Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Can the model be exported to ONNX ? #168

Open
wxbool opened this issue Dec 23, 2023 · 1 comment
Open

Can the model be exported to ONNX ? #168

wxbool opened this issue Dec 23, 2023 · 1 comment

Comments

@wxbool
Copy link

wxbool commented Dec 23, 2023

I attempted to export the pre-trained model baseline.pth and encountered some issues.

export.py

import torch
from lib import nets

model = nets.CascadedNet(n_fft=2048, hop_length=1024, is_complex=False)

model.load_state_dict(torch.load('models/baseline.pth', map_location=torch.device('cpu')))

model.eval()

dummy_input = torch.randn(1, 2, model.max_bin, 100)  


input_names = ["input_waves"]
output_names = ["output_waves"]

torch.onnx.export(model, dummy_input, "model.onnx",
                  verbose=False, input_names=input_names,
                  output_names=output_names,
                  opset_version=12) 

The following error occurred :

E:\Space\script\python\vocal-remover\lib\spec_utils.py:12: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  if h1_shape[3] == h2_shape[3]:
E:\Space\script\python\vocal-remover\lib\spec_utils.py:14: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  elif h1_shape[3] < h2_shape[3]:
============= Diagnostic Run torch.onnx.export version 2.0.1+cu117 =============
verbose: False, log level: Level.ERROR
======================= 0 NONE 0 NOTE 0 WARNING 0 ERROR ========================

Traceback (most recent call last):
  File "E:\Space\script\python\vocal-remover\export.py", line 27, in <module>
    torch.onnx.export(model, dummy_input, "model.onnx",
  File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\onnx\utils.py", line 506, in export
    _export(
  File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\onnx\utils.py", line 1548, in _export
    graph, params_dict, torch_out = _model_to_graph(
  File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\onnx\utils.py", line 1113, in _model_to_graph
    graph, params, torch_out, module = _create_jit_graph(model, args)
  File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\onnx\utils.py", line 989, in _create_jit_graph
    graph, torch_out = _trace_and_get_graph_from_model(model, args)
  File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\onnx\utils.py", line 893, in _trace_and_get_graph_from_model
    trace_graph, torch_out, inputs_states = torch.jit._get_trace_graph(
  File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\jit\_trace.py", line 1268, in _get_trace_graph
    outs = ONNXTracedModule(f, strict, _force_outplace, return_inputs, _return_inputs_states)(*args, **kwargs)
  File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
    return forward_call(*args, **kwargs)
  File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\jit\_trace.py", line 127, in forward
    graph, out = torch._C._create_graph_by_tracing(
  File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\jit\_trace.py", line 118, in wrapper
    outs.append(self.inner(*trace_inputs))
  File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
    return forward_call(*args, **kwargs)
  File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\nn\modules\module.py", line 1488, in _slow_forward
    result = self.forward(*input, **kwargs)
  File "E:\Space\script\python\vocal-remover\lib\nets.py", line 91, in forward
    l1 = self.stg1_low_band_net(l1_in)
  File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
    return forward_call(*args, **kwargs)
  File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\nn\modules\module.py", line 1488, in _slow_forward
    result = self.forward(*input, **kwargs)
  File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\nn\modules\container.py", line 217, in forward
    input = module(input)
  File "E:\Space\script\python\vocal-remover\lib\nets.py", line 35, in __call__
    h = self.dec4(h, e4)
  File "E:\Space\script\python\vocal-remover\lib\layers.py", line 55, in __call__
    skip = spec_utils.crop_center(skip, x)
  File "E:\Space\script\python\vocal-remover\lib\spec_utils.py", line 15, in crop_center
    raise ValueError('h1_shape[3] must be greater than h2_shape[3]')
ValueError: h1_shape[3] must be greater than h2_shape[3]

I'm not very familiar with exporting models to ONNX. Could you provide a script that can export to ONNX ?

@MarinoMing
Copy link

Have you already fixed this issue

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants