-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHenaffs_Method_2.py
288 lines (245 loc) · 11.9 KB
/
Henaffs_Method_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import torch, torch.autograd as autograd
import torch.nn as nn, torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable as avar
from SimpleTask import SimpleGridTask
from TransportTask import TransportTask
from NavTask import NavigationTask
from SeqData import SeqData
from LSTMFM import LSTMForwardModel
import pdb
import os, sys, pickle, numpy as np, numpy.random as npr, random as r
import pickle
f_model_name = 'LSTM_FM_1_99'
s = 'navigation' # 'transport'
trainf, validf = s + "-data-train-small.pickle", s + "-data-test-small.pickle"
print('Reading Data')
#train, valid = SeqData(trainf), SeqData(validf)
fm = LSTMForwardModel(74,64)
fm.load_state_dict( torch.load(f_model_name) )
fileToWriteTo='hyperparam_output'
class HenaffPlanner():
def __init__(self,forward_model,env, maxNumActions=1,noiseSigma=0.0,startNoiseSigma=0.1,niters=200):
# Parameters
self.sigma = noiseSigma
self.start_sigma = startNoiseSigma
self.nacts = maxNumActions
self.niters = niters
# The forward model
self.f = forward_model
# Stop forward model from training
for p in self.f.parameters(): p.requires_grad = False
# Get shapes from forward model
self.state_size = self.f.stateSize
self.action_size = self.f.inputSize - self.f.stateSize
self.env = env
def generatePlan(self,
start_state, # The starting state of the agent
eta=0.0003, # The learning rate given to ADAM
noiseSigma=None, # Noise strength on inputs. Overwrites the default setting from the init
niters=None, # Number of optimization iterations. Overwrites the default setting from the init
goal_state=None, # Use to specify a goal state manually (instead of reading it from a given state)
useCE=False, # Specifies use of the cross-entropy loss, taken over subvectors of the state
verbose=False, # Specifies verbosity
extraVerbose=False, # Specifies extra verbosity
useGumbel=True, # Whether to use Gumbel-Softmax in the action sampling
temp=0.01, # The temperature of the Gumbel-Softmax method
lambda_h=0.0, # Specify the strength of entropy regularization (negative values encourage entropy)
useIntDistance=False
):
# Other settings
useIntDistance = False # Note: does not apply if using CE
useMSE_loss = (not useIntDistance) and (not useCE)
if not noiseSigma is None: self.sigma = noiseSigma
if not niters is None: self.niters = niters
# Initialize random actions and optimizer
x_t = avar( torch.randn(self.nacts, self.action_size) * self.start_sigma, requires_grad=True )
optimizer = torch.optim.Adam( [x_t], lr=eta )
# Choose loss function
if useCE:
lossf = nn.CrossEntropyLoss()
if verbose: print('Using CE loss')
elif useMSE_loss:
if verbose: print('Using MSE loss')
lossf = nn.MSELoss()
else:
if verbose: print('Using int distance loss')
# Set goal state
deconStartState = self.env.deconcatenateOneHotStateVector(start_state)
if goal_state is None:
gx, gy = avar(torch.FloatTensor(deconStartState[-2])), avar(torch.FloatTensor(deconStartState[-1]))
else: print('Not yet implemented'); sys.exit(0)
# Indices of start state position
sindx = avar(torch.FloatTensor(deconStartState[0])).max(0)[1]
sindy = avar(torch.FloatTensor(deconStartState[1])).max(0)[1]
# Indices of goal state position
indx, indy = gx.max(0)[1], gy.max(0)[1]
# Start optimization loop
for i in range(self.niters):
# Generate soft action sequence
epsilon = avar( torch.randn(self.nacts, self.action_size) * self.sigma )
# Add noise to current action sequence
y_t = x_t + epsilon
# Softmax inputs to get current soft actions
a_t = F.softmax( y_t, dim=1 )
# Compute predicted state
#currState = avar(torch.FloatTensor(start_state)).unsqueeze(0)
# Loop over actions to obtain predicted state
self.f.reInitialize(1)
currState, intStates = self.f.forward(start_state, a_t, self.nacts)
# Now have final (predicted) result of action sequence
# Extract predicted position of current state
pvx = currState[0:15]
pvy = currState[15:30]
# Compute loss
if useCE: # Cross-entropy loss
lossx = lossf(pvx.view(1,pvx.shape[0]), indx)
lossy = lossf(pvy.view(1,pvy.shape[0]), indy)
elif useIntDistance: # Integer distance loss
ints = avar( torch.FloatTensor( list(range(15)) ) )
prx = torch.sum( ints * pvx )
pry = torch.sum( ints * pvy )
lossx = (1.0/15.0) * (prx - indx.data[0]).pow(2)
lossy = (1.0/15.0) * (pry - indy.data[0]).pow(2)
else: # Using MSE loss via one-hot pos
lossx = lossf(pvx, gx)
lossy = lossf(pvy, gy)
# Entropy penalty
H = -torch.sum( torch.sum( a_t*torch.log(a_t) , dim = 1 ) )
# Final loss function
loss = lossx + lossy + lambda_h * H
# Print status
if extraVerbose:
a_inds = ",".join([ str(a.max(dim=0)[1].data[0]) for a in a_t ])
print(i,'->','Lx =',lossx.data[0],', Ly =',lossy.data[0],', H =',H.data[0],', TL =',loss.data[0],', A =',a_inds)
# Clear the optimizer gradient
optimizer.zero_grad()
# Back-prop the errors to get the new gradients
loss.backward(retain_graph=True)
optimizer.step()
# Print the predicted result at the current iteration
if extraVerbose:
print('Predicted End:',pvx.max(0)[1].data[0],pvy.max(0)[1].data[0])
# Ensure the x_t gradients are cleared
#x_t.grad.data.zero_()
# Print and analyze the final plan, if desired
if verbose:
print('\nEnd\n')
print('Actions')
for k in range(0,self.nacts):
action = F.softmax( x_t[k,:], dim=0 )
print(action.max(0)[1].data[0],end=' -> ')
print(NavigationTask.actions[action.max(0)[1].data[0]],end=' ')
print(action.data)
print('--')
print('START ',sindx.data[0],sindy.data[0])
print('TARGET END ',indx.data[0],indy.data[0])
print('PREDICTED END',pvx.max(0)[1].data[0], pvy.max(0)[1].data[0])
print('--')
# Return the final action sequence
return [ x.max(0)[1].data[0] for x in x_t ]
# Build an env with the given INT inputs
def generateTask(px,py,orien,gx,gy):
direction = NavigationTask.oriens[orien]
gs = np.array([gx, gy])
env = NavigationTask(agent_start_pos=[np.array([px,py]), direction],goal_pos=gs)
return env
# Function for running a single suite of tests (on one hyper-param set)
env = NavigationTask()
def runTests(lh,eta,noiseLevel,ug,cnum,temp=None,distType=0,difficulty='Hard', tasks=None, verbose=False,extraVerbose=False):
numRepeats=5
niters=100
# Define tasks
if tasks== None:
if difficulty=='Hard':
#print('\tin Task choice')
tasks = [[4, generateTask(0,0,0,4,8)],
[5, generateTask(0,0,0,7,7)],
[6, generateTask(0,0,0,10,12)]] #[[5, generateTask(0,0,0,10,10)],[6, generateTask(0,0,0,10,12)],[7, generateTask(0,0,0,14,14)]]
if difficulty=='Easy':
tasks = [[3, generateTask(0,0,0,4,4)],
[4, generateTask(0,0,0,4,8)]]
#print('Difficulty',difficulty)
# Choose dist type
if distType == 0: useCE = False; intDist = False
elif distType == 1: useCE = True; intDist = False
elif distType == 2: useCE = False; intDist = True
# Display status
wstring = cnum + ',lambda_h=' + str(lh) + ',eta=' + str(eta) + ',sigma=' + str(noiseLevel) + ',dType=' + str(distType) + ',ug=' + str(ug)
if ug: wstring += ',temp=' + str(temp)
#print(wstring)
# For each tasks, repeated a few times, attempt to solve the problem
score, tot = 0, 0
for i, task in enumerate(tasks):
#print('Task',i)
#print('Nactions',task[0],'; Start State',task[1].getStateRep(False))
for _ in range(numRepeats):
planner = HenaffPlanner(fm,env,maxNumActions=task[0])
task_state = task[1].getStateRep(oneHotOutput=False)
px = int(task_state[0])
py = int(task_state[1])
orien = np.argmax(task_state[2:6])
gx = int(task_state[-2])
gy = int(task_state[-1])
#print('www',px,py,orien,gx,gy)
cenv = generateTask(px,py,orien,gx,gy)
#print(cenv.getStateRep(True))
actions = planner.generatePlan(
cenv.getStateRep(oneHotOutput=True),
eta=eta,
noiseSigma=noiseLevel,
niters=niters,
goal_state=None,
useCE=True,
verbose=verbose,
extraVerbose=extraVerbose,
useGumbel=ug,
temp=temp,
lambda_h=lh,
useIntDistance=intDist )
#print('\tAs:',actions)
# Check for correctness
for a in actions: cenv.performAction( a )
r = cenv.getReward()
correct = (r==1)
tot += 1
#print('Correct?',correct)
if correct: score += 1
wstring += ' -> Score:' + str(score) + '/' + str(tot)
print(wstring)
# Write output
return score, tot
# Run tasks over all hyper-parameter settings
def hyperparam_search(lambda_hs=[0.0,-0.005, 0.005] ,
etas = [0.01,0.1,0.2,0.3],
useGumbels = [True, False],
temperatures = [0.02,0.1, 1, 10],
noiseSigmas = [0.01,0.1, 1.0],
niters = 200,
verbose = False,
extraVerbose = False,
numRepeats = 10,
file_name_output = 'hyperparam_search_henaff.pickle',
distType = 1,
difficulty='Easy'):
hyperparam_output=[]
N_p, cp = len(lambda_hs)*len(etas)*len(noiseSigmas)*(1 + len(temperatures)), 1
for lambda_h in lambda_hs:
for eta in etas:
for noiseLevel in noiseSigmas:
for ug in useGumbels:
for temp in temperatures:
ps = str(cp) + '/' + str(N_p)
if ug:
acc,trials=runTests(lambda_h,eta,noiseLevel,ug,ps,temp,distType=distType,difficulty=difficulty)
acc=acc/trials
hyperparam_output.append({'lambda_h':lambda_h,'eta':eta,'noiseLevel':noiseLevel,'ug':ug,'ps':ps,'temp':temp,'distType':distType,'acc':acc,'trials':trials,'cp':cp,'difficulty':difficulty})
else:
ps = str(cp) + '/' + str(N_p)
acc,trials=runTests(lambda_h,eta,noiseLevel,ug,ps,distType=distType,difficulty=difficulty)
acc=acc/trials
hyperparam_output.append({'lambda_h':lambda_h,'eta':eta,'noiseLevel':noiseLevel,'ug':ug,'ps':ps,'temp':None,'distType':distType,'acc':acc,'trials':trials,'cp':cp,'difficulty':difficulty})
cp += 1
if cp%10:
with open(file_name_output, 'wb') as handle:
pickle.dump(hyperparam_output, handle, protocol=pickle.HIGHEST_PROTOCOL)