-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy patheval_nuscenes.py
155 lines (141 loc) · 5.64 KB
/
eval_nuscenes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright 2022 - Valeo Comfort and Driving Assistance - Gilles Puy @ valeo.ai
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
import argparse
import waffleiron
import numpy as np
from tqdm import tqdm
from waffleiron import Segmenter
from datasets import NuScenesSemSeg, Collate
if __name__ == "__main__":
# --- Arguments
parser = argparse.ArgumentParser(description="Evaluation")
parser.add_argument("--config", type=str, help="Path to config file")
parser.add_argument("--ckpt", type=str, help="Path to checkpoint")
parser.add_argument(
"--path_dataset", type=str, help="Path to SemanticKITTI dataset"
)
parser.add_argument("--result_folder", type=str, help="Path to where result folder")
parser.add_argument(
"--num_votes", type=int, default=1, help="Number of test time augmentations"
)
parser.add_argument("--batch_size", type=int, default=1, help="Batch size")
parser.add_argument("--num_workers", type=int, default=6)
parser.add_argument("--phase", required=True, help="val or test")
args = parser.parse_args()
assert args.num_votes % args.batch_size == 0
args.result_folder = os.path.join(args.result_folder, "lidarseg", args.phase)
os.makedirs(args.result_folder, exist_ok=True)
# --- Load config file
import yaml
with open(args.config) as f:
config = yaml.safe_load(f)
# --- Dataloader
tta = args.num_votes > 1
dataset = NuScenesSemSeg(
rootdir=args.path_dataset,
input_feat=config["embedding"]["input_feat"],
voxel_size=config["embedding"]["voxel_size"],
num_neighbors=config["embedding"]["neighbors"],
dim_proj=config["waffleiron"]["dim_proj"],
grids_shape=config["waffleiron"]["grids_size"],
fov_xyz=config["waffleiron"]["fov_xyz"],
phase=args.phase,
tta=tta,
)
if args.num_votes > 1:
new_list = []
for f in dataset.list_frames:
for v in range(args.num_votes):
new_list.append(f)
dataset.list_frames = new_list
loader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False,
collate_fn=Collate(),
)
args.num_votes = args.num_votes // args.batch_size
# --- Build network
net = Segmenter(
input_channels=config["embedding"]["size_input"],
feat_channels=config["waffleiron"]["nb_channels"],
depth=config["waffleiron"]["depth"],
grid_shape=config["waffleiron"]["grids_size"],
nb_class=config["classif"]["nb_class"],
drop_path_prob=config["waffleiron"]["drop"],
)
net = net.cuda()
# --- Load weights
ckpt = torch.load(args.ckpt, map_location="cuda:0")
try:
net.load_state_dict(ckpt["net"])
except:
# If model was trained using DataParallel or DistributedDataParallel
state_dict = {}
for key in ckpt["net"].keys():
state_dict[key[len("module."):]] = ckpt["net"][key]
net.load_state_dict(state_dict)
net.compress()
net.eval()
# --- Re-activate droppath if voting
if tta:
for m in net.modules():
if isinstance(m, waffleiron.backbone.DropPath):
m.train()
# --- Evaluation
id_vote = 0
for it, batch in enumerate(
tqdm(loader, bar_format="{desc:<5.5}{percentage:3.0f}%|{bar:50}{r_bar}")
):
# Reset vote
if id_vote == 0:
vote = None
# Network inputs
feat = batch["feat"].cuda(non_blocking=True)
labels = batch["labels_orig"].cuda(non_blocking=True)
batch["upsample"] = [up.cuda(non_blocking=True) for up in batch["upsample"]]
cell_ind = batch["cell_ind"].cuda(non_blocking=True)
occupied_cell = batch["occupied_cells"].cuda(non_blocking=True)
neighbors_emb = batch["neighbors_emb"].cuda(non_blocking=True)
net_inputs = (feat, cell_ind, occupied_cell, neighbors_emb)
# Get prediction
with torch.autocast("cuda", enabled=True):
with torch.inference_mode():
# Get prediction
out = net(*net_inputs)
for b in range(out.shape[0]):
temp = out[b, :, batch["upsample"][b]].T
if vote is None:
vote = torch.softmax(temp, dim=1)
else:
vote += torch.softmax(temp, dim=1)
id_vote += 1
# Save prediction
if id_vote == args.num_votes:
# Get label
pred_label = (
vote.max(1)[1] + 1
) # Shift by 1 because of ignore_label at index 0
# Save result
bin_file_path = os.path.join(
args.result_folder, batch["filename"][0] + "_lidarseg.bin"
)
np.array(pred_label.cpu().numpy()).astype(np.uint8).tofile(bin_file_path)
# Reset count of votes
id_vote = 0