: release year. rated: factor Motion Picture Association film rating. runtime: length movie (minutes). set indicators columns movie genre (e.g. action, crime, etc.). set indicators language (e.g., english, hindi, etc.). set indicators countries movie released (e.g., uk, japan, etc.)","code":""},{"path":"https://censored.tidymodels.org/dev/news/index.html","id":"censored-development-version","dir":"Changelog","previous_headings":"","what":"censored (development version)","title":"censored (development version)","text":"Fixed bug proportional_hazards(engine = \"glmnet\") prediction didn’t work workflow() formula preprocessor (#264). extract_fit_engine() now works properly proportional hazards models fitted \"glmnet\" engine (#266). survival_time_coxnet() gained multi argument allow multiple values penalty (#278).","code":""},{"path":"https://censored.tidymodels.org/dev/news/index.html","id":"censored-020","dir":"Changelog","previous_headings":"","what":"censored 0.2.0","title":"censored 0.2.0","text":"CRAN release: 2023-04-13","code":""},{"path":"https://censored.tidymodels.org/dev/news/index.html","id":"cross-package-changes-with-parsnip-0-2-0","dir":"Changelog","previous_headings":"","what":"Cross-package changes with parsnip","title":"censored 0.2.0","text":"new eval_time argument replaces time argument time points predict survival probability hazard. time argument deprecated (#244). matrix interface fitting, fit_xy(), now works censored regression models (#225, #234, #247, #251). Improved error messages throughout package (#248).","code":""},{"path":"https://censored.tidymodels.org/dev/news/index.html","id":"new-engines-0-2-0","dir":"Changelog","previous_headings":"","what":"New engines","title":"censored 0.2.0","text":"Added new \"aorsf\" engine rand_forest() accelerated oblique random survival forests aorsf package (@bcjaeger, #211). Added new flexsurvspline engine survival_reg() (@mattwarkentin, #213).","code":""},{"path":"https://censored.tidymodels.org/dev/news/index.html","id":"bug-fixes-0-2-0","dir":"Changelog","previous_headings":"","what":"Bug fixes","title":"censored 0.2.0","text":"Predictions type \"linear_pred\" survival_reg(engine = \"flexsurv\") now correct scale distributions natural scale unrestricted scale location parameter identical, e.g. dist = \"lnorm\" (#229). Predictions type \"linear_pred\" proportional_hazards(engine = \"glmnet\") via multi_predict() now sign via predict() (#242). Predictions survival probability survival_reg(engine = \"flexsurv\") single time point now nested correctly (#254). Predictions survival probability decision_tree(engine = \"rpart\") single observation now work (#256). Predictions type \"quantile\" survival_reg(engine = \"survival\") single observation now work (#257). Fixed bug printing coxnet models, .e., proportional_hazards() models fitted \"glmnet\" engine (#249).","code":""},{"path":"https://censored.tidymodels.org/dev/news/index.html","id":"internal-changes-0-2-0","dir":"Changelog","previous_headings":"","what":"Internal changes","title":"censored 0.2.0","text":"Predictions survival probabilities now calculated via summary.survfit() proportional_hazards() models \"survival\" \"glmnet\" engines, bag_tree() models \"rpart\" engine, decision_tree() models \"partykit\" engines, well rand_forest() models \"partykit\" engine (#221, #224). Added internal survfit_summary_*() helper functions (#216).","code":""},{"path":"https://censored.tidymodels.org/dev/news/index.html","id":"censored-011","dir":"Changelog","previous_headings":"","what":"censored 0.1.1","title":"censored 0.1.1","text":"CRAN release: 2022-09-30 boosted trees \"mboost\" engine, survival probabilities can now predicted time = -Inf. always 1. time = Inf now predicts survival probability 0 (#215). Updated tests model arguments update() methods (#208). Internal re-organisation code (#206, 209). Added NEWS.md file track changes package.","code":""}]