-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain_flow.py
executable file
·284 lines (231 loc) · 10.6 KB
/
train_flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import os
import os.path as osp
import tqdm
import yaml
import argparse
import numpy as np
import torch
from torch import optim
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from losses.flow_loss_unsup import ChamferLoss, SmoothLoss, UnsupervisedFlowStep3DLoss
from utils.pytorch_util import BNMomentumScheduler, save_checkpoint, checkpoint_state, AverageMeter, RunningAverageMeter
def epe_metric(gt_flow, flow_preds):
"""
Monitor EPE3D of iterative predictions from FlowStep3D.
:param gt_flow: (B, N, 3) torch.Tensor.
:param flow_preds: [(B, N ,3), ...], list of torch.Tensor.
"""
epe_dict = {}
for i in range(len(flow_preds)):
flow_pred = flow_preds[i].detach().cpu()
epe_norm = torch.norm(flow_pred - gt_flow, dim=2)
epe = epe_norm.mean()
epe_dict['epe3d_#%d'%(i)] = epe.item()
return epe_dict
class Trainer(object):
def __init__(self,
flownet,
model_iters,
criterion,
optimizer,
exp_base,
lr_scheduler=None,
bnm_scheduler=None):
self.flownet = flownet
self.model_iters = model_iters
self.criterion = criterion
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
self.bnm_scheduler = bnm_scheduler
self.exp_base = exp_base
os.makedirs(exp_base, exist_ok=True)
self.checkpoint_name, self.best_name = "current", "best"
self.cur_epoch = 0
self.training_best, self.eval_best = {}, {}
log_dir = osp.join(exp_base, 'log')
os.makedirs(log_dir, exist_ok=True)
self.viz = SummaryWriter(log_dir)
def _train_it(self, it, batch):
self.flownet.train()
if self.lr_scheduler is not None:
self.lr_scheduler.step(it)
if self.bnm_scheduler is not None:
self.bnm_scheduler.step(it)
self.optimizer.zero_grad()
# Forward
with torch.set_grad_enabled(True):
pcs, _, flows, _ = batch
pcs = pcs.cuda()
pc1, pc2 = pcs[:, 0].contiguous(), pcs[:, 1].contiguous()
flow = flows[:, 0]
flow_preds = self.flownet(pc1, pc2, pc1, pc2, iters=self.model_iters)
loss, loss_dict = self.criterion(pc1, pc2, flow_preds)
epe_dict = epe_metric(flow, flow_preds)
loss_dict = loss_dict | epe_dict
# Backward
try:
loss.backward()
except RuntimeError:
return loss_dict
for param in self.flownet.parameters():
if param.grad is not None and torch.any(torch.isnan(param.grad)):
return loss_dict
self.optimizer.step()
return loss_dict
def eval_epoch(self, val_loader):
if self.flownet is not None:
self.flownet.eval()
eval_meter = AverageMeter()
total_loss = 0.0
count = 1.0
with tqdm.tqdm(enumerate(val_loader, 0), total=len(val_loader), leave=False, desc='val') as tbar:
for i, batch in tbar:
with torch.set_grad_enabled(False):
pcs, _, flows, _ = batch
pcs = pcs.cuda()
pc1, pc2 = pcs[:, 0].contiguous(), pcs[:, 1].contiguous()
flow = flows[:, 0]
flow_preds = self.flownet(pc1, pc2, pc1, pc2, iters=self.model_iters)
loss, loss_dict = self.criterion(pc1, pc2, flow_preds)
epe_dict = epe_metric(flow, flow_preds)
loss_dict = loss_dict | epe_dict
total_loss += loss.item()
count += 1
eval_meter.append_loss(loss_dict)
tbar.set_postfix(eval_meter.get_mean_loss_dict())
return total_loss / count, eval_meter.get_mean_loss_dict()
def train(self, n_epochs, train_loader, val_loader=None):
it = 0
best_loss = 1e10
# Save initial model
save_checkpoint(
checkpoint_state(self.flownet), True,
filename=osp.join(self.exp_base, self.checkpoint_name),
bestname=osp.join(self.exp_base, self.best_name))
with tqdm.trange(1, n_epochs + 1, desc='epochs') as tbar, \
tqdm.tqdm(total=len(train_loader), leave=False, desc='train') as pbar:
for epoch in tbar:
train_meter = AverageMeter()
train_running_meter = RunningAverageMeter(alpha=0.3)
self.cur_epoch = epoch
for batch in train_loader:
loss_dict = self._train_it(it, batch)
it += 1
pbar.update()
train_running_meter.append_loss(loss_dict)
pbar.set_postfix(train_running_meter.get_loss_dict())
# Monitor loss
tbar.refresh()
for loss_name, loss_val in loss_dict.items():
self.viz.add_scalar('train/'+loss_name, loss_val, global_step=it)
train_meter.append_loss(loss_dict)
if (it % len(train_loader)) == 0:
pbar.close()
# Accumulate train loss and metrics in the whole epoch
train_avg = train_meter.get_mean_loss_dict()
for meter_key, meter_val in train_avg.items():
self.viz.add_scalar('epoch_sum_train/'+meter_key, meter_val, global_step=epoch)
# Test on the validation set
if val_loader is not None:
val_loss, val_avg = self.eval_epoch(val_loader)
for meter_key, meter_val in val_avg.items():
self.viz.add_scalar('epoch_sum_val/'+meter_key, np.mean(meter_val), global_step=epoch)
is_best = val_loss < best_loss
best_loss = min(best_loss, val_loss)
save_checkpoint(
checkpoint_state(self.flownet),
is_best,
filename=osp.join(self.exp_base, self.checkpoint_name),
bestname=osp.join(self.exp_base, self.best_name))
# # Also save intermediate epochs
# save_checkpoint(
# checkpoint_state(self.flownet),
# is_best,
# filename=osp.join(self.exp_base, 'epoch_%03d'%(self.cur_epoch)),
# bestname=osp.join(self.exp_base, self.best_name))
pbar = tqdm.tqdm(
total=len(train_loader), leave=False, desc='train')
pbar.set_postfix(dict(total_it=it))
self.viz.flush()
return best_loss
def lr_curve(it):
return max(
args.lr_decay ** (int(it * args.batch_size / args.decay_step)),
args.lr_clip / args.lr,
)
def bn_curve(it):
if args.decay_step == -1:
return args.bn_momentum
else:
return max(
args.bn_momentum
* args.bn_decay ** (int(it * args.batch_size / args.decay_step)),
1e-2,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('config', type=str, help='Config files')
# Read parameters
args = parser.parse_args()
with open(args.config) as f:
configs = yaml.load(f, Loader=yaml.FullLoader)
for ckey, cvalue in configs.items():
args.__dict__[ckey] = cvalue
# Fix the random seed
seed = args.random_seed
np.random.seed(seed)
torch.manual_seed(seed)
# Configuration for different dataset
data_root = args.data['root']
if args.dataset == 'sapien':
from models.flownet_sapien import FlowStep3D
from datasets.dataset_sapien import SapienDataset as TrainDataset
data_root = osp.join(data_root, 'mbs-shapepart')
elif args.dataset == 'ogcdr':
from models.flownet_ogcdr import FlowStep3D
from datasets.dataset_ogcdr import OGCDynamicRoomDataset as TrainDataset
else:
raise KeyError('Unrecognized dataset!')
# Setup the network
flownet = FlowStep3D(npoint=args.flownet['npoint'],
use_instance_norm=args.flownet['use_instance_norm'],
loc_flow_nn=args.flownet['loc_flow_nn'],
loc_flow_rad=args.flownet['loc_flow_rad'],
k_decay_fact=args.flownet['k_decay_fact']).cuda()
# Only use adjacent frame pairs (Self-supervised training cannot handle large motions)
view_sels = [[0, 1], [1, 0], [1, 2], [2, 1], [2, 3], [3, 2]]
# Setup the dataset
train_set = TrainDataset(data_root=data_root,
split='train',
view_sels=view_sels,
aug_transform=args.data['aug_transform'],
aug_transform_args=args.data['aug_transform_args'])
train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=4)
val_set = TrainDataset(data_root=data_root,
split='val',
view_sels=view_sels,
aug_transform=False)
val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=4)
# Setup the optimizer
optimizer = optim.Adam(flownet.parameters(), lr=args.lr, weight_decay=args.weight_decay)
lr_scheduler = LambdaLR(optimizer, lr_lambda=lr_curve)
bnm_scheduler = BNMomentumScheduler(flownet, bn_lambda=bn_curve)
# Setup the loss
chamfer_loss = ChamferLoss(**args.loss['chamfer_loss_params'])
smooth_loss = SmoothLoss(**args.loss['smooth_loss_params'])
criterion = UnsupervisedFlowStep3DLoss(chamfer_loss=chamfer_loss,
smooth_loss=smooth_loss,
iters_w=args.loss['iters_w'],
weights=args.loss['weights'])
# Setup the trainer
trainer = Trainer(flownet=flownet,
model_iters=args.model_iters,
criterion=criterion,
optimizer=optimizer,
exp_base=args.save_path,
lr_scheduler=lr_scheduler,
bnm_scheduler=bnm_scheduler)
# Train
trainer.train(args.epochs, train_loader, val_loader)