-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
163 lines (148 loc) · 5.61 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#!/usr/bin/env python
# coding: utf-8
import pandas as pd
import torch
from torch.utils.checkpoint import checkpoint
from torch import nn, Tensor
from image2latex.model import Image2LatexModel
from data.dataset import LatexDataset, LatexPredictDataset
from data.datamodule import DataModule
from image2latex.text import Text100k, Text170k
import pytorch_lightning as pl
import argparse
import numpy as np
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="training image2latex")
parser.add_argument("--batch-size", type=int, default=16)
parser.add_argument("--accumulate-batch", type=int, default=32)
parser.add_argument("--data-path", type=str, help="data path")
parser.add_argument("--img-path", type=str, help="image folder path")
parser.add_argument(
"--predict-img-path", type=str, help="image for predict path", default=None
)
parser.add_argument(
"--dataset", type=str, help="choose dataset [100k, 170k]", default="100k"
)
parser.add_argument("--train", action="store_true")
parser.add_argument("--val", action="store_true")
parser.add_argument("--test", action="store_true")
parser.add_argument("--predict", action="store_true")
parser.add_argument("--log-text", action="store_true")
parser.add_argument("--train-sample", type=int, default=5000)
parser.add_argument("--val-sample", type=int, default=1000)
parser.add_argument("--test-sample", type=int, default=1000)
parser.add_argument("--workers", type=int, default=1)
parser.add_argument("--max-epochs", type=int, default=15)
parser.add_argument("--log-step", type=int, default=100)
parser.add_argument("--lr", type=float, default=0.01)
parser.add_argument("--random-state", type=int, default=12)
parser.add_argument("--ckpt-path", type=str, default=None)
parser.add_argument("--enc-type", type=str, default="conv_row_encoder")
# conv_row_encoder, conv_encoder, conv_bn_encoder
parser.add_argument("--enc-dim", type=int, default=512)
parser.add_argument("--emb-dim", type=int, default=80)
parser.add_argument("--attn-dim", type=int, default=512)
parser.add_argument("--dec-dim", type=int, default=512)
parser.add_argument("--dropout", type=float, default=0.1)
parser.add_argument(
"--decode-type",
type=str,
default="greedy",
help="Chose between [greedy, beamsearch]",
)
parser.add_argument("--beam-width", type=int, default=5)
parser.add_argument("--num-layers", type=int, default=1)
parser.add_argument("--model-name", type=str, default="conv_lstm")
parser.add_argument("--grad-clip", type=int, default=0)
parser.add_argument("--num-workers", type=int, default=4)
args = parser.parse_args()
torch.manual_seed(args.random_state)
np.random.seed(args.random_state)
text = None
if args.dataset == "100k":
text = Text100k()
elif args.dataset == "170k":
text = Text170k()
train_set = LatexDataset(
data_path=args.data_path,
img_path=args.img_path,
data_type="train",
n_sample=args.train_sample,
dataset=args.dataset,
)
val_set = LatexDataset(
data_path=args.data_path,
img_path=args.img_path,
data_type="validate",
n_sample=args.val_sample,
dataset=args.dataset,
)
test_set = LatexDataset(
data_path=args.data_path,
img_path=args.img_path,
data_type="test",
n_sample=args.test_sample,
dataset=args.dataset,
)
predict_set = LatexPredictDataset(predict_img_path=args.predict_img_path)
steps_per_epoch = round(len(train_set) / args.batch_size)
total_steps = steps_per_epoch * args.max_epochs
dm = DataModule(
train_set,
val_set,
test_set,
predict_set,
args.num_workers,
args.batch_size,
text,
)
model = Image2LatexModel(
lr=args.lr,
total_steps=total_steps,
n_class=text.n_class,
enc_dim=args.enc_dim,
enc_type=args.enc_type,
emb_dim=args.emb_dim,
dec_dim=args.dec_dim,
attn_dim=args.attn_dim,
num_layers=args.num_layers,
dropout=args.dropout,
sos_id=text.sos_id,
eos_id=text.eos_id,
decode_type=args.decode_type,
text=text,
beam_width=args.beam_width,
log_step=args.log_step,
log_text=args.log_text,
)
wandb_logger = pl.loggers.WandbLogger(
project="image2latex", name=args.model_name, log_model="all"
)
lr_monitor = pl.callbacks.LearningRateMonitor(logging_interval="step")
accumulate_grad_batches = args.accumulate_batch // args.batch_size
trainer = pl.Trainer(
logger=wandb_logger,
callbacks=[lr_monitor],
max_epochs=args.max_epochs,
accelerator="auto",
strategy="dp",
log_every_n_steps=1,
gradient_clip_val=args.grad_clip,
accumulate_grad_batches=accumulate_grad_batches,
devices=-1,
)
ckpt_path = args.ckpt_path
if ckpt_path:
model = model.load_from_checkpoint(ckpt_path)
if args.train:
print("=" * 10 + "[Train]" + "=" * 10)
trainer.fit(datamodule=dm, model=model, ckpt_path=ckpt_path)
if args.val:
print("=" * 10 + "[Validate]" + "=" * 10)
trainer.validate(datamodule=dm, model=model, ckpt_path=ckpt_path)
if args.test:
print("=" * 10 + "[Test]" + "=" * 10)
trainer.test(datamodule=dm, model=model, ckpt_path=ckpt_path)
if args.predict:
print("=" * 10 + "[Predict]" + "=" * 10)
trainer.predict(datamodule=dm, model=model, ckpt_path=ckpt_path)