-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining_online.py
227 lines (214 loc) · 12.3 KB
/
training_online.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import argparse
import copy
import gym
import numpy as np
import os
import random
import torch
import wandb
import agents
import data
import envs
import evaluation
import models
import rollout
import training
import utils
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="HUCRL")
parser.add_argument("--name_env", type=str, choices=["Point", "MountainCar", "Pendulum", "InvertedPendulum", "Swimmer", "Hopper", "HalfCheetah", "Reacher"], required=True,
help="name of the environment")
parser.add_argument("--id_experiment", type=str,
help="id of the experiment")
parser.add_argument("--gamma", type=float, default=0.99,
help="discount factor for reward (default: 0.99)")
parser.add_argument("--model", type=str, choices=["GP", "EnsembleDeterministic", "EnsembleProbabilisticHomoscedastic", "EnsembleProbabilisticHeteroscedastic"], default="EnsembleProbabilisticHeteroscedastic",
help="what type of model to use to learn dyamics of the environment (default: EnsembleProbabilisticHeteroscedastic)")
parser.add_argument("--num_h_model", type=int, default=2,
help="number of hidden layers in model (only for ensembles) (default: 2)")
parser.add_argument("--dim_h_model", type=int, default=256,
help="dimension of hidden layers in model (only for ensembles) (default: 256)")
parser.add_argument("--size_ensemble_model", type=int, default=7,
help="number of networks in model (default: 7)")
parser.add_argument("--num_elites_model", type=int, default=5,
help="number of elite networks in model (default: 5)")
parser.add_argument("--use_scalers", default=False, action="store_true",
help="set to use scalers for transition model (default: False)")
parser.add_argument("--activation_model", default="ReLU", choices=["ReLU", "GELU", "SiLU"],
help="activation function to use for the hidden layers of the model (default: ReLU)")
parser.add_argument("--weight_prior_model", type=float, default=0.0,
help="weight on the prior in the map estimate for model training (default: 0.0)")
parser.add_argument("--method_sampling", default="DS", choices=["DS", "TS1"],
help="sampling method to use in model environment (see [Chua et al.](https://arxiv.org/abs/1805.12114) for explanation) (default: DS)")
parser.add_argument("--use_aleatoric", default=False, action="store_true",
help="set to use aleatoric noise from transition model (default: False)")
parser.add_argument("--hallucinate", default=False, action="store_true",
help="set to add hallucinated control (default: False)")
parser.add_argument("--beta", type=float, default=1.0,
help="parameter for the amount of hallucinated control (only has effect if hallucinate is set) (default: 1.0)")
parser.add_argument("--ratio_env_model", type=float, default=0.05,
help="ratio of env data to model data in agent batches")
parser.add_argument("--tau", type=float, default=0.005,
help="target smoothing coefficient (default: 0.005)")
parser.add_argument("--alpha", type=float, default=0.05,
help="regularizer weight alpha of the entropy regularization term for sac training (default: 0.05)")
parser.add_argument("--learn_alpha", default=False, action="store_true",
help="set to learn alpha (default: False)")
parser.add_argument("--lr_model", type=float, default=0.001,
help="learning rate (default: 0.001)")
parser.add_argument("--lr_agent", type=float, default=0.0003,
help="learning rate (default: 0.0003)")
parser.add_argument("--seed", type=int, default=42,
help="random seed (default: 42)")
parser.add_argument("--size_batch", type=int, default=256,
help="batch size (default: 256)")
parser.add_argument("--num_steps", type=int, default=4096,
help="number of steps (default: 4096)")
parser.add_argument("--num_steps_startup", type=int, default=0,
help="number of steps of rollout to do during startup (default: 0)")
parser.add_argument("--interval_train_model", type=int, default=np.e,
help="interval of steps after which a round of training is done (default: never)")
parser.add_argument("--interval_rollout_model", type=int, default=128,
help="interval of steps after which a round of training is done (default: 128)")
parser.add_argument("--num_steps_rollout_model", type=int, default=128,
help="number of steps to rollout model in a round of rollout (default: 128)")
parser.add_argument("--max_length_rollout_model", type=int, default=1,
help="number of steps to rollout model from initial state (a.k.a. episode length) (default: 1)")
parser.add_argument("--interval_train_agent", type=int, default=128,
help="interval of steps after which a round of training is done for agent (default: 128)")
parser.add_argument("--num_steps_train_agent", type=int, default=128,
help="number of steps to train agent per iteration (default: 128)")
parser.add_argument("--interval_eval_agent", type=int, default=128,
help="interval of steps after which a round of evaluation is done (default: 128)")
parser.add_argument("--num_episodes_eval_agent", type=int, default=1,
help="number of episodes to evaluate (default: 1)")
parser.add_argument("--device", default=None,
help="device (default: gpu if available else cpu)")
parser.add_argument("--replay_size", type=int, default=1000000,
help="capacity of replay buffer (default: 1000000)")
args = parser.parse_args()
if type(args.interval_train_model) == float:
args.algorithm = "SAC"
else:
if args.hallucinate:
args.algorithm = "HMBSAC"
else:
args.algorithm = "MBSAC"
if args.device is None:
if torch.cuda.is_available():
args.device = "cuda"
else:
args.device = "cpu"
print(f"algorithm: {args.algorithm}")
print(f"device: {args.device}")
args.weight_penalty_reward = 0.0
args.conservative = False
wandb.init(mode="disabled", project="HMBSAC", entity="tobiabir", config=args)
# setting rng seeds
utils.set_seeds(args.seed)
if args.name_env == "Point":
env = envs.EnvPoint(dim_state=2)
env = gym.wrappers.TimeLimit(env, 100)
env = envs.WrapperEnv(env)
elif args.name_env == "MountainCar":
env = gym.make("MountainCarContinuous-v0")
env = envs.WrapperEnvMountainCar(env)
elif args.name_env == "Pendulum":
env = gym.make("Pendulum-v1")
env = envs.WrapperEnvPendulum(env)
elif args.name_env == "InvertedPendulum":
env = gym.make("InvertedPendulum-v2")
env = envs.WrapperEnvInvertedPendulum(env)
elif args.name_env == "Swimmer":
env = gym.make("Swimmer-v3")
env = envs.WrapperEnvSwimmer(env)
elif args.name_env == "Hopper":
env = gym.make("Hopper-v3")
env = envs.WrapperEnvHopper(env)
elif args.name_env == "HalfCheetah":
env = gym.make("HalfCheetah-v3")
env = envs.WrapperEnvHalfCheetah(env)
elif args.name_env == "Reacher":
env = gym.make("Reacher-v2")
env = envs.WrapperEnvHalfCheetah(env)
if args.model == "GP":
Model = None # TODO
elif args.model == "EnsembleDeterministic":
Model = models.NetDense
elif args.model == "EnsembleProbabilisticHomoscedastic":
Model = models.NetGaussHomo
elif args.model == "EnsembleProbabilisticHeteroscedastic":
Model = models.NetGaussHetero
model = Model(
dim_x=env.observation_space.shape[0] + env.action_space.shape[0],
dim_y=1 + env.observation_space.shape[0],
num_h=args.num_h_model,
dim_h=args.dim_h_model,
size_ensemble=args.size_ensemble_model,
num_elites=args.num_elites_model,
use_scalers=args.use_scalers,
activation=eval("torch.nn." + args.activation_model),
).to(args.device)
if args.hallucinate:
EnvModel = envs.EnvModelHallucinated
else:
EnvModel = envs.EnvModel
env_model = EnvModel(env.observation_space, env.action_space, None, model, env.done, args)
env_model = gym.wrappers.TimeLimit(
env_model, args.max_length_rollout_model)
env_model = envs.WrapperEnv(env_model)
env_eval = copy.deepcopy(env)
has_trained_model = False
agent_random = agents.AgentRandom(env.action_space)
agent_protagonist = agents.AgentSAC(env.observation_space, env.action_space, args)
if args.hallucinate:
agent_random_hallucinate = agents.AgentRandom(env_model.space_action_hallucinated)
agent_random = agents.AgentTuple([agent_random, agent_random_hallucinate])
agent_hallucinate = agents.AgentSAC(env_model.observation_space, env_model.space_action_hallucinated, args)
agent = agents.AgentTuple([agent_protagonist, agent_hallucinate])
else:
agent_random = agents.AgentTuple([agent_random])
agent = agents.AgentTuple([agent_protagonist])
dataset_env = data.DatasetSARS(capacity=args.replay_size)
dataset_model = data.DatasetSARS(capacity=args.replay_size)
dataset_states_initial = data.DatasetNumpy()
state = env.reset()
dataset_states_initial.append(state)
print("startup...")
rollout.rollout_steps(env, agent_random, dataset_env, dataset_states_initial, args.num_steps_startup)
state = env.state
for idx_step in range(args.num_steps_startup, args.num_steps):
agent.train()
action = agent.get_action(state)
state_next, reward, done, info = env.step(action[0])
mask = np.float32(done and not info["TimeLimit.truncated"])
dataset_env.push(state, action, reward, state_next, mask)
state = state_next
if done:
state = env.reset()
dataset_states_initial.append(state)
if (idx_step + 1) % args.interval_train_model == 0:
losses_model, scores_calibration = training.train_ensemble_map(model, dataset_env, args.weight_prior_model, args.lr_model, args.size_batch, args.device)
loss_model = losses_model.mean()
score_calibration = scores_calibration.mean()
wandb.log({"loss_model": loss_model, "score_calibration": score_calibration, "idx_step": idx_step})
print(f"idx_step: {idx_step}, loss_model: {loss_model}, score_calibration: {score_calibration}")
has_trained_model = True
if has_trained_model and (idx_step + 1) % args.interval_rollout_model == 0:
model.eval()
env_model = EnvModel(env.observation_space, env.action_space,
dataset_states_initial, model, env.done, args)
env_model = gym.wrappers.TimeLimit(env_model, args.max_length_rollout_model)
env_model = envs.WrapperEnv(env_model)
env_model.rollout(agent, dataset_model, args.num_steps_rollout_model, args.max_length_rollout_model)
if (idx_step + 1) % args.interval_train_agent == 0:
dataloader = data.get_dataloader(dataset_env, dataset_model, args.num_steps_train_agent, args.size_batch, args.ratio_env_model)
for batch in dataloader:
loss_agent = agent.step(batch)
#wandb.log({"loss_actor": loss_actor, "loss_critic": loss_critic, "loss_alpha": loss_alpha, "alpha": agent.alpha, "idx_step": idx_step})
print(f"idx_step: {idx_step}, loss_agent: {loss_agent}")
if (idx_step + 1) % args.interval_eval_agent == 0:
return_eval = evaluation.evaluate_agent(agent, env_eval, args.num_episodes_eval_agent)
wandb.log({"return_eval": return_eval, "idx_step": idx_step})
print(f"idx_step: {idx_step}, return_eval: {return_eval}")
torch.save({"agent": agent, "return_eval": return_eval}, f"Checkpoints/Agents/checkpoint_reacher_{idx_step + 1}")