-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_papl_cnn_rnn.py
257 lines (202 loc) · 7.29 KB
/
train_papl_cnn_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
from mdd.datasets import SupervisedDataset, collate_fn
from mdd.models import (
EffConformer,
Conformer,
ConvLSTMNet,
ConformerPitch,
ConformerPitchTonal,
PitchAcousticPhoneticLinguistic,
)
from mdd.utils import greedy_decode, decode_phone
import lightning.pytorch as pl
from torch.utils.data import DataLoader
import torch
from torch import nn, optim
import os
import jiwer
class CTCModel(pl.LightningModule):
def __init__(
self,
input_dim=80,
model_dim=144,
num_heads=4,
num_layers=[2, 2, 4],
model_kernel_size=15,
dropout=0.2,
vocab_size=123,
num_tonals=7,
lr=3e-4,
cfg_lr_scheduler=None,
):
super().__init__()
self.model = PitchAcousticPhoneticLinguistic()
# self.model = ConvLSTMNet(input_dim, model_dim,
# num_layers=num_layers, vocab_size=vocab_size)
self.lr = lr
self.cfg_lr_scheduler = cfg_lr_scheduler
self.cfg_lr_scheduler["max_lr"] = lr
self.criterion = nn.CTCLoss()
self.actual_phonemes = []
self.predict_phonemes = []
def configure_optimizers(self):
optimizer = optim.AdamW(self.parameters(), lr=self.lr)
lr_scheduler = {
"scheduler": optim.lr_scheduler.OneCycleLR(
optimizer, **self.cfg_lr_scheduler
),
"name": "lr_scheduler_logger",
"interval": "step", # or 'epoch'
"frequency": 1,
}
return {"optimizer": optimizer, "lr_scheduler": lr_scheduler}
def training_step(self, batch, batch_idx):
x, x_len, y, y_len, pitches, tonal, tonal_len = batch
log_probs, out_len, tonal_probs = self.model(
x.permute(0, 2, 1), x_len, pitches.permute(0, 2, 1), return_tonals=True
)
# after: log_probs (bs, seq len, vocab size)
loss_asr = self.criterion(log_probs.permute(1, 0, 2), y, out_len, y_len)
loss_tonal = self.criterion(
tonal_probs.permute(1, 0, 2), tonal, out_len, tonal_len
)
loss = loss_asr + loss_tonal
self.log("train_loss_asr", loss_asr, sync_dist=True)
self.log("train_loss_tonal", loss_tonal, sync_dist=True)
self.log("train_loss", loss, sync_dist=True)
return loss
def validation_step(self, batch, batch_idx):
x, x_len, y, y_len, pitches, tonal, tonal_len = batch
log_probs, out_len, tonal_probs = self.model(
x.permute(0, 2, 1), x_len, pitches.permute(0, 2, 1), return_tonals=True
)
# after: log_probs (bs, seq len, vocab size)
loss_asr = self.criterion(log_probs.permute(1, 0, 2), y, out_len, y_len)
loss_tonal = self.criterion(
tonal_probs.permute(1, 0, 2), tonal, out_len, tonal_len
)
loss = loss_asr + loss_tonal
self.log("val_loss_asr", loss_asr, sync_dist=True)
self.log("val_loss_tonal", loss_tonal, sync_dist=True)
self.log("val_loss", loss, sync_dist=True)
actuals = [decode_phone(i.detach().cpu().tolist()) for i in y]
predicts = greedy_decode(log_probs.argmax(dim=-1).detach().cpu())
self.actual_phonemes.extend(actuals)
self.predict_phonemes.extend(predicts)
def on_validation_epoch_end(self):
all_actuals = self.actual_phonemes
all_predicts = self.predict_phonemes
all_actuals = [" ".join(i) for i in all_actuals]
all_predicts = [" ".join(i) for i in all_predicts]
wer = jiwer.wer(all_actuals, all_predicts)
self.log("val_wer", wer, sync_dist=True)
self.actual_phonemes.clear()
self.predict_phonemes.clear()
def test_step(self, batch, batch_idx):
x, x_len, y, y_len, pitches, tonal, tonal_len = batch
log_probs, out_len, tonal_probs = self.model(
x.permute(0, 2, 1), x_len, pitches.permute(0, 2, 1), return_tonals=True
)
# after: log_probs (bs, seq len, vocab size)
loss_asr = self.criterion(log_probs.permute(1, 0, 2), y, out_len, y_len)
loss_tonal = self.criterion(
tonal_probs.permute(1, 0, 2), tonal, out_len, tonal_len
)
loss = loss_asr + loss_tonal
self.log("test_loss_asr", loss_asr, sync_dist=True)
self.log("test_loss_tonal", loss_tonal, sync_dist=True)
self.log("test_loss", loss, sync_dist=True)
self.log("test_loss", loss, sync_dist=True)
actuals = [decode_phone(i.detach().cpu().tolist()) for i in y]
predicts = greedy_decode(log_probs.argmax(dim=-1).detach().cpu())
self.actual_phonemes.extend(actuals)
self.predict_phonemes.extend(predicts)
def on_test_epoch_end(self):
all_actuals = self.actual_phonemes
all_predicts = self.predict_phonemes
all_actuals = [" ".join(i) for i in all_actuals]
all_predicts = [" ".join(i) for i in all_predicts]
wer = jiwer.wer(all_actuals, all_predicts)
self.log("test_wer", wer, sync_dist=True)
self.actual_phonemes.clear()
self.predict_phonemes.clear()
data_path = "/data/tuanio/data/share_with_150/data_vlsp_md_d_2023/splitted_data_113"
train_dataset = SupervisedDataset(os.path.join(data_path, "train.json"), True)
test_dataset = SupervisedDataset(os.path.join(data_path, "test.json"))
print("train: {}, test: {}".format(len(train_dataset), len(test_dataset)))
batch_size = 16
accum_grads = 2
num_workers = 4
lr = 3e-4
max_epochs = 700
total_steps = len(train_dataset) * max_epochs
train_loader = DataLoader(
train_dataset,
batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=True,
persistent_workers=True,
collate_fn=collate_fn,
)
test_loader = DataLoader(
test_dataset,
batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=True,
persistent_workers=True,
collate_fn=collate_fn,
)
input_dim = 81
model_dim = 144
num_heads = 4
num_layers = 4
dropout = 0.3
model_kernel_size = 31
vocab_size = 123
cfg_lr_scheduler = {"pct_start": 0.2, "total_steps": total_steps // batch_size}
# model = CTCModel(
# input_dim=80,
# model_dim=96,
# num_heads=4,
# num_layers=[2, 2, 4],
# model_kernel_size=15,
# vocab_size=123,
# lr=lr,
# cfg_lr_scheduler=cfg_lr_scheduler
# )
model = CTCModel(
input_dim=input_dim,
model_dim=model_dim,
num_heads=num_heads,
num_layers=num_layers,
dropout=dropout,
model_kernel_size=model_kernel_size,
vocab_size=vocab_size,
lr=lr,
cfg_lr_scheduler=cfg_lr_scheduler,
)
# model = CTCModel(
# input_dim=80,
# model_dim=64,
# num_layers=2,
# vocab_size=123,
# lr=lr,
# cfg_lr_scheduler=cfg_lr_scheduler
# )
print(model)
print("Number of params:", sum(p.numel() for p in model.parameters()))
# wandb_logger = None
#
name = f"conformer_dim{model_dim}_heads{num_heads}_layers{num_layers}_drop{dropout}_kernel{model_kernel_size}_nfft512_hop128_warmup0.2_{max_epochs}epochs_inputdim81_pitch_InterTonal"
wandb_logger = pl.loggers.WandbLogger(project="md_d_vlsp_2023", name=name)
trainer = pl.Trainer(
devices=-1,
accelerator="gpu",
precision=16,
max_epochs=max_epochs,
logger=wandb_logger,
accumulate_grad_batches=accum_grads,
log_every_n_steps=50,
)
trainer.fit(model=model, train_dataloaders=train_loader, val_dataloaders=test_loader)