In this project, we will apply the amortized Latent Dirichlet Allocation (LDA) model to scRNA. Initially developed in the natural language processing field, LDA is a method of modeling topics using a topic matrix. We can apply the method to single-cell biology by treating each cell as a document and each gene expression count as a word. After training the model, we will plot the topics over a UMAP of the reference set and inspect them for characteristic gene sets. Multiomics enrichment analysis will be performed further using ranked gene/word lists of each cell cluster/document.
Natural language processing introduced Latent Dirichlet Allocation (LDA) as a topic modeling method. We can apply the method to single-cell biology by treating each cell as a document and each gene expression as a word. We can apply the method to single-cell biology by treating each cell as a document and each gene expression as a word.
- Pancheva A, Wheadon H, Rogers S, Otto TD. Using topic modeling to detect cellular crosstalk in scRNA-seq. PLoS computational biology. 2022 Apr 8;18(4):e1009975.
Run | BioProject | BioSample | LibraryLayout | Organism | Sample Name | source_name | tissue |
---|---|---|---|---|---|---|---|
SRR11832836 | PRJNA603103 | SAMN13919403 | PAIRED | Homo sapiens | GSM4284223 | Skin | cSCC |
SRR11832837 | PRJNA603103 | SAMN13919401 | PAIRED | Homo sapiens | GSM4284224 | Skin | Normal Skin |
SRR11832838 | PRJNA603103 | SAMN13919399 | PAIRED | Homo sapiens | GSM4284225 | Skin | cSCC |
SRR11832839 | PRJNA603103 | SAMN13919396 | PAIRED | Homo sapiens | GSM4284226 | Skin | Normal Skin |
SRR11832840 | PRJNA603103 | SAMN13919395 | PAIRED | Homo sapiens | GSM4284227 | Skin | cSCC |
SRR11832841 | PRJNA603103 | SAMN13919394 | PAIRED | Homo sapiens | GSM4284228 | Skin | Normal Skin |
SRR11832842 | PRJNA603103 | SAMN13919393 | PAIRED | Homo sapiens | GSM4284229 | Skin | cSCC |
SRR11832843 | PRJNA603103 | SAMN13919392 | PAIRED | Homo sapiens | GSM4284230 | Skin | Normal Skin |
SRR11832844 | PRJNA603103 | SAMN13919391 | PAIRED | Homo sapiens | GSM4284231 | Skin | cSCC |
SRR11832845 | PRJNA603103 | SAMN13919390 | PAIRED | Homo sapiens | GSM4284232 | Skin | cSCC |
SRR11832846 | PRJNA603103 | SAMN13919389 | PAIRED | Homo sapiens | GSM4284233 | Skin | Normal Skin |
SRR11832847 | PRJNA603103 | SAMN13919388 | PAIRED | Homo sapiens | GSM4284234 | Skin | cSCC |
SRR11832848 | PRJNA603103 | SAMN13919387 | PAIRED | Homo sapiens | GSM4284235 | Skin | Normal Skin |
SRR11832850 | PRJNA603103 | SAMN13919385 | PAIRED | Homo sapiens | GSM4284237 | Skin | Normal Skin |
SRR11832851 | PRJNA603103 | SAMN13919384 | PAIRED | Homo sapiens | GSM4284238 | Skin | cSCC |
SRR11832852 | PRJNA603103 | SAMN13919383 | PAIRED | Homo sapiens | GSM4284239 | Skin | Normal Skin |
SRR11832853 | PRJNA603103 | SAMN13919382 | PAIRED | Homo sapiens | GSM4284240 | Skin | cSCC |
SRR11832854 | PRJNA603103 | SAMN13919381 | PAIRED | Homo sapiens | GSM4284241 | Skin | Normal Skin |
SRR11832855 | PRJNA603103 | SAMN13919380 | PAIRED | Homo sapiens | GSM4284242 | Skin | cSCC |
SRR11832856 | PRJNA603103 | SAMN13919379 | PAIRED | Homo sapiens | GSM4284243 | Skin | Normal Skin |
SRR11832857 | PRJNA603103 | SAMN13919378 | PAIRED | Homo sapiens | GSM4284244 | Skin | cSCC |
SRR11832858 | PRJNA603103 | SAMN13919377 | PAIRED | Homo sapiens | GSM4284245 | Skin | Normal Skin |
SRR11832859 | PRJNA603103 | SAMN13919434 | PAIRED | Homo sapiens | GSM4284246 | Skin | cSCC |
SRR11832860 | PRJNA603103 | SAMN13919433 | PAIRED | Homo sapiens | GSM4284247 | Skin | Normal Skin |
SRR11832849 | PRJNA603103 | SAMN13919386 | PAIRED | Homo sapiens | GSM4284236 | Skin | cSCC |
To fetch source code, change in to directory of your choice and run:
git clone -b main \
[email protected]:u-brite/Single-cell-reciter.git
OS:
Tested on:
Description: | 🎩 Red Hat Enterprise Linux Server release 7.9 (Maipo) |
Release: | 7.9 |
Codename: | Maipo |
Tools:
- Anaconda3
- Tested with version: conda 4.11.0
- Cellranger
- cellranger-5.0.1
- bamtofastq v1.3.5
❗ Optional: Depends on project. ❗
Change in to root directory and run the commands below:
# create conda environment. Needed only the first time.
conda env create -f Hackin_Omics.yml
# if you need to update existing environment
conda env update --file Hackin_Omics.yml
# activate conda environment
conda activate Hackin_Omics
Use the public scRNA data or your own dataset. Various public datasets are available from a variety of sources, including NCBI GEO.
Using the Cell Ranger is a set of analysis pipelines to align reads, and generate feature-barcode matrices.
Example:
#!/bin/bash
#
#SBATCH --job-name=CellRanger_P1
#SBATCH --output=CellRanger_P1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=20
#SBATCH --partition=largemem
#SBATCH --time=12:00:00
#SBATCH --mem-per-cpu=10000
module load CellRanger/5.0.1
cellranger -V
time cellranger count --id=P1_1 \
--fastqs=P1_Fastaqs \
--sample=SRR11832837,SRR11832839 \
--transcriptome=refdata-gex-GRCh38-2020-A
Once all the Cell ranger analysis is done move all *.h5 file to one folder as per the need.
Note: Assuming HCP is being used for the analysis.
As described in the scRNA_Topic_Modeling.ipynb load the *.h5 file and perform the topic modeling analysis.
Output from this step includes -
Results/
|-- Rank_by_topic.csv
|-- SCC.h5ad
Using the each topic in the matrix from the previous step perfom the multiomics gene ranked encriment analyis as discribed in the NOTEBOOK Topic_Ranked_Enrichment_Analysis.ipynb.
(Future work) Using the topic in the matrix from the step 3 and perform co-expression analysis. see Notebook: 5_co_expression_analysis.ipynb
Name | Role | |
---|---|---|
👋 Nilesh Kumar (Ph.D. Candidate) | [email protected] | Team Leader |
🤚 Dr. Virginie Grosboillot | [email protected] | Team Member |
✋ Hammad Ali Hassan | [email protected] | Team Member |
Dr. Shahid Mukhtar Associate Professor, Department of Biology Co-Director, Genetics and Genomic Sciences Undergraduate Program Faculty, Department of Surgery Scientist, Nutrition Obesity Research Center UAB | The University of Alabama at Birmingham Campbell Hall 369 | 1300 Univ. Blvd. | Birmingham, AL, 35294-1170