-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathoa_icp.py
236 lines (204 loc) · 10.9 KB
/
oa_icp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
import os.path as osp
import tqdm
import yaml
import argparse
import json
import torch
from torch.utils.data import DataLoader
from losses.seg_loss_unsup import fit_motion_svd_batch, interpolate_mask_by_flow, match_mask_by_iou
from metrics.flow_metric import eval_flow
from utils.pytorch_util import AverageMeter
def weighted_kabsch(pc, flow, mask):
"""
:param pc: (B, N, 3) torch.Tensor.
:param flow: (B, N, 3) torch.Tensor.
:param mask: (B, N, K) torch.Tensor.
:return:
flow: (B, N, 3) torch.Tensor.
"""
n_batch, n_point, n_object = mask.size()
mask = mask.transpose(1, 2)
mask = mask.reshape(n_batch * n_object, n_point)
pc_rep = pc.unsqueeze(1).repeat(1, n_object, 1, 1).reshape(n_batch * n_object, n_point, 3)
flow_rep = flow.unsqueeze(1).repeat(1, n_object, 1, 1).reshape(n_batch * n_object, n_point, 3)
# Estimate the rigid transformation
object_R, object_t = fit_motion_svd_batch(pc_rep, pc_rep + flow_rep, mask)
# Apply the estimated rigid transformation onto point cloud
pc_transformed = torch.einsum('bij,bnj->bni', object_R, pc_rep) + object_t.unsqueeze(1).repeat(1, n_point, 1)
pc_transformed = pc_transformed.reshape(n_batch, n_object, n_point, 3)
mask = mask.reshape(n_batch, n_object, n_point)
flow = torch.einsum('bkn,bkni->bni', mask, pc_transformed) - pc
return flow
def object_aware_icp(pc1, pc2, flow, mask1, mask2, icp_iter=10, temperature=0.01):
"""
:param pc1: (B, N, 3) torch.Tensor.
:param pc2: (B, N, 3) torch.Tensor.
:param flow: (B, N, 3) torch.Tensor.
:param mask1: (B, N, K) torch.Tensor.
:param mask2: (B, N, K) torch.Tensor.
:return:
flow_update: (B, N, 3) torch.Tensor.
"""
# Aligh the object ordering in two frames
mask2_interpolated = interpolate_mask_by_flow(pc1, pc2, mask1, flow)
perm = match_mask_by_iou(mask2_interpolated, mask2)
mask2 = torch.einsum('bij,bnj->bni', perm, mask2)
# Compute object consistency scores
consistency12 = torch.einsum('bmk,bnk->bmn', mask1, mask2)
n_batch, n_point, n_object = mask1.size()
mask1, mask2 = mask1.transpose(1, 2), mask2.transpose(1, 2)
mask1_rep = mask1.reshape(n_batch * n_object, n_point)
pc1_rep = pc1.unsqueeze(1).repeat(1, n_object, 1, 1).reshape(n_batch * n_object, n_point, 3)
for iter in range(icp_iter):
# Compute soft correspondence scores from nearest-neighbor distances
dist12 = -torch.cdist(pc1 + flow, pc2) / temperature
corr12 = dist12.softmax(-1)
# Filter correspondence scores by object consistency scores
corr12 = corr12 * consistency12
row_sum = corr12.sum(-1, keepdim=True).clamp(1e-10)
corr12 = corr12 / row_sum
# Update scene flow from object-aware soft correspondences
flow = torch.einsum('bmn,bnj->bmj', corr12, pc2) - pc1
flow_rep = flow.unsqueeze(1).repeat(1, n_object, 1, 1).reshape(n_batch * n_object, n_point, 3)
# Estimate the rigid transformation
object_R, object_t = fit_motion_svd_batch(pc1_rep, pc1_rep + flow_rep, mask1_rep)
# Apply the estimated rigid transformation onto point cloud
pc1_transformed = torch.einsum('bij,bnj->bni', object_R, pc1_rep) + object_t.unsqueeze(1).repeat(1, n_point, 1)
pc1_transformed = pc1_transformed.reshape(n_batch, n_object, n_point, 3)
flow = torch.einsum('bkn,bkni->bni', mask1, pc1_transformed) - pc1
return flow
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('config', type=str, help='Config files')
parser.add_argument('--split', type=str, help='Dataset split')
parser.add_argument('--round', type=int, default=0, help='Which round of iterative optimization')
parser.add_argument('--test_batch_size', type=int, default=48, help='Batch size in testing')
parser.add_argument('--save', dest='save', default=False, action='store_true', help='Save flow predictions or not')
parser.add_argument('--saveflow_path', type=str, default=None, help='Path to save flow predictions')
# Read parameters
args = parser.parse_args()
with open(args.config) as f:
configs = yaml.load(f, Loader=yaml.FullLoader)
for ckey, cvalue in configs.items():
args.__dict__[ckey] = cvalue
# Configuration for different dataset
data_root = args.data['root']
if args.dataset == 'sapien':
from models.segnet_sapien import MaskFormer3D
from datasets.dataset_sapien import SapienDataset as TestDataset
if args.split == 'test':
data_root = osp.join(data_root, 'mbs-sapien')
else:
data_root = osp.join(data_root, 'mbs-shapepart')
epe_norm_thresh = 0.01
elif args.dataset == 'ogcdr':
from models.segnet_ogcdr import MaskFormer3D
from datasets.dataset_ogcdr import OGCDynamicRoomDataset as TestDataset
epe_norm_thresh = 0.01
elif args.dataset == 'kittisf':
from models.segnet_kitti import MaskFormer3D
from datasets.dataset_kittisf import KITTISceneFlowDataset as TestDataset
if args.split == 'val':
mapping_path = 'data_prepare/kittisf/splits/val.txt'
else:
mapping_path = 'data_prepare/kittisf/splits/train.txt'
epe_norm_thresh = 0.05
else:
raise KeyError('Unrecognized dataset!')
# Setup the segmentation network
segnet = MaskFormer3D(n_slot=args.segnet['n_slot'],
n_point=args.segnet['n_point'],
use_xyz=args.segnet['use_xyz'],
n_transformer_layer=args.segnet['n_transformer_layer'],
transformer_embed_dim=args.segnet['transformer_embed_dim'],
transformer_input_pos_enc=args.segnet['transformer_input_pos_enc']).cuda()
# Load the trained model weights
weight_path = osp.join(args.save_path + '_R%d'%(args.round), 'best.pth.tar')
segnet.load_state_dict(torch.load(weight_path)['model_state'])
segnet.cuda().eval()
print('Loaded weights from', weight_path)
# Setup the dataset
if args.round > 1:
predflow_path = 'flowstep3d_R%d'%(args.round - 1)
else:
predflow_path = 'flowstep3d'
if args.dataset in ['sapien', 'ogcdr']:
view_sels = [[0, 1], [1, 0], [1, 2], [2, 1], [2, 3], [3, 2]]
test_set = TestDataset(data_root=data_root,
split=args.split,
view_sels=view_sels,
decentralize=args.data['decentralize'])
test_set_predflow = TestDataset(data_root=data_root,
split=args.split,
view_sels=view_sels,
predflow_path=predflow_path,
decentralize=args.data['decentralize'])
else:
view_sels = [[0, 1], [1, 0]]
test_set = TestDataset(data_root=data_root,
mapping_path=mapping_path,
downsampled=True,
view_sels=view_sels,
decentralize=args.data['decentralize'])
test_set_predflow = TestDataset(data_root=data_root,
mapping_path=mapping_path,
downsampled=True,
view_sels=view_sels,
predflow_path=predflow_path,
decentralize=args.data['decentralize'])
n_frame = len(view_sels)
batch_size = args.test_batch_size
# Hyperparam for Object-Aware ICP
icp_iters = {1: 20, 2: 10, 3: 5, 4: 3}
icp_iter = icp_iters[args.round]
# Save updated flow predictions
if args.save:
assert batch_size % n_frame == 0, \
'Frame pairs of one scene should be in the same batch, otherwise very inconvenient for saving!'
# Path to save flow predictions
if args.saveflow_path is None:
args.saveflow_path = 'flowstep3d'
SAVE_DIR = osp.join(data_root, 'flow_preds', args.saveflow_path + '_R%d'%(args.round))
os.makedirs(SAVE_DIR, exist_ok=True)
# Write information about "view_sel" into a meta file
if args.dataset in ['sapien', 'ogcdr']:
SAVE_META = SAVE_DIR + '.json'
with open(SAVE_META, 'w') as f:
json.dump({'view_sel': view_sels}, f)
# Iterate over samples
eval_meter = AverageMeter()
eval_meter_kabsch = AverageMeter()
eval_meter_oaicp = AverageMeter()
test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False, pin_memory=True, num_workers=4)
test_loader_predflow = DataLoader(test_set_predflow, batch_size=batch_size, shuffle=False, pin_memory=True, num_workers=4)
with tqdm.tqdm(enumerate(zip(test_loader, test_loader_predflow), 0), total=len(test_loader), desc='test') as tbar:
for i, (batch1, batch2) in tbar:
pcs, _, flows, _ = batch1
_, _, flow_preds, _ = batch2
pc1, pc2 = pcs[:, 0].contiguous(), pcs[:, 1].contiguous()
flow, flow_pred = flows[:, 0].contiguous(), flow_preds[:, 0].contiguous()
# Forward inference: segmentation
pc1, pc2, flow_pred = pc1.cuda(), pc2.cuda(), flow_pred.cuda()
mask1 = segnet(pc1, pc1).detach()
mask2 = segnet(pc2, pc2).detach()
# Upadate flow predictions using Weighted Kabsch
flow_pred_kabsch = weighted_kabsch(pc1, flow_pred, mask1.detach())
# Upadate flow predictions using OA-ICP
flow_pred_oaicp = object_aware_icp(pc1, pc2, flow_pred, mask1, mask2, icp_iter=icp_iter)
# Monitor the change of flow accuracy
epe, acc_strict, acc_relax, outlier = eval_flow(flow, flow_pred, epe_norm_thresh=epe_norm_thresh)
eval_meter.append_loss({'EPE': epe, 'AccS': acc_strict, 'AccR': acc_relax, 'Outlier': outlier})
epe_r, acc_strict_r, acc_relax_r, outlier_r = eval_flow(flow, flow_pred_kabsch, epe_norm_thresh=epe_norm_thresh)
eval_meter_kabsch.append_loss({'EPE': epe_r, 'AccS': acc_strict_r, 'AccR': acc_relax_r, 'Outlier': outlier_r})
epe_update, acc_strict_update, acc_relax_update, outlier_update = eval_flow(flow, flow_pred_oaicp, epe_norm_thresh=epe_norm_thresh)
eval_meter_oaicp.append_loss({'EPE': epe_update, 'AccS': acc_strict_update, 'AccR': acc_relax_update, 'Outlier': outlier_update})
# Save
if args.save:
test_set._save_predflow(flow_pred_oaicp, save_root=SAVE_DIR, batch_size=batch_size, n_frame=n_frame, offset=i)
eval_avg = eval_meter.get_mean_loss_dict()
print('Original flow:', eval_avg)
eval_avg_kabsch = eval_meter_kabsch.get_mean_loss_dict()
print('Weighted Kabsch flow:', eval_avg_kabsch)
eval_avg_oaicp = eval_meter_oaicp.get_mean_loss_dict()
print('Object-Aware ICP flow:', eval_avg_oaicp)