-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathDESCRIPTION
25 lines (25 loc) · 1.37 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Package: RMTL
Title: Regularized Multi-Task Learning
Type: Package
Version: 0.9
Authors@R: c(person("Han", "Cao", email=c("[email protected]", "[email protected]"), role=c("cre", "aut", "cph")),
person("Emanuel", "Schwarz", email="[email protected]", role="aut"))
Description: Efficient solvers for 10 regularized multi-task learning algorithms applicable for regression, classification, joint feature selection, task clustering, low-rank learning, sparse learning and network incorporation. Based on the accelerated gradient descent method, the algorithms feature a state-of-art computational complexity O(1/k^2). Sparse model structure is induced by the solving the proximal operator. The detail of the package is described in the paper of Han Cao and Emanuel Schwarz (2018) <doi:10.1093/bioinformatics/bty831>.
Depends: R (>= 3.5.0)
URL: https://github.com/transbioZI/RMTL
BugReports: https://github.com/transbioZI/RMTL/issues
Imports: MASS (>= 7.3-50), psych (>= 1.8.4), corpcor (>= 1.6.9),
doParallel (>= 1.0.14), foreach (>= 1.4.4)
Date: 2019-02-15
License: GPL-3
Encoding: UTF-8
RoxygenNote: 6.1.1
Suggests: knitr, rmarkdown
VignetteBuilder: knitr
NeedsCompilation: no
Packaged: 2019-02-18 12:44:17 UTC; han.cao
Author: Han Cao [cre, aut, cph],
Emanuel Schwarz [aut]
Maintainer: Han Cao <[email protected]>
Repository: CRAN
Date/Publication: 2019-02-27 17:00:33 UTC