-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtesting.py
248 lines (190 loc) · 7.05 KB
/
testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import torch
import numpy
import json
import torchaudio
import evaluate
from torch import nn
from dataclasses import dataclass
from torch.utils.data import Dataset, DataLoader
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from transformers import TrainingArguments, Trainer
from huggingface_hub import login
import os
import pandas as pd
import numpy as np
from tqdm.auto import tqdm
from mdd.utils import phoneme_tokenizer, encode_phone, greedy_decode, VOCAB
from mdd.augmentation import SpeedPerturbation
from torchaudio.transforms import MelSpectrogram
import wandb
os.environ["TOKENIZERS_PARALLELISM"] = "false"
login(token="<hf_token>")
SAMPLING_RATE = 16000
spec_augment = True
pad_id = 0
ignore_value = -100
class SupervisedDataset(Dataset):
def __init__(self, data_path, do_augment=False):
super().__init__()
self.data = json.load(open(data_path, encoding="utf-8"))
self.n_fft = 512
self.hop_len = 128
self.n_mels = 80
self.cal_mel = MelSpectrogram(
sample_rate=SAMPLING_RATE,
n_fft=self.n_fft,
hop_length=self.hop_len,
n_mels=self.n_mels,
)
self.do_augment = do_augment
self.speed_pertub = SpeedPerturbation(SAMPLING_RATE)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
wav, sr = torchaudio.load(self.data[idx]["path"])
if self.do_augment:
wav = self.speed_pertub(wav)
if "transcript" in self.data[idx]:
phoneme = phoneme_tokenizer(self.data[idx]["transcript"], sep=" ")
ids = encode_phone(phoneme)
return dict(input_values=wav[0].numpy(), labels=ids)
return dict(input_values=wav[0].numpy())
@dataclass
class DataCollatorForSupervisedDataset(object):
processor: Wav2Vec2Processor
def __call__(self, features):
have_label = "labels" in features
audio = [i["input_values"] for i in features]
if have_label:
text = [i["labels"] for i in features]
batch = self.processor(
audio=audio, padding=True, return_tensors="pt", sampling_rate=SAMPLING_RATE
)
if have_label:
labels_batch = torch.nn.utils.rnn.pad_sequence(text, batch_first=True)
labels = labels_batch.masked_fill(labels_batch.eq(pad_id), ignore_value)
batch["labels"] = labels
return batch
wer_metric = evaluate.load("wer")
def compute_metrics(pred):
pred_logits = pred.predictions
pred_ids = np.argmax(pred_logits, axis=-1)
pred.label_ids[pred.label_ids == ignore_value] = pad_id
pred_str = greedy_decode(pred_ids)
# we do not want to group tokens when computing the metrics
label_str = greedy_decode(pred.label_ids)
pred_str = [" ".join(i) for i in pred_str]
label_str = [" ".join(i) for i in label_str]
wer = wer_metric.compute(predictions=pred_str, references=label_str)
return {"wer": wer}
processor_id = "nguyenvulebinh/wav2vec2-base-vietnamese-250h"
model_id = "./wav2vec2-base-finetune-vi_phone-non_freeze-spec_aug-500epoch"
# model_id = processor_id
vocab_size = len(VOCAB)
print("Vocab size:", vocab_size)
processor = Wav2Vec2Processor.from_pretrained(processor_id)
data_collator = DataCollatorForSupervisedDataset(processor=processor)
model_configs = {}
if processor_id == model_id:
model_configs["ignore_mismatched_sizes"] = True
model_configs["ctc_loss_reduction"] = "mean"
model_configs["pad_token_id"] = pad_id
model_configs["vocab_size"] = vocab_size
if spec_augment:
model_configs["mask_time_prob"] = 0.065
model_configs["mask_time_length"] = 10
model_configs["mask_feature_prob"] = 0.012
model_configs["mask_feature_length"] = 64
# model = Wav2Vec2ForCTC.from_pretrained(model_id, **model_configs)
model = Wav2Vec2ForCTC.from_pretrained(model_id)
# data_path = "/data/tuanio/data/share_with_150/data_vlsp_md_d_2023/splitted_data_113"
data_path = "/data/tuanio/projects/md_d_vlsp2023/data"
train_dataset = SupervisedDataset(os.path.join(data_path, "train.json"), True)
eval_dataset = SupervisedDataset(os.path.join(data_path, "public_test.json"))
test_dataset = SupervisedDataset(os.path.join(data_path, "private_test.json"))
print("Train:", len(train_dataset))
print("Eval:", len(eval_dataset))
print("Test:", len(test_dataset))
# not freezing at all
model.freeze_feature_encoder()
# print("Frezzing weights...")
# for p in model.wav2vec2.parameters():
# p.requires_grad = False
continue_train = False
epochs = 200
accum_grads = 1
train_batchsize = 8
eval_batchsize = 64
save_steps = 20
log_steps = 20
eval_steps = 60
default_lr = 3e-4
lr_divide_factor = 1
label_smoothing = 0.0
warmup_ratio = 0.1
log_result = False
# warmup_steps = round(len(train_dataset) / (train_batchsize * accum_grads) / 4 * epochs * 0.1)
run_name = f"fine-w2v2base-bs8-ep{epochs}-lr{default_lr}-freeze_cnn-lr_cosine-spec_aug"
if log_result:
os.environ["WANDB_PROJECT"] = "md_d_vlsp_2023" # name your W&B project
training_args = TrainingArguments(
output_dir=f"wav2vec2-base-finetune-vi_phone-freeze_cnn-spec_aug-{epochs}epoch",
group_by_length=False,
per_device_train_batch_size=train_batchsize,
per_device_eval_batch_size=eval_batchsize,
eval_accumulation_steps=eval_batchsize,
gradient_accumulation_steps=accum_grads,
evaluation_strategy="steps",
num_train_epochs=epochs,
gradient_checkpointing=bool(accum_grads > 1),
fp16=True,
adam_beta1=0.9,
adam_beta2=0.98,
ddp_find_unused_parameters=False,
save_steps=save_steps,
eval_steps=eval_steps,
logging_steps=log_steps,
learning_rate=default_lr / lr_divide_factor,
label_smoothing_factor=label_smoothing,
warmup_ratio=warmup_ratio,
save_total_limit=3,
push_to_hub=False,
torch_compile=False,
resume_from_checkpoint=continue_train,
report_to="wandb" if log_result else "none",
run_name=run_name,
lr_scheduler_type="cosine",
)
trainer = Trainer(
model=model,
data_collator=data_collator,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=processor.feature_extractor,
)
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Total params:", total_params)
print(
"Trainable params:",
trainable_params,
"% trainable:",
trainable_params / total_params,
)
output = trainer.predict(test_dataset)
print("Output:", output)
torch.save(output, "private_test_predict.pt")
predict = greedy_decode(np.argmax(output.predictions, axis=-1))
predictions = []
for full_path, pred in zip(test_dataset.data, predict):
path = full_path["path"]
id_ = path.rsplit(os.sep, 1)[-1].split(".")[0]
path = path.split("VMD-VLSP23-private-test")[-1]
predictions.append({"id": id_, "path": path, "predict": " ".join(pred)})
df = pd.DataFrame(predictions)
df.to_csv("private_test_submission.csv", index=False)
# trainer.train(resume_from_checkpoint=continue_train)
# trainer.save_state()
# trainer.push_to_hub()