You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
E:\Space\script\python\vocal-remover\lib\spec_utils.py:12: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
if h1_shape[3] == h2_shape[3]:
E:\Space\script\python\vocal-remover\lib\spec_utils.py:14: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
elif h1_shape[3] < h2_shape[3]:
============= Diagnostic Run torch.onnx.export version 2.0.1+cu117 =============
verbose: False, log level: Level.ERROR
======================= 0 NONE 0 NOTE 0 WARNING 0 ERROR ========================
Traceback (most recent call last):
File "E:\Space\script\python\vocal-remover\export.py", line 27, in <module>
torch.onnx.export(model, dummy_input, "model.onnx",
File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\onnx\utils.py", line 506, in export
_export(
File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\onnx\utils.py", line 1548, in _export
graph, params_dict, torch_out = _model_to_graph(
File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\onnx\utils.py", line 1113, in _model_to_graph
graph, params, torch_out, module = _create_jit_graph(model, args)
File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\onnx\utils.py", line 989, in _create_jit_graph
graph, torch_out = _trace_and_get_graph_from_model(model, args)
File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\onnx\utils.py", line 893, in _trace_and_get_graph_from_model
trace_graph, torch_out, inputs_states = torch.jit._get_trace_graph(
File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\jit\_trace.py", line 1268, in _get_trace_graph
outs = ONNXTracedModule(f, strict, _force_outplace, return_inputs, _return_inputs_states)(*args, **kwargs)
File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\jit\_trace.py", line 127, in forward
graph, out = torch._C._create_graph_by_tracing(
File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\jit\_trace.py", line 118, in wrapper
outs.append(self.inner(*trace_inputs))
File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\nn\modules\module.py", line 1488, in _slow_forward
result = self.forward(*input, **kwargs)
File "E:\Space\script\python\vocal-remover\lib\nets.py", line 91, in forward
l1 = self.stg1_low_band_net(l1_in)
File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\nn\modules\module.py", line 1488, in _slow_forward
result = self.forward(*input, **kwargs)
File "G:\ProgramData\Anaconda3\envs\audio-separator\lib\site-packages\torch\nn\modules\container.py", line 217, in forward
input = module(input)
File "E:\Space\script\python\vocal-remover\lib\nets.py", line 35, in __call__
h = self.dec4(h, e4)
File "E:\Space\script\python\vocal-remover\lib\layers.py", line 55, in __call__
skip = spec_utils.crop_center(skip, x)
File "E:\Space\script\python\vocal-remover\lib\spec_utils.py", line 15, in crop_center
raise ValueError('h1_shape[3] must be greater than h2_shape[3]')
ValueError: h1_shape[3] must be greater than h2_shape[3]
I'm not very familiar with exporting models to ONNX. Could you provide a script that can export to ONNX ?
The text was updated successfully, but these errors were encountered:
I attempted to export the pre-trained model baseline.pth and encountered some issues.
export.py
The following error occurred :
I'm not very familiar with exporting models to ONNX. Could you provide a script that can export to ONNX ?
The text was updated successfully, but these errors were encountered: