-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
117 lines (94 loc) · 3.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import math
import numpy as np
import random
import torch
import rollout
def soft_update(target, source, tau):
"""Perform a soft update of the targets parameters with the sources parameters.
That is target = (1 - tau) * target + tau * source.
Args:
target: the target model
source: the source model
tau: the tau parameter (should be in [0,1])
Returns:
None
"""
with torch.no_grad():
for target_param, param in zip(target.parameters(), source.parameters()):
target_param.data.copy_(target_param.data * (1.0 - tau) + param.data * tau)
def set_seeds(seed):
"""Set all the seeds.
Args:
seed: the seed to use
Returns:
None
"""
torch.backends.cudnn.deterministic = True
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def get_mean_std_mm(means, stds, epistemic=False):
"""Get mean and std of a Gaussian mixture.
Note that we assume independent components.
Args:
means: the means of the Gaussians
stds: the stds of the Gaussians
epistemic: set to return epistemic uncertainty as well
Returns:
mean: the mean of the mixture
std: the std of the mixture (aleatoric and epistemic)
(std_epistemic): the epistemic std of the mixture
"""
mean = torch.mean(means, dim=0)
var_aleatoric = torch.mean(stds**2, dim=0)
var_epistemic = torch.var(means, dim=0, unbiased=False)
var = var_aleatoric + var_epistemic
std = torch.sqrt(var)
if epistemic:
std_epistemic = torch.sqrt(var_epistemic)
return mean, std, std_epistemic
return mean, std
def golden_section_search(f, a, b, eps=1e-5):
"""Golden Section Search. Finds argmin of unimodal function f in interval [a, b].
Args:
f: unimodal function
a: lower limit of the interval to search in
b: upper limit of the interval to search in
eps: accuracy until which the search should run
"""
# define needed constant g
g = (np.sqrt(5) - 1) / 2
# get initial values
# note: invariant: a < c < d < b and c = a + (1 - g) * (b - a) and d = a + g * (b - a)
fa = f(a)
fb = f(b)
diff = b - a
c = a + (1 - g) * diff
d = a + g * diff
fc = f(c)
fd = f(d)
# main loop
while diff > eps:
if fc < fd:
b, fb = d, fd
diff = b - a
d, fd = c, fc
c = a + (1 - g) * diff
fc = f(c)
else:
a, fa = c, fc
diff = b - a
c, fc = d, fd
d = a + g * diff
fd = f(d)
# return (everything in [a, b] would be reasonable)
return c
class KernelRBF(torch.nn.Module):
def __init__(self, sigma=10.0):
super().__init__()
self.gamma = 1 / (2 * sigma**2)
def forward(self, x1, x2):
norm_sq = torch.diag(x1 @ x1.T).unsqueeze(dim=1) - 2 * x1 @ x2.T + torch.diag(x2 @ x2.T).unsqueeze(dim=0)
y = torch.exp(-self.gamma * norm_sq)
return y