-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathmodel.py
923 lines (823 loc) · 43.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
import numpy as np
import torch
from collections import namedtuple
from torch import nn
from torch.autograd import Function
from torch.distributions import Normal
from torch.nn.parameter import Parameter
from daft_exprt.extract_features import duration_to_integer
def get_mask_from_lengths(lengths):
''' Create a masked tensor from given lengths
:param lengths: torch.tensor of size (B, ) -- lengths of each example
:return mask: torch.tensor of size (B, max_length) -- the masked tensor
'''
max_len = torch.max(lengths)
ids = torch.arange(0, max_len).cuda(lengths.device, non_blocking=True).long()
mask = (ids < lengths.unsqueeze(1)).bool()
return mask
class GradientReversalFunction(Function):
@staticmethod
def forward(ctx, x, lambda_):
ctx.lambda_ = lambda_
return x.clone()
@staticmethod
def backward(ctx, grads):
lambda_ = ctx.lambda_
lambda_ = grads.new_tensor(lambda_)
dx = -lambda_ * grads
return dx, None
class GradientReversal(torch.nn.Module):
''' Gradient Reversal Layer
Y. Ganin, V. Lempitsky,
"Unsupervised Domain Adaptation by Backpropagation",
in ICML, 2015.
Forward pass is the identity function
In the backward pass, upstream gradients are multiplied by -lambda (i.e. gradient are reversed)
'''
def __init__(self, hparams):
super(GradientReversal, self).__init__()
self.lambda_ = hparams.lambda_reversal
def forward(self, x):
return GradientReversalFunction.apply(x, self.lambda_)
class LinearNorm(nn.Module):
''' Linear Norm Module:
- Linear Layer
'''
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
super(LinearNorm, self).__init__()
self.linear_layer = nn.Linear(in_dim, out_dim, bias=bias)
nn.init.xavier_uniform_(self.linear_layer.weight, gain=nn.init.calculate_gain(w_init_gain))
def forward(self, x):
''' Forward function of Linear Norm
x = (*, in_dim)
'''
x = self.linear_layer(x) # (*, out_dim)
return x
class ConvNorm1D(nn.Module):
''' Conv Norm 1D Module:
- Conv 1D
'''
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
padding=None, dilation=1, bias=True, w_init_gain='linear'):
super(ConvNorm1D, self).__init__()
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, dilation=dilation, bias=bias)
nn.init.xavier_uniform_(self.conv.weight, gain=nn.init.calculate_gain(w_init_gain))
def forward(self, x):
''' Forward function of Conv Norm 1D
x = (B, L, in_channels)
'''
x = x.transpose(1, 2) # (B, in_channels, L)
x = self.conv(x) # (B, out_channels, L)
x = x.transpose(1, 2) # (B, L, out_channels)
return x
class ConvNorm2D(nn.Module):
''' Conv Norm 2D Module:
- Conv 2D
'''
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
padding=0, dilation=1, bias=True, w_init_gain='linear'):
super(ConvNorm2D, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, dilation=dilation, bias=bias)
nn.init.xavier_uniform_(self.conv.weight, gain=nn.init.calculate_gain(w_init_gain))
def forward(self, x):
''' Forward function of Conv Norm 2D:
x = (B, H, W, in_channels)
'''
x = x.permute(0, 3, 1, 2) # (B, in_channels, H, W)
x = self.conv(x) # (B, out_channels, H, W)
x = x.permute(0, 2, 3, 1) # (B, H, W, out_channels)
return x
class PositionalEncoding(nn.Module):
''' Positional Encoding Module:
- Sinusoidal Positional Embedding
'''
def __init__(self, embed_dim, max_len=5000, timestep=10000.):
super(PositionalEncoding, self).__init__()
self.embed_dim = embed_dim
pos = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) # (max_len, 1)
div_term = torch.exp(torch.arange(0, self.embed_dim, 2).float() * (-np.log(timestep) / self.embed_dim)) # (embed_dim // 2, )
self.pos_enc = torch.FloatTensor(max_len, self.embed_dim).zero_() # (max_len, embed_dim)
self.pos_enc[:, 0::2] = torch.sin(pos * div_term)
self.pos_enc[:, 1::2] = torch.cos(pos * div_term)
def forward(self, x):
''' Forward function of Positional Encoding:
x = (B, N) -- Long or Int tensor
'''
# initialize tensor
nb_frames_max = torch.max(torch.cumsum(x, dim=1))
pos_emb = torch.FloatTensor(x.size(0), nb_frames_max, self.embed_dim).zero_() # (B, nb_frames_max, embed_dim)
pos_emb = pos_emb.cuda(x.device, non_blocking=True).float() # (B, nb_frames_max, embed_dim)
# can be used for absolute or relative positioning
for line_idx in range(x.size(0)):
pos_idx = []
for column_idx in range(x.size(1)):
idx = x[line_idx, column_idx]
pos_idx.extend([i for i in range(idx)])
emb = self.pos_enc[pos_idx] # (nb_frames, embed_dim)
pos_emb[line_idx, :emb.size(0), :] = emb
return pos_emb
class MultiHeadAttention(nn.Module):
''' Multi-Head Attention Module:
- Multi-Head Attention
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser and I. Polosukhin
"Attention is all you need",
in NeurIPS, 2017.
- Dropout
- Residual Connection
- Layer Normalization
'''
def __init__(self, hparams):
super(MultiHeadAttention, self).__init__()
self.multi_head_attention = nn.MultiheadAttention(hparams.hidden_embed_dim,
hparams.attn_nb_heads,
hparams.attn_dropout)
self.dropout = nn.Dropout(hparams.attn_dropout)
self.layer_norm = nn.LayerNorm(hparams.hidden_embed_dim)
def forward(self, query, key, value, key_padding_mask=None, attn_mask=None):
''' Forward function of Multi-Head Attention:
query = (B, L_max, hidden_embed_dim)
key = (B, T_max, hidden_embed_dim)
value = (B, T_max, hidden_embed_dim)
key_padding_mask = (B, T_max) if not None
attn_mask = (L_max, T_max) if not None
'''
# compute multi-head attention
# attn_outputs = (L_max, B, hidden_embed_dim)
# attn_weights = (B, L_max, T_max)
attn_outputs, attn_weights = self.multi_head_attention(query.transpose(0, 1),
key.transpose(0, 1),
value.transpose(0, 1),
key_padding_mask=key_padding_mask,
attn_mask=attn_mask)
attn_outputs = attn_outputs.transpose(0, 1) # (B, L_max, hidden_embed_dim)
# apply dropout
attn_outputs = self.dropout(attn_outputs) # (B, L_max, hidden_embed_dim)
# add residual connection and perform layer normalization
attn_outputs = self.layer_norm(attn_outputs + query) # (B, L_max, hidden_embed_dim)
return attn_outputs, attn_weights
class PositionWiseConvFF(nn.Module):
''' Position Wise Convolutional Feed-Forward Module:
- 2x Conv 1D with ReLU
- Dropout
- Residual Connection
- Layer Normalization
- FiLM conditioning (if film_params is not None)
'''
def __init__(self, hparams):
super(PositionWiseConvFF, self).__init__()
self.convs = nn.Sequential(
ConvNorm1D(hparams.hidden_embed_dim, hparams.conv_channels,
kernel_size=hparams.conv_kernel, stride=1,
padding=int((hparams.conv_kernel - 1) / 2),
dilation=1, w_init_gain='relu'),
nn.ReLU(),
ConvNorm1D(hparams.conv_channels, hparams.hidden_embed_dim,
kernel_size=hparams.conv_kernel, stride=1,
padding=int((hparams.conv_kernel - 1) / 2),
dilation=1, w_init_gain='linear'),
nn.Dropout(hparams.conv_dropout)
)
self.layer_norm = nn.LayerNorm(hparams.hidden_embed_dim)
def forward(self, x, film_params):
''' Forward function of PositionWiseConvFF:
x = (B, L_max, hidden_embed_dim)
film_params = (B, nb_film_params)
'''
# pass through convs
outputs = self.convs(x) # (B, L_max, hidden_embed_dim)
# add residual connection and perform layer normalization
outputs = self.layer_norm(outputs + x) # (B, L_max, hidden_embed_dim)
# add FiLM transformation
if film_params is not None:
nb_gammas = int(film_params.size(1) / 2)
assert(nb_gammas == outputs.size(2))
gammas = film_params[:, :nb_gammas].unsqueeze(1) # (B, 1, hidden_embed_dim)
betas = film_params[:, nb_gammas:].unsqueeze(1) # (B, 1, hidden_embed_dim)
outputs = gammas * outputs + betas # (B, L_max, hidden_embed_dim)
return outputs
class FFTBlock(nn.Module):
''' FFT Block Module:
- Multi-Head Attention
- Position Wise Convolutional Feed-Forward
- FiLM conditioning (if film_params is not None)
'''
def __init__(self, hparams):
super(FFTBlock, self).__init__()
self.attention = MultiHeadAttention(hparams)
self.feed_forward = PositionWiseConvFF(hparams)
def forward(self, x, film_params, mask):
''' Forward function of FFT Block:
x = (B, L_max, hidden_embed_dim)
film_params = (B, nb_film_params)
mask = (B, L_max)
'''
# attend
attn_outputs, _ = self.attention(x, x, x, key_padding_mask=mask) # (B, L_max, hidden_embed_dim)
attn_outputs = attn_outputs.masked_fill(mask.unsqueeze(2), 0) # (B, L_max, hidden_embed_dim)
# feed-forward pass
outputs = self.feed_forward(attn_outputs, film_params) # (B, L_max, hidden_embed_dim)
outputs = outputs.masked_fill(mask.unsqueeze(2), 0) # (B, L_max, hidden_embed_dim)
return outputs
class SpeakerClassifier(nn.Module):
''' Speaker Classifier Module:
- 3x Linear Layers with ReLU
'''
def __init__(self, hparams):
super(SpeakerClassifier, self).__init__()
nb_speakers = hparams.n_speakers - 1
embed_dim = hparams.prosody_encoder['hidden_embed_dim']
self.classifier = nn.Sequential(
GradientReversal(hparams),
LinearNorm(embed_dim, embed_dim, w_init_gain='relu'),
nn.ReLU(),
LinearNorm(embed_dim, embed_dim, w_init_gain='relu'),
nn.ReLU(),
LinearNorm(embed_dim, nb_speakers, w_init_gain='linear')
)
def forward(self, x):
''' Forward function of Speaker Classifier:
x = (B, embed_dim)
'''
# pass through classifier
outputs = self.classifier(x) # (B, nb_speakers)
return outputs
class ProsodyEncoder(nn.Module):
''' Prosody Encoder Module:
- Positional Encoding
- Energy Embedding:
- 1x Conv 1D
- Pitch Embedding:
- 1x Conv 1D
- Mel-Spec PreNet:
- 3x Conv 1D
- 4x FFT Blocks
- Speaker Embedding
- Linear Projection Layer
This module predicts FiLM parameters to condition the Core Acoustic Model
References:
- E. Perez, F. Strub, H. de Vries, V. Dumoulin and A. Courville,
"FiLM: Visual Reasoning with a General Conditioning Layer", in AAAI, 2018.
- https://ml-retrospectives.github.io/neurips2019/accepted_retrospectives/2019/film/
- https://distill.pub/2018/feature-wise-transformations/
- B.N. Oreshkin, P. Rodriguez and A. Lacoste,
"TADAM: Task dependent adaptive metric for improved few-shot learning", arXiv:1805.10123, 2018.
'''
def __init__(self, hparams):
super(ProsodyEncoder, self).__init__()
n_speakers = hparams.n_speakers
nb_mels = hparams.n_mel_channels
self.post_mult_weight = hparams.post_mult_weight
self.module_params = {
'encoder': (hparams.phoneme_encoder['nb_blocks'], hparams.phoneme_encoder['hidden_embed_dim']),
'prosody_predictor': (hparams.local_prosody_predictor['nb_blocks'], hparams.local_prosody_predictor['conv_channels']),
'decoder': (hparams.frame_decoder['nb_blocks'], hparams.phoneme_encoder['hidden_embed_dim'])
}
Tuple = namedtuple('Tuple', hparams.prosody_encoder)
hparams = Tuple(**hparams.prosody_encoder)
# positional encoding
self.pos_enc = PositionalEncoding(hparams.hidden_embed_dim)
# energy embedding
self.energy_embedding = ConvNorm1D(1, hparams.hidden_embed_dim, kernel_size=hparams.conv_kernel,
stride=1, padding=int((hparams.conv_kernel - 1) / 2),
dilation=1, w_init_gain='linear')
# pitch embedding
self.pitch_embedding = ConvNorm1D(1, hparams.hidden_embed_dim, kernel_size=hparams.conv_kernel,
stride=1, padding=int((hparams.conv_kernel - 1) / 2),
dilation=1, w_init_gain='linear')
# mel-spec pre-net convolutions
self.convs = nn.Sequential(
ConvNorm1D(nb_mels, hparams.conv_channels,
kernel_size=hparams.conv_kernel, stride=1,
padding=int((hparams.conv_kernel - 1) / 2),
dilation=1, w_init_gain='relu'),
nn.ReLU(),
nn.LayerNorm(hparams.conv_channels),
nn.Dropout(hparams.conv_dropout),
ConvNorm1D(hparams.conv_channels, hparams.conv_channels,
kernel_size=hparams.conv_kernel, stride=1,
padding=int((hparams.conv_kernel - 1) / 2),
dilation=1, w_init_gain='relu'),
nn.ReLU(),
nn.LayerNorm(hparams.conv_channels),
nn.Dropout(hparams.conv_dropout),
ConvNorm1D(hparams.conv_channels, hparams.hidden_embed_dim,
kernel_size=hparams.conv_kernel, stride=1,
padding=int((hparams.conv_kernel - 1) / 2),
dilation=1, w_init_gain='relu'),
nn.ReLU(),
nn.LayerNorm(hparams.hidden_embed_dim),
nn.Dropout(hparams.conv_dropout)
)
# FFT blocks
blocks = []
for _ in range(hparams.nb_blocks):
blocks.append(FFTBlock(hparams))
self.blocks = nn.ModuleList(blocks)
# speaker embedding
self.spk_embedding = nn.Embedding(n_speakers, hparams.hidden_embed_dim)
torch.nn.init.xavier_uniform_(self.spk_embedding.weight.data)
# projection layers for FiLM parameters
nb_tot_film_params = 0
for _, module_params in self.module_params.items():
nb_blocks, conv_channels = module_params
nb_tot_film_params += nb_blocks * conv_channels
self.gammas_predictor = LinearNorm(hparams.hidden_embed_dim, nb_tot_film_params, w_init_gain='linear')
self.betas_predictor = LinearNorm(hparams.hidden_embed_dim, nb_tot_film_params, w_init_gain='linear')
# initialize L2 penalized scalar post-multipliers
# one (gamma, beta) scalar post-multiplier per FiLM layer, i.e per block
if self.post_mult_weight != 0.:
nb_post_multipliers = 0
for _, module_params in self.module_params.items():
nb_blocks, _ = module_params
nb_post_multipliers += nb_blocks
self.post_multipliers = Parameter(torch.empty(2, nb_post_multipliers)) # (2, nb_post_multipliers)
nn.init.xavier_uniform_(self.post_multipliers, gain=nn.init.calculate_gain('linear')) # (2, nb_post_multipliers)
else:
self.post_multipliers = 1.
def forward(self, frames_energy, frames_pitch, mel_specs, speaker_ids, output_lengths):
''' Forward function of Prosody Encoder:
frames_energy = (B, T_max)
frames_pitch = (B, T_max)
mel_specs = (B, nb_mels, T_max)
speaker_ids = (B, )
output_lengths = (B, )
'''
# compute positional encoding
pos = self.pos_enc(output_lengths.unsqueeze(1)) # (B, T_max, hidden_embed_dim)
# encode energy sequence
frames_energy = frames_energy.unsqueeze(2) # (B, T_max, 1)
energy = self.energy_embedding(frames_energy) # (B, T_max, hidden_embed_dim)
# encode pitch sequence
frames_pitch = frames_pitch.unsqueeze(2) # (B, T_max, 1)
pitch = self.pitch_embedding(frames_pitch) # (B, T_max, hidden_embed_dim)
# pass through convs
mel_specs = mel_specs.transpose(1, 2) # (B, T_max, nb_mels)
outputs = self.convs(mel_specs) # (B, T_max, hidden_embed_dim)
# create mask
mask = ~get_mask_from_lengths(output_lengths) # (B, T_max)
# add encodings and mask tensor
outputs = outputs + energy + pitch + pos # (B, T_max, hidden_embed_dim)
outputs = outputs.masked_fill(mask.unsqueeze(2), 0) # (B, T_max, hidden_embed_dim)
# pass through FFT blocks
for _, block in enumerate(self.blocks):
outputs = block(outputs, None, mask) # (B, T_max, hidden_embed_dim)
# average pooling on the whole time sequence
outputs = torch.sum(outputs, dim=1) / output_lengths.unsqueeze(1) # (B, hidden_embed_dim)
# store prosody embeddings
prosody_embeddings = outputs # (B, hidden_embed_dim)
# encode speaker IDs and add
speaker_ids = self.spk_embedding(speaker_ids) # (B, hidden_embed_dim)
outputs = outputs + speaker_ids # (B, hidden_embed_dim)
# project outputs to predict all FiLM parameters
gammas = self.gammas_predictor(outputs) # (B, nb_tot_film_params)
betas = self.betas_predictor(outputs) # (B, nb_tot_film_params)
# split FiLM parameters per FiLM-ed module
modules_film_params = []
column_idx, block_idx = 0, 0
for _, module_params in self.module_params.items():
nb_blocks, conv_channels = module_params
module_nb_film_params = nb_blocks * conv_channels
module_gammas = gammas[:, column_idx: column_idx + module_nb_film_params] # (B, module_nb_film_params)
module_betas = betas[:, column_idx: column_idx + module_nb_film_params] # (B, module_nb_film_params)
# split FiLM parameters for each block in the module
B = module_gammas.size(0)
module_gammas = module_gammas.view(B, nb_blocks, -1) # (B, nb_blocks, block_nb_film_params)
module_betas = module_betas.view(B, nb_blocks, -1) # (B, nb_blocks, block_nb_film_params)
# predict gammas in the delta regime, i.e. predict deviation from unity
# add gamma scalar L2 penalized post-multiplier for each block
if self.post_mult_weight != 0.:
gamma_post = self.post_multipliers[0, block_idx: block_idx + nb_blocks] # (nb_blocks, )
gamma_post = gamma_post.unsqueeze(0).unsqueeze(-1) # (1, nb_blocks, 1)
else:
gamma_post = self.post_multipliers
module_gammas = gamma_post * module_gammas + 1 # (B, nb_blocks, block_nb_film_params)
# add betas scalar L2 penalized post-multiplier for each block
if self.post_mult_weight != 0.:
beta_post = self.post_multipliers[1, block_idx: block_idx + nb_blocks] # (nb_blocks, )
beta_post = beta_post.unsqueeze(0).unsqueeze(-1) # (1, nb_blocks, 1)
else:
beta_post = self.post_multipliers
module_betas = beta_post * module_betas # (B, nb_blocks, block_nb_film_params)
# concatenate tensors and append to list
module_film_params = torch.cat((module_gammas, module_betas), dim=2) # (B, nb_blocks, nb_film_params)
modules_film_params.append(module_film_params)
# increment variables
block_idx += nb_blocks
column_idx += module_nb_film_params
encoder_film, prosody_pred_film, decoder_film = modules_film_params
return prosody_embeddings, encoder_film, prosody_pred_film, decoder_film
class PhonemeEncoder(nn.Module):
''' Phoneme Encoder Module:
- Symbols Embedding
- Positional Encoding
- 4x FFT Blocks with FiLM conditioning
'''
def __init__(self, hparams):
super(PhonemeEncoder, self).__init__()
n_symbols = hparams.n_symbols
embed_dim = hparams.phoneme_encoder['hidden_embed_dim']
Tuple = namedtuple('Tuple', hparams.phoneme_encoder)
hparams = Tuple(**hparams.phoneme_encoder)
# symbols embedding and positional encoding
self.symbols_embedding = nn.Embedding(n_symbols, embed_dim)
torch.nn.init.xavier_uniform_(self.symbols_embedding.weight.data)
self.pos_enc = PositionalEncoding(embed_dim)
# FFT blocks
blocks = []
for _ in range(hparams.nb_blocks):
blocks.append(FFTBlock(hparams))
self.blocks = nn.ModuleList(blocks)
def forward(self, x, film_params, input_lengths):
''' Forward function of Phoneme Encoder:
x = (B, L_max)
film_params = (B, nb_blocks, nb_film_params)
input_lengths = (B, )
'''
# compute symbols embedding
x = self.symbols_embedding(x) # (B, L_max, hidden_embed_dim)
# compute positional encoding
pos = self.pos_enc(input_lengths.unsqueeze(1)) # (B, L_max, hidden_embed_dim)
# create mask
mask = ~get_mask_from_lengths(input_lengths) # (B, L_max)
# add and mask
x = x + pos # (B, L_max, hidden_embed_dim)
x = x.masked_fill(mask.unsqueeze(2), 0) # (B, L_max, hidden_embed_dim)
# pass through FFT blocks
for idx, block in enumerate(self.blocks):
x = block(x, film_params[:, idx, :], mask) # (B, L_max, hidden_embed_dim)
return x
class LocalProsodyPredictor(nn.Module):
''' Local Prosody Predictor Module:
- 2x Conv 1D
- FiLM conditioning
- Linear projection
'''
def __init__(self, hparams):
super(LocalProsodyPredictor, self).__init__()
embed_dim = hparams.phoneme_encoder['hidden_embed_dim']
Tuple = namedtuple('Tuple', hparams.local_prosody_predictor)
hparams = Tuple(**hparams.local_prosody_predictor)
# conv1D blocks
blocks = []
for idx in range(hparams.nb_blocks):
in_channels = embed_dim if idx == 0 else hparams.conv_channels
convs = nn.Sequential(
ConvNorm1D(in_channels, hparams.conv_channels,
kernel_size=hparams.conv_kernel, stride=1,
padding=int((hparams.conv_kernel - 1) / 2),
dilation=1, w_init_gain='relu'),
nn.ReLU(),
nn.LayerNorm(hparams.conv_channels),
nn.Dropout(hparams.conv_dropout),
ConvNorm1D(hparams.conv_channels, hparams.conv_channels,
kernel_size=hparams.conv_kernel, stride=1,
padding=int((hparams.conv_kernel - 1) / 2),
dilation=1, w_init_gain='relu'),
nn.ReLU(),
nn.LayerNorm(hparams.conv_channels),
nn.Dropout(hparams.conv_dropout)
)
blocks.append(convs)
self.blocks = nn.ModuleList(blocks)
# linear projection for prosody prediction
self.projection = LinearNorm(hparams.conv_channels, 3, w_init_gain='linear')
def forward(self, x, film_params, input_lengths):
''' Forward function of Local Prosody Predictor:
x = (B, L_max, hidden_embed_dim)
film_params = (B, nb_blocks, nb_film_params)
input_lengths = (B, )
'''
# pass through blocks and mask tensor
for idx, block in enumerate(self.blocks):
x = block(x) # (B, L_max, conv_channels)
# add FiLM transformation
block_film_params = film_params[:, idx, :] # (B, nb_film_params)
nb_gammas = int(block_film_params.size(1) / 2)
assert(nb_gammas == x.size(2))
gammas = block_film_params[:, :nb_gammas].unsqueeze(1) # (B, 1, conv_channels)
betas = block_film_params[:, nb_gammas:].unsqueeze(1) # (B, 1, conv_channels)
x = gammas * x + betas # (B, L_max, conv_channels)
mask = ~get_mask_from_lengths(input_lengths) # (B, L_max)
x = x.masked_fill(mask.unsqueeze(2), 0) # (B, L_max, conv_channels)
# predict prosody params and mask tensor
prosody_preds = self.projection(x) # (B, L_max, 3)
prosody_preds = prosody_preds.masked_fill(mask.unsqueeze(2), 0) # (B, L_max, 3)
# extract prosody params
durations = prosody_preds[:, :, 0] # (B, L_max)
energies = prosody_preds[:, :, 1] # (B, L_max)
pitch = prosody_preds[:, :, 2] # (B, L_max)
return durations, energies, pitch
class GaussianUpsamplingModule(nn.Module):
''' Gaussian Upsampling Module:
- Duration Projection
- Energy Projection
- Pitch Projection
- Ranges Projection Layer
- Gaussian Upsampling
'''
def __init__(self, hparams):
super(GaussianUpsamplingModule, self).__init__()
embed_dim = hparams.phoneme_encoder['hidden_embed_dim']
Tuple = namedtuple('Tuple', hparams.gaussian_upsampling_module)
hparams = Tuple(**hparams.gaussian_upsampling_module)
# duration, energy and pitch projection layers
self.duration_projection = ConvNorm1D(1, embed_dim, kernel_size=hparams.conv_kernel,
stride=1, padding=int((hparams.conv_kernel - 1) / 2),
dilation=1, w_init_gain='linear')
self.energy_projection = ConvNorm1D(1, embed_dim, kernel_size=hparams.conv_kernel,
stride=1, padding=int((hparams.conv_kernel - 1) / 2),
dilation=1, w_init_gain='linear')
self.pitch_projection = ConvNorm1D(1, embed_dim, kernel_size=hparams.conv_kernel,
stride=1, padding=int((hparams.conv_kernel - 1) / 2),
dilation=1, w_init_gain='linear')
# ranges predictor
self.projection = nn.Sequential(
LinearNorm(embed_dim, 1, w_init_gain='relu'),
nn.Softplus()
)
def forward(self, x, durations_float, durations_int, energies, pitch, input_lengths):
''' Forward function of Gaussian Upsampling Module:
x = (B, L_max, hidden_embed_dim)
durations_float = (B, L_max)
durations_int = (B, L_max)
energies = (B, L_max)
pitch = (B, L_max)
input_lengths = (B, )
'''
# project durations
durations = durations_float.unsqueeze(2) # (B, L_max, 1)
durations = self.duration_projection(durations) # (B, L_max, hidden_embed_dim)
# project energies
energies = energies.unsqueeze(2) # (B, L_max, 1)
energies = self.energy_projection(energies) # (B, L_max, hidden_embed_dim)
# project pitch
pitch = pitch.unsqueeze(2) # (B, L_max, 1)
pitch = self.pitch_projection(pitch) # (B, L_max, hidden_embed_dim)
# add energy and pitch to encoded input symbols
x = x + energies + pitch # (B, L_max, hidden_embed_dim)
# predict ranges for each symbol and mask tensor
# use mask_value = 1. because ranges will be used as stds in Gaussian upsampling
# mask_value = 0. would cause NaN values
range_inputs = x + durations # (B, L_max, hidden_embed_dim)
ranges = self.projection(range_inputs) # (B, L_max, 1)
ranges = ranges.squeeze(2) # (B, L_max)
mask = ~get_mask_from_lengths(input_lengths) # (B, L_max)
ranges = ranges.masked_fill(mask, 1) # (B, L_max)
# perform Gaussian upsampling
# compute Gaussian means
means = durations_int.float() / 2 # (B, L_max)
cumsum = torch.cumsum(durations_int, dim=1) # (B, L_max)
means[:, 1:] += cumsum[:, :-1] # (B, L_max)
# compute Gaussian distributions
means = means.unsqueeze(-1) # (B, L_max, 1)
stds = ranges.unsqueeze(-1) # (B, L_max, 1)
gaussians = Normal(means, stds) # (B, L_max, 1)
# create frames idx tensor
nb_frames_max = torch.max(cumsum) # T_max
frames_idx = torch.FloatTensor([i + 0.5 for i in range(nb_frames_max)]) # (T_max, )
frames_idx = frames_idx.cuda(x.device, non_blocking=True).float() # (T_max, )
# compute probs
probs = torch.exp(gaussians.log_prob(frames_idx)) # (B, L_max, T_max)
# apply mask to set probs out of sequence length to 0
probs = probs.masked_fill(mask.unsqueeze(2), 0) # (B, L_max, T_max)
# compute weights
weights = probs / (torch.sum(probs, dim=1, keepdim=True) + 1e-20) # (B, L_max, T_max)
# compute upsampled embedding
x_upsamp = torch.sum(x.unsqueeze(-1) * weights.unsqueeze(2), dim=1) # (B, input_dim, T_max)
x_upsamp = x_upsamp.permute(0, 2, 1) # (B, T_max, input_dim)
return x_upsamp, weights
class FrameDecoder(nn.Module):
''' Frame Decoder Module:
- Positional Encoding
- 4x FFT Blocks with FiLM conditioning
- Linear projection
'''
def __init__(self, hparams):
super(FrameDecoder, self).__init__()
nb_mels = hparams.n_mel_channels
embed_dim = hparams.phoneme_encoder['hidden_embed_dim']
hparams.frame_decoder['hidden_embed_dim'] = embed_dim
Tuple = namedtuple('Tuple', hparams.frame_decoder)
hparams = Tuple(**hparams.frame_decoder)
# positional encoding
self.pos_enc = PositionalEncoding(embed_dim)
# FFT blocks
blocks = []
for _ in range(hparams.nb_blocks):
blocks.append(FFTBlock(hparams))
self.blocks = nn.ModuleList(blocks)
# linear projection for mel-spec prediction
self.projection = LinearNorm(embed_dim, nb_mels, w_init_gain='linear')
def forward(self, x, film_params, output_lengths):
''' Forward function of Decoder Embedding:
x = (B, T_max, hidden_embed_dim)
film_params = (B, nb_blocks, nb_film_params)
output_lengths = (B, )
'''
# compute positional encoding
pos = self.pos_enc(output_lengths.unsqueeze(1)) # (B, T_max, hidden_embed_dim)
# create mask
mask = ~get_mask_from_lengths(output_lengths) # (B, T_max)
# add and mask
x = x + pos # (B, T_max, hidden_embed_dim)
x = x.masked_fill(mask.unsqueeze(2), 0) # (B, T_max, hidden_embed_dim)
# pass through FFT blocks
for idx, block in enumerate(self.blocks):
x = block(x, film_params[:, idx, :], mask) # (B, T_max, hidden_embed_dim)
# predict mel-spec frames and mask tensor
mel_specs = self.projection(x) # (B, T_max, nb_mels)
mel_specs = mel_specs.masked_fill(mask.unsqueeze(2), 0) # (B, T_max, nb_mels)
mel_specs = mel_specs.transpose(1, 2) # (B, nb_mels, T_max)
return mel_specs
class DaftExprt(nn.Module):
''' DaftExprt model from J. Zaïdi, H. Seuté, B. van Niekerk, M.A. Carbonneau
"DaftExprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis"
arXiv:2108.02271, 2021.
'''
def __init__(self, hparams):
super(DaftExprt, self).__init__()
self.prosody_encoder = ProsodyEncoder(hparams)
self.speaker_classifier = SpeakerClassifier(hparams)
self.phoneme_encoder = PhonemeEncoder(hparams)
self.prosody_predictor = LocalProsodyPredictor(hparams)
self.gaussian_upsampling = GaussianUpsamplingModule(hparams)
self.frame_decoder = FrameDecoder(hparams)
def parse_batch(self, gpu, batch):
''' Parse input batch
'''
# extract tensors
symbols, durations_float, durations_int, symbols_energy, symbols_pitch, input_lengths, \
frames_energy, frames_pitch, mel_specs, output_lengths, speaker_ids, feature_dirs, feature_files = batch
# transfer tensors to specified GPU
symbols = symbols.cuda(gpu, non_blocking=True).long() # (B, L_max)
durations_float = durations_float.cuda(gpu, non_blocking=True).float() # (B, L_max)
durations_int = durations_int.cuda(gpu, non_blocking=True).long() # (B, L_max)
symbols_energy = symbols_energy.cuda(gpu, non_blocking=True).float() # (B, L_max)
symbols_pitch = symbols_pitch.cuda(gpu, non_blocking=True).float() # (B, L_max)
input_lengths = input_lengths.cuda(gpu, non_blocking=True).long() # (B, )
frames_energy = frames_energy.cuda(gpu, non_blocking=True).float() # (B, T_max)
frames_pitch = frames_pitch.cuda(gpu, non_blocking=True).float() # (B, T_max)
mel_specs = mel_specs.cuda(gpu, non_blocking=True).float() # (B, n_mel_channels, T_max)
output_lengths = output_lengths.cuda(gpu, non_blocking=True).long() # (B, )
speaker_ids = speaker_ids.cuda(gpu, non_blocking=True).long() # (B, )
# create inputs and targets
inputs = (symbols, durations_float, durations_int, symbols_energy, symbols_pitch, input_lengths,
frames_energy, frames_pitch, mel_specs, output_lengths, speaker_ids)
targets = (durations_float, symbols_energy, symbols_pitch, mel_specs, speaker_ids)
file_ids = (feature_dirs, feature_files)
return inputs, targets, file_ids
def forward(self, inputs):
''' Forward function of DaftExprt
'''
# extract inputs
symbols, durations_float, durations_int, symbols_energy, symbols_pitch, input_lengths, \
frames_energy, frames_pitch, mel_specs, output_lengths, speaker_ids = inputs
input_lengths, output_lengths = input_lengths.detach(), output_lengths.detach()
# extract FiLM parameters from reference and speaker ID
# (B, nb_blocks, nb_film_params)
prosody_embed, encoder_film, prosody_pred_film, decoder_film = self.prosody_encoder(frames_energy, frames_pitch, mel_specs, speaker_ids, output_lengths)
# pass through speaker classifier
spk_preds = self.speaker_classifier(prosody_embed) # (B, nb_speakers)
# embed phoneme symbols, add positional encoding and encode input sequence
enc_outputs = self.phoneme_encoder(symbols, encoder_film, input_lengths) # (B, L_max, hidden_embed_dim)
# predict prosody parameters
duration_preds, energy_preds, pitch_preds = self.prosody_predictor(enc_outputs, prosody_pred_film, input_lengths) # (B, L_max)
# perform Gaussian upsampling on symbols sequence
# use prosody ground-truth values for training
# symbols_upsamp = (B, T_max, hidden_embed_dim)
# weights = (B, L_max, T_max)
symbols_upsamp, weights = self.gaussian_upsampling(enc_outputs, durations_float, durations_int, symbols_energy, symbols_pitch, input_lengths)
# decode output sequence and predict mel-specs
mel_spec_preds = self.frame_decoder(symbols_upsamp, decoder_film, output_lengths) # (B, nb_mels, T_max)
# parse outputs
speaker_preds = spk_preds
film_params = [self.prosody_encoder.post_multipliers, encoder_film, prosody_pred_film, decoder_film]
encoder_preds = [duration_preds, energy_preds, pitch_preds, input_lengths]
decoder_preds = [mel_spec_preds, output_lengths]
alignments = weights
return speaker_preds, film_params, encoder_preds, decoder_preds, alignments
def get_int_durations(self, duration_preds, hparams):
''' Convert float durations to integer frame durations
'''
# min float duration to have at least one mel-spec frame attributed to the symbol
fft_length = hparams.filter_length / hparams.sampling_rate
dur_min = fft_length / 2
# set duration under min duration to 0.
duration_preds[duration_preds < dur_min] = 0. # (B, L_max)
# convert to int durations for each element in the batch
durations_int = torch.LongTensor(duration_preds.size(0), duration_preds.size(1)).zero_() # (B, L_max)
for line_idx in range(duration_preds.size(0)):
end_prev, symbols_idx, durations_float = 0., [], []
for symbol_id in range(duration_preds.size(1)):
symb_dur = duration_preds[line_idx, symbol_id].item()
if symb_dur != 0.: # ignore 0 durations
symbols_idx.append(symbol_id)
durations_float.append([end_prev, end_prev + symb_dur])
end_prev += symb_dur
int_durs = torch.LongTensor(duration_to_integer(durations_float, hparams)) # (L_max, )
durations_int[line_idx, symbols_idx] = int_durs
# put on GPU
durations_int = durations_int.cuda(duration_preds.device, non_blocking=True).long() # (B, L_max)
return duration_preds, durations_int
def pitch_shift(self, pitch_preds, pitch_factors, hparams, speaker_ids):
''' Pitch shift pitch predictions
Pitch factors are assumed to be in Hz
'''
# keep track of unvoiced idx
zero_idxs = (pitch_preds == 0.).nonzero() # (N, 2)
# pitch factors are F0 shifts in Hz
# pitch_factors = [[+50, -20, ...], ..., [+30, -10, ...]]
for line_idx in range(pitch_preds.size(0)):
speaker_id = speaker_ids[line_idx].item()
pitch_mean = hparams.stats[f'spk {speaker_id}']['pitch']['mean']
pitch_std = hparams.stats[f'spk {speaker_id}']['pitch']['std']
pitch_preds[line_idx] = torch.exp(pitch_std * pitch_preds[line_idx] + pitch_mean) # (L_max)
# perform pitch shift in Hz domain
pitch_preds[line_idx] += pitch_factors[line_idx] # (L_max)
# go back to log and re-normalize using pitch training stats
pitch_preds[line_idx] = (torch.log(pitch_preds[line_idx]) - pitch_mean) / pitch_std # (L_max)
# set unvoiced idx to zero
pitch_preds[zero_idxs[:, 0], zero_idxs[:, 1]] = 0.
return pitch_preds
def pitch_multiply(self, pitch_preds, pitch_factors):
''' Apply multiply transform to pitch prediction with respect to the mean
Effects of factor values on the pitch:
]0, +inf[ amplify
0 no effect
]-1, 0[ de-amplify
-1 flatten
]-2, -1[ invert de-amplify
-2 invert
]-inf, -2[ invert amplify
'''
# multiply pitch for each element in the batch
for line_idx in range(pitch_preds.size(0)):
# keep track of voiced and unvoiced idx
non_zero_idxs = pitch_preds[line_idx].nonzero() # (M, )
zero_idxs = (pitch_preds[line_idx] == 0.).nonzero() # (N, )
# compute mean of voiced values
mean_pitch = torch.mean(pitch_preds[line_idx, non_zero_idxs])
# compute deviation to the mean for each pitch prediction
pitch_deviation = pitch_preds[line_idx] - mean_pitch # (L_max)
# multiply factors to pitch deviation
pitch_deviation *= pitch_factors[line_idx] # (L_max)
# add deviation to pitch predictions
pitch_preds[line_idx] += pitch_deviation # (L_max)
# reset unvoiced values to 0
pitch_preds[line_idx, zero_idxs] = 0.
return pitch_preds
def inference(self, inputs, pitch_transform, hparams):
''' Inference function of DaftExprt
'''
# symbols = (B, L_max)
# dur_factors = (B, L_max)
# energy_factors = (B, L_max)
# pitch_factors = (B, L_max)
# input_lengths = (B, )
# energy_refs = (B, T_max)
# pitch_refs = (B, T_max)
# mel_spec_refs = (B, n_mel_channels, T_max)
# ref_lengths = (B, )
# speaker_ids = (B, )
symbols, dur_factors, energy_factors, pitch_factors, input_lengths, \
energy_refs, pitch_refs, mel_spec_refs, ref_lengths, speaker_ids = inputs
# extract FiLM parameters from reference and speaker ID
# (B, nb_blocks, nb_film_params)
_, encoder_film, prosody_pred_film, decoder_film = self.prosody_encoder(energy_refs, pitch_refs, mel_spec_refs, speaker_ids, ref_lengths)
# embed phoneme symbols, add positional encoding and encode input sequence
enc_outputs = self.phoneme_encoder(symbols, encoder_film, input_lengths) # (B, L_max, hidden_embed_dim)
# predict prosody parameters
duration_preds, energy_preds, pitch_preds = self.prosody_predictor(enc_outputs, prosody_pred_film, input_lengths) # (B, L_max)
# multiply durations by duration factors and extract int durations
duration_preds *= dur_factors # (B, L_max)
duration_preds, durations_int = self.get_int_durations(duration_preds, hparams) # (B, L_max)
# add energy factors to energies
# set 0 energy for symbols with 0 duration
energy_preds *= energy_factors # (B, L_max)
energy_preds[durations_int == 0] = 0. # (B, L_max)
# set unvoiced pitch for symbols with 0 duration
# apply pitch factors using specified transformation
pitch_preds[durations_int == 0] = 0.
if pitch_transform == 'add':
pitch_preds = self.pitch_shift(pitch_preds, pitch_factors, hparams, speaker_ids) # (B, L_max)
elif pitch_transform == 'multiply':
pitch_preds = self.pitch_multiply(pitch_preds, pitch_factors) # (B, L_max)
else:
raise NotImplementedError
# perform Gaussian upsampling on symbols sequence
# symbols_upsamp = (B, T_max, hidden_embed_dim)
# weights = (B, L_max, T_max)
symbols_upsamp, weights = self.gaussian_upsampling(enc_outputs, duration_preds, durations_int, energy_preds, pitch_preds, input_lengths)
# get sequence output length for each element in the batch
output_lengths = torch.sum(durations_int, dim=1) # (B, )
output_lengths = output_lengths.cuda(symbols_upsamp.device, non_blocking=True).long() # (B, )
assert(torch.max(output_lengths) == symbols_upsamp.size(1))
# decode output sequence and predict mel-specs
mel_spec_preds = self.frame_decoder(symbols_upsamp, decoder_film, output_lengths) # (B, nb_mels, T_max)
# parse outputs
encoder_preds = [duration_preds, durations_int, energy_preds, pitch_preds, input_lengths]
decoder_preds = [mel_spec_preds, output_lengths]
alignments = weights
return encoder_preds, decoder_preds, alignments